JPS5921529A - Manufacture of magnetic iron oxide powder for magnetic recording material - Google Patents
Manufacture of magnetic iron oxide powder for magnetic recording materialInfo
- Publication number
- JPS5921529A JPS5921529A JP57131839A JP13183982A JPS5921529A JP S5921529 A JPS5921529 A JP S5921529A JP 57131839 A JP57131839 A JP 57131839A JP 13183982 A JP13183982 A JP 13183982A JP S5921529 A JPS5921529 A JP S5921529A
- Authority
- JP
- Japan
- Prior art keywords
- cobalt
- particles
- iron oxide
- ferrous
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compounds Of Iron (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、磁気記録拐料用磁性酸化鉄粒子粉末特にコバ
ルト固溶マグネタ4 ) K7 ”pニコハルト、m−
鉄及びバリウム又はストロンチウムヲ被着させた磁性酸
化鉄粒子粉末の製造法に関するものであり、詳1. <
は、高保磁力で、且つ保磁力の経時変化が少なく、更に
磁気記録媒体とし7たときの転写特性を低下させない磁
性酸化鉄粒子粉末の製造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides magnetic iron oxide particles for magnetic recording particles, particularly cobalt solid solution magnets 4) K7''p Nicohart, m-
This article relates to a method for producing magnetic iron oxide particles coated with iron and barium or strontium, and details 1. <
relates to a method for producing magnetic iron oxide particles that have a high coercive force, have little change in coercive force over time, and do not deteriorate transfer characteristics when used as a magnetic recording medium.
近年、磁気記録再生用機器の小型軽量化が進むに−)れ
て磁気デーゾ、磁気ディスク等の磁気記録媒体に対する
高性能化の必要性が益々生じてきている。vllち、高
記録密度特性、高出力特性、高感度特性等の諸行性の向
上が要求されている。In recent years, as magnetic recording and reproducing equipment has become smaller and lighter, there has been an increasing need for higher performance magnetic recording media such as magnetic recording media and magnetic disks. There is a demand for improvements in performance such as high recording density characteristics, high output characteristics, and high sensitivity characteristics.
磁気記録媒体に対する前記の要求を満がするために適し
た磁性酸化鉄粒子粉末の特性は、磁気特性において高い
保磁力Heと高い飽和磁化σSを泊jることである。The characteristics of magnetic iron oxide particles suitable for satisfying the above-mentioned requirements for magnetic recording media are that they have high coercive force He and high saturation magnetization σS in their magnetic properties.
その為に、従来、磁気記録媒体川の磁性酸化鉄粒子をコ
バルト等で変成させて得られたコバルト含泊マグネタイ
ト粒子粉末が提案さねている。For this reason, cobalt-containing magnetite particle powder obtained by modifying magnetic iron oxide particles used in magnetic recording media with cobalt or the like has not been proposed.
この−Jバルト含有マグネタイト粒子粉末は、−1バル
トを変成させる方法の相違によって以下の二1〕に大別
できる。This -J balt-containing magnetite particle powder can be roughly classified into the following 21] depending on the method of transforming -1 balt.
(1) 含水酸化第二鉄粒子か生成する段階で、1バ
ルトを添加することにより、!1ベルトを−・様な濃度
で含む含水酸化へ′〜二鉄私′/−f−を?4I、該粒
子を還元する方法、いわゆる′−1バ/l、l・固溶マ
グネタイト粒子の生成方法。(1) By adding 1 balt at the stage of forming hydrated ferric oxide particles! 1 belt to a hydrous oxidation containing a concentration like -' ~ diiron I'/-f-? 4I, a method for reducing the particles, a method for producing so-called '-1 bar/l, l solid solution magnetite particles.
