JPS5921498B2 - concentration measuring device - Google Patents

concentration measuring device

Info

Publication number
JPS5921498B2
JPS5921498B2 JP53147411A JP14741178A JPS5921498B2 JP S5921498 B2 JPS5921498 B2 JP S5921498B2 JP 53147411 A JP53147411 A JP 53147411A JP 14741178 A JP14741178 A JP 14741178A JP S5921498 B2 JPS5921498 B2 JP S5921498B2
Authority
JP
Japan
Prior art keywords
concentration
signal
circuit
degassing
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53147411A
Other languages
Japanese (ja)
Other versions
JPS5574443A (en
Inventor
一郎 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP53147411A priority Critical patent/JPS5921498B2/en
Publication of JPS5574443A publication Critical patent/JPS5574443A/en
Publication of JPS5921498B2 publication Critical patent/JPS5921498B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、例えば下水や工業排水等のよ5な懸濁液の濃
度を測定する濃度測定装置に係り、特に消泡時間の無駄
をなくして懸濁液の濃度を正確に測定する濃度測定装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a concentration measuring device for measuring the concentration of suspensions such as sewage and industrial wastewater, and particularly to a concentration measuring device for measuring the concentration of suspensions by eliminating wasted defoaming time. This invention relates to a concentration measuring device that measures accurately.

従来、懸濁液の濃度を測定する方式として、放射線式、
光線式および超音波式などがあるが、何れの方式も懸濁
液中に気泡が含まれていると正確に濃度を測定すること
ができない。
Conventionally, methods for measuring the concentration of suspensions include radiation method,
There are light beam type and ultrasonic type, but either method cannot accurately measure the concentration if air bubbles are included in the suspension.

例えば放射線式のものは、気泡の存在によつて実濃度よ
りも低めの測定値が得られ、光線式や超音波式のものは
、気泡の存在により透過率が良くなり実濃度よりも高め
の測定値が得られる。従つて、何れの測定手段も誤差を
伴ない正確に濃度を測定することはできない。この誤差
は、懸濁液に気泡が含まれていることによるもので、従
来、この気泡を消滅するためにタイマーおよび加圧用ポ
ンプを設け、タイマーでポンプの運転時間を定め、その
時間の間ポンプを運転し消泡動作を行なつている(特開
昭51−35392号公報)。
For example, with the radiation type, the presence of air bubbles results in a measurement value that is lower than the actual concentration, while with the light beam type or ultrasonic type, the presence of air bubbles improves the transmittance and results in a measurement value that is higher than the actual concentration. Measured values are obtained. Therefore, none of the measuring means can accurately measure the concentration without any errors. This error is due to the presence of air bubbles in the suspension. Conventionally, a timer and pressurizing pump were installed to eliminate these air bubbles, and the timer set the pump operation time, and the pump was pumped during that time. is operated to perform a defoaming operation (Japanese Patent Application Laid-Open No. 51-35392).

しかし、この消泡手段は、懸濁液の性質を考慮しながら
人間の感によつて運転時間を定めたものであり、このた
め消泡時間と気泡の消泡率との間に第1図のような関係
が生ずる。
However, with this defoaming means, the operating time is determined based on human intuition while taking into consideration the properties of the suspension, and for this reason, there is a difference between the defoaming time and the defoaming rate of the bubbles as shown in Figure 1. A relationship like this arises.