(例えば、特公昭3’7−9457弓公報、特公昭49
−4264号公報)
(2)マクネタイト粒子に=1バルトあるいはコバルト
と第一鉄を添加することを特?(☆とする、いわゆるコ
バルト被着マクネタイト粒子の生成Jj法。(例えは、
特開昭47−22707−”(’、公報、1)開昭48
−20098叶公報、訪問ff14B−46899叶公
報、勃開昭49−1118599″r′i公報、特公昭
47−27719 ′;3公報、特公昭/1B−N’1
99.1号公報、特公昭49−49475壮公報、特公
昭57−2,17ろ7号公報、特公昭52−28238
日公報、1゛IC公昭!32−56751¥、・公報、
特公昭52−う686ろシJ・公報)」−記(1)の方
法により得られた′−1バルト固溶マグネタイト粒子は
、高い保磁力を有する反面、保磁力の経時変化、転写、
加熱減磁、加圧減磁等経時的、熱的に非常に不安定であ
ることが従来から指摘さねている。(For example, Special Publication No. 3'7-9457 Bow Publication, Special Publication No. 49
-4264 Publication) (2) Is it special to add =1 balt or cobalt and ferrous iron to macnetite particles? (☆) is the so-called cobalt-coated manetite particle generation Jj method. (For example,
Japanese Patent Publication No. 47-22707-” (', Publication, 1)
-20098 Kano Publication, Visit ff14B-46899 Kano Publication, Ekikai 49-1118599''r'i Publication, Special Publication 47-27719';3 Publication, Special Publication Sho/1B-N'1
Publication No. 99.1, Special Publication No. 49-49475, Special Publication No. 2,17-7, Special Publication No. 52-28238
Nikkeiho, 1゛IC Kimiaki! 32-56751 yen, Public bulletin,
The '-1 baltic solid solution magnetite particles obtained by the method described in (1) in Japanese Patent Publication No. 52-686 Roshi J. Publication) have a high coercive force.
It has been pointed out that it is extremely unstable thermally and over time due to heating demagnetization, pressurization demagnetization, etc.
一方、(2)の方法により得られたコバルト被着マグネ
タイト粒子は、保磁力の経時変化は少ないが、保磁力は
高々500〜6000e程度のものしか得ることができ
ず、今F1当業界において要求されている史に高い保磁
力を得ることは困鑓である。On the other hand, cobalt-coated magnetite particles obtained by the method (2) show little change in coercive force over time, but a coercive force of only about 500 to 6000 e can be obtained, which is currently required in the F1 industry. It is difficult to obtain a high coercive force in the past.
また最近、上記(1)の方法、即ち、コバルト固溶磁性
酸化鉄粒子の粒子表面上に更にコバルトを被着させると
いう改良技術(例えば特開昭54−122664号公報
、特開昭55−72009号公報)も提案されている。In addition, recently, the method (1) above, that is, an improved technique in which cobalt is further deposited on the particle surface of cobalt solid solution magnetic iron oxide particles (for example, JP-A-54-122664, JP-A-55-72009) Publication No. 2) has also been proposed.
上記改良技術によって得られたコバルト含有磁性酸化鉄
粒子粉末は、特に高保磁力の特性を示すものの、前記(
2)の方法によるコバルト被着マグネタイト粒子に比し
、保磁力の経時変化が大きく、磁気記録媒体とじて使用
するに適しているものとは言い埜いものである。Although the cobalt-containing magnetic iron oxide particles obtained by the above-mentioned improved technique exhibit particularly high coercive force characteristics, the above-mentioned (
Compared to the cobalt-coated magnetite particles obtained by method 2), the coercive force changes over time to a large extent, and it cannot be said that the particles are suitable for use as a magnetic recording medium.
本発明は、上記(1)の方法の改良技術に属するもので
ある。The present invention belongs to an improvement technique of the method (1) above.
本発明者は、高保磁力の特性を有する磁性酸化鉄粒子を
得るため、コバルト固溶磁性酸化鉄粒子をコバルトと第
一・鉄で被着さけることを考えた。In order to obtain magnetic iron oxide particles having a property of high coercive force, the present inventor considered that cobalt solid solution magnetic iron oxide particles should be coated with cobalt and ferrous iron.
しかし、コバルト量、第一鉄Mが多くなわばなる程、保
磁力の向上の効果があることが知られて−いる反面、保
磁力の経時変化が大きくなり、また磁気デーゾ等の六p
気記録媒体とした際に転γf特性榮低下させてしまうこ
とになる。However, it is known that the larger the amount of cobalt and ferrous M, the more effective the coercive force is.
When used as a recording medium, the γf characteristics will deteriorate.
本発明者は、上述した現象に9@ 、7. 、高い保磁
力を有し、柱つ保磁力の経時変化が少なく、同時に磁気
記録媒体とした際の転写特性が改良さねた磁性酸化鉄粒
子粉末を得るべく JDf究を重ねて来た1、そしてコ
バルト固溶マグネタイト粒子にコバルトおよび第一鉄を
被着さゼる際に同時にバリウム又はストロンチウムを併
用すると、コバルト、第一鉄の′fli、着量を少なく
しても高保磁力を有し、且つ保磁力の経時変化が少ない
磁性酸化鉄粒子が得られ、同時に磁気デーゾ等の磁気記
録媒体とした場合には、第一鉄の被着量を少なくしたこ
とに起因17て、転写特性の低下が可及的に少なくなる
という現象を見い出したのである。The present inventor has addressed the above-mentioned phenomena as follows: 9@, 7. , JDf research has been carried out in order to obtain magnetic iron oxide particles that have high coercive force, have little change in coercive force over time, and at the same time have improved transfer characteristics when used as a magnetic recording medium1. If barium or strontium is used at the same time when cobalt and ferrous are deposited on cobalt solid solution magnetite particles, the cobalt and ferrous will have a high coercive force even if the amount of deposited is small. In addition, magnetic iron oxide particles with a small change in coercive force over time can be obtained, and at the same time, when used as a magnetic recording medium such as magnetic deso, the transfer characteristics deteriorate due to the reduced amount of ferrous iron17. They discovered a phenomenon in which the
本発明者は、]−記現象に基づき、コバルト固溶マグネ
タイト粒子にコバルト、第−鉄及びバリウム又はストロ
ンチウムを用いて被着させる各種条件について検剖を重
ねた結果、本発明を完成するに至ったのである。Based on the phenomenon described above, the present inventor conducted repeated autopsies on various conditions for coating cobalt solid-solubilized magnetite particles with cobalt, ferrous iron, and barium or strontium, and as a result, completed the present invention. It was.
ff1Jも、本発明は、コバルト固溶マグネタイト粒子
を前駆体粒子として用い、該前駆体粒子の分散液中にコ
バルト塩水溶液、第−鉄塩水溶液及びバリウム又はスト
ロンチウム塩を添加し、次いでアルカリを加えて液中の
OH基濃度を0.05〜3.1mo/、jとしだ分散液
を、液温50〜IDO’Cにおいて非酸化性雰囲気で攪
拌混合することにより、前記前駆体粒子にコバルト、第
−鉄及びバリウム又はストロンチウムを被着させた後、
p別、乾燥することを特徴と1−る磁気記録イA料用磁
性耐化鉄粒子粉末の製造法である。In ff1J, the present invention uses cobalt solid-solubilized magnetite particles as precursor particles, adds a cobalt salt aqueous solution, a ferrous salt aqueous solution, and a barium or strontium salt to a dispersion of the precursor particles, and then adds an alkali. Cobalt, cobalt, After depositing ferrous iron and barium or strontium,
1. A method for producing a magnetically resistant iron particle powder for use in magnetic recording materials, which is characterized by drying.
次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.
本発明において鰻も特徴とすることは、コバルト固溶マ
グネタイト粒子を前駆体粒子−とし、これ各こコバル)
・、第−鉄及びバリウノ\又はストロンチウムを被着さ
せることによって、高保磁力で、且つ保磁力の経時変化
が少なく、更に磁気記録媒体としたときの転写特性を低
下させない磁性酸化鉄粒子粉末を得るものである。尚、
本発明方法における、コバルト固溶マグネタイト粒−ト
表面で、コバ/L/ト、第、−鉄及びバリウム又はスト
ロンチウムの被着がどのような機構で生起しているかに
ついての理論的考察はいまだ充分に行ってはないが、結
果として、高い保磁力が得られることを始め、種々の磁
気特性を向上させる効果が得られていることは、コバル
ト、第−鉄及びバリウム又はストロンチウムが相乗的に
働くことによるものと考えている。また、第一鉄量を減
少させても高い保磁力の磁性酸化鉄粒子が得られている
ので、保磁力の経時変化が少ない磁性酸化鉄粒子が得ら
れるものと考えている。The feature of the present invention is that cobalt solid-dissolved magnetite particles are used as precursor particles, and each of these cobalt particles is used as a precursor particle.
・By depositing ferrous iron and barium or strontium, obtain magnetic iron oxide particle powder that has high coercive force, has little change in coercive force over time, and does not deteriorate transfer characteristics when used as a magnetic recording medium. It is something. still,
In the method of the present invention, there is still insufficient theoretical consideration as to the mechanism by which Co/L/T, ferrous, and barium or strontium deposits occur on the surface of cobalt solid-solubilized magnetite grains. Although it has not been tested, cobalt, ferrous iron, and barium or strontium work synergistically to improve various magnetic properties, including obtaining a high coercive force. I think this is due to this. Moreover, since magnetic iron oxide particles with high coercive force were obtained even when the amount of ferrous iron was reduced, it is believed that magnetic iron oxide particles with less change in coercive force over time can be obtained.
次に、本発明における諸条件について説明する。Next, various conditions in the present invention will be explained.