即ち、サンプルが微細な気泡を含むものであれば気泡が
溶けやすいことからイー1のような消泡率特性を示す。
従つて、このようなサンプルでは消泡時間に余裕があり
、濃度測定までの待ち時間が長くて無駄となる。イー2
に示す消泡率特性の場合は気泡の溶解時間と消泡時間が
丁度一致するので以上述べた無駄時間がなくなる。イー
3の消泡率特性の場合は消泡時間が不足気味となり気泡
が残つている状態で濃度を測定するので誤差の伴なつた
測定値となる。イー4の場合はイー3と比較してその傾
向が更に顕著であるので誤差が著しく発生する。従つて
、以上の消泡率特性から明らかなように、懸濁液の気泡
の気泡含有状態によつて消泡時間が著しく異なる。それ
ゆえ、消泡時間の均一化を確保するために懸濁液に非常
に大きな加圧圧力を加えたり、消泡時間に充分な余裕を
とる等の対策を講じている。しかし、前者のように加圧
圧力を土げても気泡の含有量が均一でない限り消泡率に
ばらつきが生じ、また後者の場合は無駄時間を承知で濃
度測定をしなければならない欠点がある。
That is, if the sample contains fine air bubbles, the air bubbles are easily dissolved, so that it exhibits a defoaming rate characteristic like E1.
Therefore, with such a sample, there is plenty of time for defoaming, and the waiting time until concentration measurement is long, resulting in waste. E2
In the case of the defoaming rate characteristic shown in (a), the time for dissolving the bubbles and the time for defoaming exactly match, so that the above-mentioned wasted time is eliminated. In the case of the defoaming rate characteristic of E3, the defoaming time is a little short and the concentration is measured with bubbles remaining, resulting in measured values with errors. In the case of E4, this tendency is even more pronounced than in E3, so errors occur significantly. Therefore, as is clear from the above-mentioned defoaming rate characteristics, the defoaming time differs significantly depending on the bubble content state of the bubbles in the suspension. Therefore, in order to ensure a uniform defoaming time, measures are taken such as applying a very large pressurizing pressure to the suspension and providing a sufficient margin for the defoaming time. However, as in the former case, even if the pressure is increased, there will be variations in the defoaming rate unless the bubble content is uniform, and in the latter case, there is a drawback that concentration measurement must be done knowing wasted time. .

本発明は以上述べたような消泡時間とは無関係に消泡完
了時を知り無駄時間をなくして懸濁液の濃度を効率良く
、正確に測定する濃度測定装置を提供するものである。
The present invention provides a concentration measuring device that knows when defoaming is complete regardless of defoaming time as described above, eliminates wasted time, and efficiently and accurately measures the concentration of a suspension.

即ち、本発明装置は、脱気装置付き濃度検出器から出力
される濃度信号の変化を検出する信号変化検出回路、こ
の回路から出力される濃度信号の変化零の検出信号でそ
の濃度信号をホールドし濃度信号として出力するサンプ
ルホールド回路及び前記信号変化検出回路からの濃度信
号の変化零の検出信号を受け脱気終了信号を出力する制
御部を設け、前記脱気装置付き濃度検出器にて脱気しな
がらその脱気中の懸濁液の濃度を測定してその測定濃度
信号を信号変化検出回路へ送出し、この信号変化検出回
路では前記脱気装置付き濃度検出器の脱気動作によつて
懸濁液内の気泡が消泡されて濃度信号の変化が零となつ
たことを検出するこの濃度信号変化零の検出信号をサン
プルホールド回路および制御部へ供給する。
That is, the device of the present invention includes a signal change detection circuit that detects a change in the concentration signal output from a concentration detector equipped with a deaerator, and a signal change detection circuit that holds the concentration signal with a detection signal of zero change in the concentration signal output from this circuit. A sample hold circuit outputs a concentration signal, and a control section receives a detection signal of zero change in the concentration signal from the signal change detection circuit and outputs a degassing completion signal, and The concentration of the degassed suspension is measured while the deaeration is performed, and the measured concentration signal is sent to the signal change detection circuit, which detects the deaeration by the deaeration operation of the concentration detector equipped with the deaeration device. This detection signal of zero concentration signal change is supplied to the sample hold circuit and the control section, which detects that the air bubbles in the suspension have been extinguished and the change in the concentration signal has become zero.

このサンプルホールド回路は濃度信号変化零の検出信号
を受けて前記懸濁液の濃度信号をサンプリングして出力
し、一方、制御部では濃度信号変化零の検出信号を受け
て前記脱気装置付き濃度検出器へ脱気終了信号を送出し
て脱気を終了せしめるようにしたものである。以下、本
発明の一実施例について図面を参照して説明する。
This sample hold circuit receives a detection signal of zero change in the concentration signal and samples and outputs the concentration signal of the suspension.Meanwhile, the control section receives a detection signal of zero change in the concentration signal and outputs the sampled concentration signal of the suspension. A degassing end signal is sent to the detector to end the degassing. An embodiment of the present invention will be described below with reference to the drawings.