先ず、被着させるコバルトと第−鉄及びバリウム又はス
トロンチウムの量について述べる。First, the amounts of cobalt, ferrous iron, and barium or strontium to be deposited will be described.
コバルトの被着量は、前駆体粒子(コバルト固溶マグネ
タイト粒子)に対しCoとして旧〜1D重量%が望まし
い。01重計量以下の被着ではコバルトによる被着効果
は顕著に表れない。10重量%以」二の場合には得られ
る磁性酸化鉄粒子の保磁力分布が大きくなる傾向にあり
望ましくない。The amount of cobalt deposited is desirably 1D to 1D weight % as Co based on the precursor particles (cobalt solid-solubilized magnetite particles). If the coating weight is less than 0.01 weight, the coating effect of cobalt will not be noticeable. If the amount is 10% by weight or more, the coercive force distribution of the obtained magnetic iron oxide particles tends to become large, which is not desirable.
尚、本発明におて使用されるコバルト塩としては水可溶
性塩、例えば硫酸コバルト、硝酸コバルト等が使用でき
る。As the cobalt salt used in the present invention, water-soluble salts such as cobalt sulfate and cobalt nitrate can be used.
第一鉄の被着量は、前駆体のコバルト固溶マグネタイト
粒子に対しFe’+とじて01〜15重量%が望まし2
い。01重量%以下の場合には、保磁力向上の効果が低
くなり、また電気抵抗が上る。他方、+5iij1%以
−Lの場合には、バリウム又はストロンチウムとの相乗
的効果が表れ輔<、また得られる磁性酸化鉄粒子の保磁
力の経時変化が大きくなり更には転¥効果が悪くなるの
で好ましくない。The amount of ferrous iron deposited is desirably 01 to 15% by weight as Fe'+ based on the cobalt solid-dissolved magnetite particles of the precursor.
stomach. If it is less than 0.01% by weight, the effect of improving coercive force will be low and the electrical resistance will increase. On the other hand, when +5iij1% or more -L, a synergistic effect with barium or strontium appears, and the change over time in the coercive force of the obtained magnetic iron oxide particles increases, furthermore, the rolling effect worsens. Undesirable.
尚、本発明において使用される第一鉄塩としては、硫酸
第一・鉄、塩化第一鉄、硝酸第・鉄等がある。The ferrous salts used in the present invention include ferrous sulfate, ferrous chloride, and ferrous nitrate.
バリウム又はストロンチウムの被着量は、前駆体コバル
ト固溶マグネタイト粒子に対してJ3a又はSrとして
0.05〜10重量%が望ましい。0.05重量%以上
の場合には、被着の効果、即ち、保磁力向上の効果が期
待できない。一方10重量%以−1−の場合には、飽和
磁化が低下し好まI7<ない。The amount of barium or strontium deposited is preferably 0.05 to 10% by weight as J3a or Sr based on the precursor cobalt solid solution magnetite particles. If the amount is 0.05% by weight or more, no adhesion effect, ie, an effect of improving coercive force, can be expected. On the other hand, if it is 10% by weight or more, the saturation magnetization decreases, and it is preferable that I7<<.
尚、バリウム塩としては、塩化バリウム、硫酸バリウム
、炭酸バリウム等が使用でき、ス) tyンチウノ\塩
としては、例えば塩化ストロンチウム、硫酸ストロンチ
ウム、炭酸スト【1ンヂウ1\等が使用できる。As the barium salt, barium chloride, barium sulfate, barium carbonate, etc. can be used, and as the salt, for example, strontium chloride, strontium sulfate, carbonate, etc. can be used.
次に、前駆体粒子とし7てのコバルト固溶マゲネ々イ)
・粒子とは、硫酸第一鉄塩水溶液とアルカリとび)湿式
反応中Gこコバルト塩水溶液を添加してコベ・し)含イ
JO(状含水酸化第二鉄tマI子を得、該粒子をIJI
I熱脱水1−、、次いで」1ミ元処理を施し7たもの、
あるいは、田状含水酸fIS第二鉄粒子、またはΦ1状
酸化第二鉄粒千の粒子表11r1に、コバルトを吸着さ
せた後、還元処月11を施したもの等をいう。コバルト
含イfi■etは本発明のIH+的から1れはFθGこ
対しC○換算で01〜25原子%で十分である。Next, cobalt solid solution magnesium as precursor particles (7)
・Particles are obtained by adding a cobalt salt aqueous solution during a wet reaction with an aqueous solution of a ferrous sulfate salt to obtain a ferric oxide (JO) containing hydrated ferric oxide particles. IJI
I thermal dehydration 1-, then 1-1 treatment,
Alternatively, it refers to particles in which cobalt is adsorbed on ferric oxide grains in the form of field-like hydrous acid fIS or particles 11r1 of 1,000 Φ1-shaped ferric oxide grains, which are then subjected to reduction treatment 11. From the IH+ perspective of the present invention, it is sufficient for the cobalt-containing fi*et to be 01 to 25 atomic % in terms of C○ compared to FθG.
次に、11女中の01(基濃度は、D、0.5−ろTJ
J Tll○r7”eでなけれはならy(い。005m
off、i以t″の場合には構成が1分生起しない。一
方3.1 m o l!/、)以−Iの場合C=−は、
水酸化コバルトが溶解しはじめるため好まし、くない。Next, 01 of 11 maids (base concentration is D, 0.5-roTJ
J Tll○r7”e must be y (i.005m
off, in the case of i to t'', the configuration does not occur for 1 minute.On the other hand, in the case of 3.1 m o l!/, ) to -I, C=-,
This is not preferred because cobalt hydroxide begins to dissolve.
液温は50−100°Cの範囲であることが必要である
。The liquid temperature needs to be in the range of 50-100°C.
5(ビC以−トの場合には、本発明の目的生成物が生成
し難く、生成するとしても極めて長時間の処理を必要と
する。一方100°C以寸とする場合は特殊な装置を必
要とする。5 (If the temperature is higher than 100°C, it is difficult to produce the target product of the present invention, and even if it is produced, it will require extremely long processing times.On the other hand, if the temperature is higher than 100°C, special equipment is required. Requires.
また、本発明を非酩・化性?ず囲気1ト−で行うのは、
溶液中の水酸化コバIL、 )、水酸化鉄を安定に存r
1:さ1士るため了゛ある。即ち、酬′化性雰囲気士の
345合に(・、1分数y(中の水酸化コバルト及び水
1)(化玖が前駆体を変成ン\十νる(−と7I゛<酸
化14りとなり、そのま−1/、)赦ン命中C(−残仔
Aるkめ好1: 1.べ乙↓゛いがら−(ある。Also, is the present invention non-intoxicating and intoxicating? What you can do with 1 tortoise is:
Cobalt hydroxide IL, ) and iron hydroxide remain stable in solution.
1: I am here to study. That is, in the 345 cases of the chemically oxidizing atmosphere (-, 1 fraction y (cobalt hydroxide and water 1), the chemical transforms the precursor \ν (- and 7I゛< 14 Then, Somama-1/,) Pardon Hit C (-Zanzai Ark Meho 1: 1.Bei ↓゛Igara-(There is.
史cJ−1[)IJ記(7) t)+−+ g、 ia
J!V、溶液11A l−’J5、非rVI化性$
1jll気σ)−Hjと条f′1で攪拌7J?、合一4
るのは、前駆体粒子と水酸化コバルト、水酸化鉄及びバ
リ・′ツノ、塩yはストロン1ウノ\塩を均一に接触反
ルh1さI4るためと被着層紺成’I゛々1の結晶成長
を割病11−るためである。History cJ-1 [) IJ Book (7) t) +-+ g, ia
J! V, solution 11A l-'J5, non-rVIization $
Stir 7J with 1jll air σ)-Hj and article f'1? , coalescence 4
This is because the precursor particles, cobalt hydroxide, iron hydroxide, burrs, and salt are uniformly brought into contact with each other, and the adhesion layer becomes clear. This is to reduce the crystal growth of 11-.
層中の通りの構成の本発明は、次の効果を奏するもσ)
で、(・)る。The present invention, which has the same structure in the layer, has the following effects (σ)
Out.
即ち、本発明によれは、コバルト固溶マゲネタ(ト%’
>’を子を:1バルト、第−鉄及びバリウム又はストr
1ンチウl\で被着することにより高い保磁力を有する
磁′t/1: rV!化鉄粒「粉末をイ(Iることがで
きるので現在、最も留水されている安定性に優れた高感
度、高出力、高密度記録用磁性H料として利用すること
ができる。That is, according to the present invention, cobalt solid solution magenta (%')
>' Child: 1 Baltic, ferrous and barium or str
Magnet which has high coercive force by depositing with 1 inch /1: rV! Iron chloride particles can be used as a magnetic H material for high sensitivity, high output, and high density recording with excellent stability, which is currently the most stable.