第2図において、10は懸濁液が流通される流通配管で
あつて、この配管10の所要位置に脱気装置付濃度計検
出器11が設置されている。この配管10と検出器11
とは図示していないがバルプを介して接続さ瓢そのバル
プの開動作によつて連通するようになつている。12は
脱気装置付濃度計検出器11を制御する制御部である。
In FIG. 2, reference numeral 10 denotes a distribution pipe through which the suspension flows, and a concentration meter detector 11 with a deaerator is installed at a required position on this pipe 10. This piping 10 and detector 11
Although not shown, they are connected via a valve and communicate with each other by opening the valve. Reference numeral 12 denotes a control unit that controls the concentration meter detector 11 with a deaerator.

この制御部12は、前記検出器11内へのサンプル充填
命令を始めとして脱気開始命令、脱気終了命令、濃度測
定命令そしてサンブル放出命令などを順に前記検出器1
1に供給するものである。ただし、この脱気終了命令は
、後述するようにサンプルの実測により得られる脱気完
了信号を受けて出されるものである。したがつて、脱気
時間は、従来のように一定の時間で画一的に定められて
はいない。従つて、脱気装置付濃度計検出器11として
は、前記制御部12からの指令を受けて、サンプル充填
、脱気測定、さらにサンプル放出を繰り返し行なうもの
である。また、この検出器11は脱気しながら濃度測定
を連続的に行ない、その測定信号を接続された信号変換
器13に連続的に供給するように構成されている。この
信号変換器13は、信号変化検出回路である微分回路1
4及びサンプルホールド回路15に接続されている。こ
の微分回路14は、前記変換器13から得られる連続し
た測定信号を微分して時々刻々変化する信号の状態を検
出するものである。また、この微分回路14は、前記制
御部12及びサンプルホールド回路15に接続されてお
り、その微分値の変化が零となつたときに、前記制御部
12に脱気完了信号を供給するとともに前記サンプルポ
ート回路15に前記変換器13出力のホールド信号を供
給するものである。また、このホールド信号を受けたサ
ンプルホールド回路15は、そのホールド値をサンプル
の濃度値として外部に出力するように構成されている。
次に、以上のように構成された濃度測定装置の作用を説
明する。
The control unit 12 sequentially sends a sample filling command into the detector 11, a degassing start command, a degassing end command, a concentration measurement command, a sample discharge command, etc. to the detector 11.
1. However, this degassing completion command is issued in response to a degassing completion signal obtained by actual measurement of the sample, as will be described later. Therefore, the deaeration time is not uniformly determined as a fixed time as in the past. Therefore, the deaerator-equipped concentration meter detector 11 repeatedly performs sample filling, deaeration measurement, and sample discharge in response to commands from the control section 12. Further, this detector 11 is configured to continuously measure the concentration while degassing and continuously supply the measurement signal to the connected signal converter 13. This signal converter 13 includes a differential circuit 1 which is a signal change detection circuit.
4 and a sample hold circuit 15. The differentiating circuit 14 differentiates the continuous measurement signal obtained from the converter 13 and detects the state of the signal that changes from time to time. Further, this differentiation circuit 14 is connected to the control section 12 and the sample hold circuit 15, and when the change in the differential value becomes zero, it supplies a degassing completion signal to the control section 12 and A hold signal of the output of the converter 13 is supplied to the sample port circuit 15. Further, the sample hold circuit 15 that receives this hold signal is configured to output the held value to the outside as a sample concentration value.
Next, the operation of the concentration measuring device configured as above will be explained.