史に、本発明σ)方法により得られた磁性酸化鉄粒子は
、同程度の保磁力のものを得ようとする場合には、コバ
ルトと第一鉄で被着する場合に比し、第・鉄の使用iは
少量でよく、保磁力の経時変化が少なく、また磁気テー
プ等の磁気記録媒体とした際の転写特性を改良すること
ができる等、磁気的特性を安定化さゼる。Historically, the magnetic iron oxide particles obtained by the method σ) of the present invention have a coercive force of about 10% compared to the case of depositing with cobalt and ferrous iron when trying to obtain the same level of coercive force. Only a small amount of iron is needed, the coercive force changes less over time, and the magnetic properties can be stabilized by improving the transfer properties when used as a magnetic recording medium such as a magnetic tape.
次に、実施例並びに比較例により本発明を説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.
実施例1゜
CO固溶金1状マグネタイト粒子(保磁力HC:384
0e 、飽和磁化6q : B7.Aθmu/g、Oo
/p e :03原子%)を前駆体粒子とし、該粒子1
kgを11〕61の水に分散させ、該分散液(こ0o
SO4・7H,,095,4g4溶解した水溶液500
解1XFeSO4・7賜075.OQを溶解した水溶液
207m/!及びSrO/!2・6H,,030,4g
を溶解した水溶液3410gfを加えて空気の混入を防
止し“C攪拌混合しながら1B−NのN a OH水溶
液1185mlを加えた。次いで上記分散液のン晶度を
95°(−](こ保持し7、空う℃の混入を防止して脣
06月j)J攪拌混合をえ・υまた。次いでスラリーを
取り出し、水5’l’;、1別し7た後1.’lO°C
の温度で軒7燥1.て:1バルト、第−鉄及びストロン
チウ11で被着されたコバルト固溶マゲネタイト粒子粉
末とした。Example 1゜CO solid solution gold monoform magnetite particles (coercive force HC: 384
0e, saturation magnetization 6q: B7. Aθmu/g, Oo
/p e :03 at%) as the precursor particles, and the particles 1
kg in 11]61 of water, and the dispersion (this
SO4・7H,,095,4g4 dissolved aqueous solution500
Solution 1XFeSO4・7075. Aqueous solution containing OQ dissolved 207m/! and SrO/! 2.6H,,030,4g
3,410 gf of an aqueous solution in which the dispersion was dissolved was added to prevent air from entering, and 1,185 ml of a 1B-N NaOH aqueous solution was added while stirring and mixing.Next, the crystallinity of the dispersion was adjusted to 95° (-) (maintaining this). 7. To prevent the contamination of empty °C, stir and mix again.Then, take out the slurry, add 5'l' of water and add 1.'0°C.
Dry the eaves at a temperature of 1. Example 1: Cobalt solid solution magnetite particle powder coated with 11 balt, ferrous iron and strontium 11.
?[Iらねたコバルト、第一・鉄及びストロンヂウ18
で被着されたコバルト固溶マグネタイト粒子・粉末の?
a気時特性1llll 定した結果、保磁力He :
6JIn (lie。? [I ran Cobalt, Daiichi Tetsu and Strongy
Cobalt solid solution magnetite particles/powder deposited with ?
As a result of determining the a time characteristic, the coercive force He:
6JIn (lie.
飽和磁化σ日: 78 em’ll/qてあ−、た。Saturation magnetization σ days: 78 em’ll/q.
このコバルI・、第−鉄及びス)・ロンチウJ\て被着
されたコバルト固溶マゲネタイト粒子粉末を室温h(置
しまた場合の保磁力を表2に示す。Table 2 shows the coercive force when the cobalt solid-dissolved magnetite particles coated with Cobal I, Ferrous, and Ronchiu J were allowed to stand at room temperature (h).
1−〕記コバルト、第゛鉄及びストロンチウムで被着さ
れたコバルト固溶マグネ々イト粒子粉末を用いてF記G
・7示ず通りのバインダー組成で配合し7か後、混合分
赦しで磁性塗料とした。1-] Using cobalt solid solution magnetite particle powder coated with cobalt, ferrous and strontium,
・After 7, mix the binder composition as shown and mix it to make a magnetic paint.