先ず、本装置は懸濁液に含まれる気泡は濃度計検出器1
1の脱気装置で脱気して除去するが、脱気時間は人間の
感によつて設定するものではなく、濃度測定値そのもの
から消泡完了時を知つてその濃度測定値をホールドする
ものである。即ち、第2図に示す脱気装置付濃度計検出
器11は、制御部12からの脱気開始命令を受けて脱気
を開始し、脱気の進行過程で時々刻々濃度信号を検出し
後続の信号変換器13を通して微分一路14に送る。従
つて、微分回路14は信号変換器13から供給される信
号を微分し濃度信号の変化状態を調べる。一般に、脱気
が進行すれば、懸濁液に気泡がなくなるので濃度信号は
一定の値を示してぐる。そして、気泡が完全になくなれ
ば濃度信号は一定となり、これを微分回路14で微分す
ると微分値の変化は零となる。この時、消泡完了時であ
ると判断し、微分回路14からサンプルホールド回路1
5にサンプルホールド命令信号を与え、信号変換器13
より出力する濃度測定値をホールドさせる。さらに、微
分回路14は前記制御部12に脱気完了信号を供給し、
脱気装置付濃度計検出器11に対して脱気終了命令を出
させる。以後は、引続いて制御部12の制御を受ける。
すなわち、この制御部12は、検出器11に対してサン
プル放出命令信号を送つてサンプルの放出を行なわせる
とともに、引き続きシーケンシヤル信号を送つてサンプ
ルの充填を行なうようにさせる。従つて、以上の一連の
動作から明らかなように、的確に消泡完了時を知つて濃
度測定を行なうので、無駄時間をなくすことができ、そ
の濃度測定値も正確なものとなる。第3図は本発明装置
の他の実施例を示すものであつて、これは信号変化検出
回路である微分回路14の代りにコンパレータ回路17
を設けて同様の機能を行なわせるものである。
First, this device uses a concentration meter detector 1 to detect air bubbles contained in the suspension.
The degassing device (1) removes the gas by degassing, but the degassing time is not set based on human intuition, but the device determines when defoaming is complete from the concentration measurement itself and holds that concentration measurement value. It is. That is, the concentration meter detector 11 with a degassing device shown in FIG. 2 starts degassing in response to a degassing start command from the control unit 12, detects concentration signals from time to time during the progress of degassing, and detects the subsequent concentration signal. The signal is sent to a differential path 14 through a signal converter 13. Therefore, the differentiating circuit 14 differentiates the signal supplied from the signal converter 13 and examines the state of change in the concentration signal. Generally, as degassing progresses, the suspension loses air bubbles, so the concentration signal shows a constant value. When the bubbles are completely eliminated, the concentration signal becomes constant, and when this is differentiated by the differentiating circuit 14, the change in the differential value becomes zero. At this time, it is determined that the defoaming has been completed, and the sample hold circuit 1 is transferred from the differentiating circuit 14 to the sample hold circuit 1.
A sample and hold command signal is given to signal converter 13.
Holds the output concentration measurement value. Further, the differentiating circuit 14 supplies a deaeration completion signal to the control section 12,
A command to finish degassing is issued to the concentration meter detector 11 with a degassing device. Thereafter, the control section 12 continues to control the control section 12.
That is, the control section 12 sends a sample release command signal to the detector 11 to cause the detector 11 to release the sample, and subsequently sends a sequential signal to the detector 11 to cause the detector 11 to perform sample filling. Therefore, as is clear from the above series of operations, the concentration measurement is performed by accurately knowing when the defoaming is completed, so that wasted time can be eliminated and the concentration measurement value can also be accurate. FIG. 3 shows another embodiment of the device of the present invention, in which a comparator circuit 17 is substituted for the differentiating circuit 14, which is a signal change detection circuit.
is provided to perform the same function.