磁性酸化鉄粒子粉末 100gビニル樹脂
(酢酸ビニル:塩化ビニル 20q−3+91共重合
体)
二)・リルゴム 5qトル玉ン
1009メチルエチルケトン
75f7ノチルイソブチルケトン
75Qし7 シ・ チ ン
0.2g<1+られた磁性塗料に溶剤(トルエ
ン°メ千ルエヂ刀)’r I−ン:メチル・インブチル
ケトン=1 : 1 :1)を加えて適正な塗料粘度に
なるように調整し、ボリエスア゛ル樹脂フィルム上に塗
布して磁性塗膜を形成した。この磁性塗膜の保磁力Hc
は6810θであった。Magnetic iron oxide particle powder 100g Vinyl resin (vinyl acetate: vinyl chloride 20q-3+91 copolymer) 2) Lil rubber 5q Torudan 1009 Methyl ethyl ketone 75f7 Notyl isobutyl ketone
75 Q and 7 Shi Chin
Add a solvent (toluene: methyl imbutyl ketone = 1:1:1) to the magnetic paint containing 0.2 g < 1 and adjust it to the appropriate paint viscosity. A magnetic coating film was formed by coating it on a polyester resin film. Coercive force Hc of this magnetic coating film
was 6810θ.
次いて、上記磁性塗膜を、所定の幅に裁断して磁気デー
ゾとし、JIS 05542 j磁気記録テープ試験方
法−158転写の方法に従−っで磁気デーゾの転写効果
を測定したところ51.5dEであった。Next, the magnetic coating film was cut into a predetermined width to form a magnetic deso, and the transfer effect of the magnetic deso was measured according to the JIS 05542 J magnetic recording tape test method-158 transfer method, and the result was 51.5 dE. Met.
実施例2〜7
前駆体粒子の種類、コバルト塩、第一鉄塩、バリウム又
はストロンチウム塩の種類及び量、溶液湿度、OH基濃
度、撹拌条件等の諸条件を種々変化させ、実施例1と同
様にしてコバルト、第−鉄及びバリウノ\又はストロン
チラノ、で被着されたコバルト固溶マグネター(ト粒子
粉末を?また。Examples 2 to 7 Various conditions such as the type of precursor particles, the type and amount of cobalt salt, ferrous salt, barium or strontium salt, solution humidity, OH group concentration, stirring conditions, etc. Similarly, a cobalt solid solution magnetar coated with cobalt, ferrous, and variuno or strontylano particles was also used.
この主要製造条件及び特性を表1 表2&・二示ず。The main manufacturing conditions and characteristics are shown in Tables 1, 2, and 2.
比較例1・〜2
バリウム又はストロンチウム塩の添加を行なわず、前駆
体粒子の種類を変化させた以外は実施例1と同様にして
コバルト、第一鉄で被着さ第1たコバルト固溶マグネタ
イト粒子粉末を?(Iだ。Comparative Examples 1 and 2 Cobalt solid solution magnetite deposited with cobalt and ferrous iron in the same manner as in Example 1 except that barium or strontium salts were not added and the type of precursor particles was changed. Particle powder? (It's I.
この主要製造条件及び特性を表1、表2に示す。The main manufacturing conditions and characteristics are shown in Tables 1 and 2.
Claims (1)
用い、該前駆体粒子の分散液中にコバルト塩水溶液、第
−鉄塩水溶液及びバリウJ\又1:j ス) oンヂウ
ム塩を添加し、次いでアルカリを加えて液中のOH基濃
度を005〜30m01’、/1とした分散液を、液温
50−100’Cにおいて非酸化性雰囲気で攪拌混合す
ることにより、前記前駆体粒子にコバルト、第−鉄及び
バリウム又はストロンチウムを被着させた後、p別、乾
燥することを特徴とする磁気記録材料用磁性酸化鉄粒子
粉末の製造法。 2)コバルト被着量がコバルト固溶マグネタイト粒子に
対しCoとして01〜1o重量%である特許請求の範囲
第1項記載の磁気記録材料用磁性酸化鉄粒子粉末の製造
法。 3) 第−tAの被着量がコバルト固溶マグネタイト
粒子に対しFeIIとじで01〜15重世%である特許
請求の範囲第1項又は第2項記載の磁気記録材料用磁性
酸化鉄粒子粉末の製造法6.4) ハ’) ラムの被
着量が:1バルト固溶ママグネタイト子に対しBaとし
U O,05−10重量%である特許請求の範囲第1項
乃至第5項のいずれかに記載の磁気記録利料用磁性酸化
鉄粒子粉末の製造法。 5)ストロンチウムの被着量がコバル) 固’f8 マ
グ重々イト粒−fに対しSrとして圓5〜10重量%で
ある特許請求の範囲第1項乃至第3項のいずれかに記載
の磁気記録利料用磁性酸化鉄粒子粉末の製造法。[Claims] 1) Cobalt solid-dissolved magnetite particles are used as precursor particles, and a cobalt salt aqueous solution, a ferrous salt aqueous solution, and a barium salt are added to the dispersion of the precursor particles. By stirring and mixing a dispersion liquid in which a ndium salt was added and then an alkali was added to adjust the OH group concentration in the liquid to 005 to 30 m01'/1 in a non-oxidizing atmosphere at a liquid temperature of 50 to 100'C. A method for producing magnetic iron oxide particles for magnetic recording materials, which comprises coating the precursor particles with cobalt, ferrous iron, and barium or strontium, and then drying the precursor particles. 2) The method for producing magnetic iron oxide particles for magnetic recording materials according to claim 1, wherein the amount of cobalt deposited is 01 to 10% by weight of Co based on the cobalt solid-dissolved magnetite particles. 3) The magnetic iron oxide particle powder for magnetic recording materials according to claim 1 or 2, wherein the amount of the -tA deposited is 01 to 15% by FeII binding based on the cobalt solid solution magnetite particles. 