即ち、コンパレータ回路17は常にt秒前の濃度測定値
と比較する構成とし、そのt秒前の値と現時点での濃度
測定値との間に変化がないことを検知して脱気完了を検
出するものである。従つて、コンパレータ回路17は、
当然2つのホールド回路を有しt秒ごとにこれらのホー
ルド回路を切換えて信号変換器13の出力信号をホール
ドし2つのホールド値を比較するようになつている。こ
のコンパレータ回路17を用いたものも、信号変化値を
検出する点で微分回路14と全く同じように機能してい
る。なお、このコンパレータ回路17あるいは微分回路
14に前記制御部12の機能を持たせる事も可能である
。この場合には、一連の命令が両者から直接検出器11
に送出されることになる。また、検出器11が設置され
る配管10は、懸濁液の流路本管であつても良いし、ま
たは本管に付設されたバイパス管路であつても良い。以
上詳記したように本発明装置によれば、脱気装置付濃度
計検出器の濃度信号の変化を後続の電子回路で検出しそ
の信号変化が零の時に消泡完了時と判断して濃度測定値
をホールドするので、簡単な電子回路を備えるだけで正
確に懸濁液の濃度を測定できる。
That is, the comparator circuit 17 is configured to always compare the concentration value measured t seconds ago, and detects the completion of deaeration by detecting that there is no change between the value t seconds ago and the current concentration measurement value. It is something to do. Therefore, the comparator circuit 17 is
Naturally, there are two hold circuits, and these hold circuits are switched every t seconds to hold the output signal of the signal converter 13 and compare the two hold values. A circuit using this comparator circuit 17 also functions in exactly the same way as the differentiating circuit 14 in that it detects signal change values. Note that it is also possible to provide the comparator circuit 17 or the differentiator circuit 14 with the function of the control section 12. In this case, a series of commands are sent directly from both to the detector 11.
It will be sent to Further, the pipe 10 in which the detector 11 is installed may be a main flow path for the suspension, or may be a bypass pipe attached to the main pipe. As described in detail above, according to the device of the present invention, changes in the concentration signal of the concentration meter detector with a deaerator are detected by the subsequent electronic circuit, and when the signal change is zero, it is determined that defoaming has been completed, and the concentration is determined. Since the measured value is held, the concentration of the suspension can be accurately measured with just a simple electronic circuit.

このことは、適切な脱気時間を選択できると言う事であ
り、従来のように人間の不確実な感にたよることなく正
確に濃度を測定できるとともに無駄時間がなくなり測定
作業の煩雑さもなくなる。また従来一般に備えている電
子回路筐体にそのまま本装置の電子回路を収納できるこ
とから装置全体の簡素化を図れ、場所等の制約を受ける
ことなく用途の拡大も図れる。
This means that an appropriate degassing time can be selected, and the concentration can be measured accurately without relying on human uncertainty as in the past, and there is no wasted time and the complexity of measurement work is also eliminated. . Furthermore, since the electronic circuit of this device can be housed as is in a conventional electronic circuit case, the entire device can be simplified and its uses can be expanded without being subject to space constraints.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置における消泡動作の一連のタイミング
を説明する図、第2図は本発明に係る濃度測定装置の一
実施例を示す構成図、第3図は本発明装置の他の例を示
す構成図である。 10・・・制御部、11・・・脱気装置付濃度計検出器
、13・・・信号変換器、14・・・微分回路、15・
・・サンプルホールド柵路、17・・・コンパレータ回
路。
Fig. 1 is a diagram illustrating a series of timings of the defoaming operation in a conventional device, Fig. 2 is a configuration diagram showing an embodiment of the concentration measuring device according to the present invention, and Fig. 3 is another example of the device of the present invention. FIG. DESCRIPTION OF SYMBOLS 10... Control part, 11... Concentration meter detector with deaerator, 13... Signal converter, 14... Differential circuit, 15...
...Sample hold fence, 17...Comparator circuit.

Claims (1)