6.4) C') The amount of ram coated is: 05-10% by weight of Ba and UO per 1 Baltic solid solution mamagnetite particle, according to claims 1 to 5. A method for producing magnetic iron oxide particles for use in magnetic recording according to any one of the above. 5) The magnetic recording according to any one of claims 1 to 3, wherein the amount of strontium deposited is 5 to 10% by weight as Sr with respect to the cobalt/magite grains -f. A method for producing magnetic iron oxide particles for use.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57131839A JPS5921529A (en) | 1982-07-27 | 1982-07-27 | Manufacture of magnetic iron oxide powder for magnetic recording material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57131839A JPS5921529A (en) | 1982-07-27 | 1982-07-27 | Manufacture of magnetic iron oxide powder for magnetic recording material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5921529A true JPS5921529A (en) | 1984-02-03 |
JPS614776B2 JPS614776B2 (en) | 1986-02-13 |
Family
ID=15067301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57131839A Granted JPS5921529A (en) | 1982-07-27 | 1982-07-27 | Manufacture of magnetic iron oxide powder for magnetic recording material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5921529A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4851258A (en) * | 1987-01-21 | 1989-07-25 | Showa Denko Kabushiki Kaisha | Method for preparing magnetic particles for magnetic-recording media |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5615604B2 (en) * | 2010-06-30 | 2014-10-29 | 第一実業ビスウィル株式会社 | Chip LED inspection device |
-
1982
- 1982-07-27 JP JP57131839A patent/JPS5921529A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4851258A (en) * | 1987-01-21 | 1989-07-25 | Showa Denko Kabushiki Kaisha | Method for preparing magnetic particles for magnetic-recording media |
Also Published As
Publication number | Publication date |
---|---|
JPS614776B2 (en) | 1986-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0313647B2 (en) | ||
JPS5921529A (en) | Manufacture of magnetic iron oxide powder for magnetic recording material | |
US4487627A (en) | Method for preparing ferromagnetic metal particles | |
JPS5923505A (en) | Magnetic powder | |
JPH0270003A (en) | Method for treating ferromagnetic iron powder | |
JPH06151139A (en) | Powder of magnetic particles for magnetic recording and manufacture thereof | |
JP2659957B2 (en) | Magnetic powder, manufacturing method thereof, and magnetic recording medium using the magnetic powder | |
JPS6051243B2 (en) | Method for producing magnetic iron oxide particles for magnetic recording materials | |
JP3194294B2 (en) | Magnetic recording media | |
JPS5939814B2 (en) | Method for manufacturing magnetic recording media | |
JP2745306B2 (en) | Ferromagnetic fine powder for magnetic recording and method for producing the same | |
JPH04184903A (en) | Manufacture of magnetic particle power for magnetic recording | |
JPS6132259B2 (en) | ||
JP3417981B2 (en) | Manufacturing method of magnetic particle powder for magnetic recording | |
JP2924929B2 (en) | Manufacturing method of materials for magnetic paint | |
JP2897794B2 (en) | Method for producing cobalt-coated magnetic iron oxide particles | |
JP2989874B2 (en) | Magnetic recording media | |
JPS59169937A (en) | Production of magnetic powder | |
JPS62154228A (en) | Magnetic recording medium | |
JPH0521321B2 (en) | ||
JPS61201626A (en) | Spindle-shaped magnetic iron oxide particle powder and its production | |
JPS63103829A (en) | Needle-like magnetic iron oxide particulate powder and production thereof | |
JPS6238531A (en) | Magnetic recording medium | |
JPS6013973B2 (en) | Method for producing magnetic iron oxide particles for magnetic recording materials | |
JPH0745416A (en) | Manufacture of magnetic particle and powder for magnetic recording |