【特許請求の範囲】 1 懸濁液の濃度を測定する装置において、この懸濁液
に含有する気泡を脱気しながらその懸濁液の濃度を検出
する脱気装置付濃度計検出器と、この脱気装置付濃度計
検出器から出力される濃度信号の変化状態を検出する信
号変化検出回路と、この信号変化検出回路から出力され
る前記濃度信号の変化零の検出信号で該濃度信号をホー
ルドし、測定値として出力するサンプルホールド回路と
、前記信号変化検出回路からの濃度信号変化零の検出信
号を受け、前記脱気装置付濃度計検出器へ脱気終了信号
を供給する制御部とを備え、気泡の脱気時間を設定する
ことなく前記濃度信号から脱気完了を知りうるようにし
たことを特徴とする濃度測定装置。 2 信号変化検出回路は、微分回路又はコンパレータ回
路により構成された特許請求の範囲第1項記載の濃度測
定装置。
[Scope of Claims] 1. In an apparatus for measuring the concentration of a suspension, a concentration meter detector with a deaerator that detects the concentration of the suspension while degassing air bubbles contained in the suspension; A signal change detection circuit detects a change in the concentration signal output from the concentration meter detector with a deaerator, and a detection signal of zero change in the concentration signal output from the signal change detection circuit detects the concentration signal. a sample hold circuit that holds the sample and outputs it as a measured value; and a control unit that receives a detection signal of zero change in the concentration signal from the signal change detection circuit and supplies a deaeration completion signal to the concentration meter detector with a deaeration device. What is claimed is: 1. A concentration measuring device characterized in that the completion of degassing can be determined from the concentration signal without setting a bubble degassing time. 2. The concentration measuring device according to claim 1, wherein the signal change detection circuit is constituted by a differentiating circuit or a comparator circuit.
JP53147411A 1978-11-29 1978-11-29 concentration measuring device Expired JPS5921498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53147411A JPS5921498B2 (en) 1978-11-29 1978-11-29 concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53147411A JPS5921498B2 (en) 1978-11-29 1978-11-29 concentration measuring device

Publications (2)

Publication Number Publication Date
JPS5574443A JPS5574443A (en) 1980-06-05
JPS5921498B2 true JPS5921498B2 (en) 1984-05-21

Family

ID=15429683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53147411A Expired JPS5921498B2 (en) 1978-11-29 1978-11-29 concentration measuring device

Country Status (1)

Country Link
JP (1) JPS5921498B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340798U (en) * 1986-08-29 1988-03-16
JPS63101695A (en) * 1986-10-17 1988-05-06 住友大阪セメント株式会社 Method of repairing kiln wall
JPS63153098U (en) * 1987-03-26 1988-10-07

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340798U (en) * 1986-08-29 1988-03-16
JPS63101695A (en) * 1986-10-17 1988-05-06 住友大阪セメント株式会社 Method of repairing kiln wall
JPS63153098U (en) * 1987-03-26 1988-10-07

Also Published As

Publication number Publication date
JPS5574443A (en) 1980-06-05

Similar Documents

Publication Publication Date Title
JP4159727B2 (en) Method and apparatus for measuring glucose concentration in body fluid
JPS5921498B2 (en) concentration measuring device
US4445670A (en) Apparatus for controlling a pressure-type furnace for pouring molten ores
US6295125B1 (en) Differential refractive index detector and liquid chromatograph equipped with the same
JPH05319500A (en) Chemical supplying apparatus
JPH01110218A (en) Gas flowmeter and gas flow rate controller
JPH10142144A (en) Metal ion concentration measuring method of nonelectrolytic plating solution
RU2797651C1 (en) Method for implementing a device for measuring the liquid level
JPS58156815A (en) Measuring device for flow rate
EP1070957B1 (en) Differential refractive index detector and liquid chromatograph equipped with the same
JP3031834B2 (en) Liquid bubble removal device
JPH01118747A (en) Particle analyzer
JPS587346Y2 (en) Cleaning effect detection device for a washer in a radiation measurement device
JPH0231156A (en) System for analysis of metal component
JPS6191518A (en) Automatic measuring apparatus for flowmeter
JP2854887B2 (en) Flow meter difference test equipment
KR200177283Y1 (en) Air sampling device
JPH07308658A (en) Liquid controller
JPS5987008A (en) Liquid separation apparatus
JPH02293504A (en) Detection of spot of abnormality of drop in water supplying capacity in supply water system of boiler
SU1127616A2 (en) Device for automatic determination of filtering time
JP2002005915A (en) Gas chromatographic device
JPS6111146B2 (en)
JPS639321Y2 (en)
JPH06294673A (en) Flow rate detector for semiconductor fabrication system