JPS59214749A - 湿度計 - Google Patents

湿度計

Info

Publication number
JPS59214749A
JPS59214749A JP8951783A JP8951783A JPS59214749A JP S59214749 A JPS59214749 A JP S59214749A JP 8951783 A JP8951783 A JP 8951783A JP 8951783 A JP8951783 A JP 8951783A JP S59214749 A JPS59214749 A JP S59214749A
Authority
JP
Japan
Prior art keywords
humidity
temperature
signal
resistor
differential amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8951783A
Other languages
English (en)
Inventor
Koji Fukuhisa
孝治 福久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Cosmos Electric Co Ltd
Tokyo Kosumosu Denki KK
Original Assignee
Tokyo Cosmos Electric Co Ltd
Tokyo Kosumosu Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Cosmos Electric Co Ltd, Tokyo Kosumosu Denki KK filed Critical Tokyo Cosmos Electric Co Ltd
Priority to JP8951783A priority Critical patent/JPS59214749A/ja
Publication of JPS59214749A publication Critical patent/JPS59214749A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/045Circuits
    • G01N27/046Circuits provided with temperature compensation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 この発明は湿度計に関するものである。
従来から湿度の測定のために各種の湿度センサを使用し
た湿度計が開発使用されている。この種のセンサとして
は、例えば湿度に対応するα線の減衰を基準化して湿度
を検出するもの、或は電子伝導性半畳体セラミック上に
物理吸着する水分によるセラミック内の不純物準位の変
化ケ検出して湿度を測定するものなどがある。
しかし、これらのセンサは駆動が容易でなく、長時間に
わたって安定した湿度測定を実現することが困離である
一方、センサの湿度による抵抗値の変化を検出して湿度
を測定する形式のものでは感湿抵抗値を低下させること
が使用上要求される。この要求に応じてセンサ内に低抵
抗湿度不感物質を混入(−てセンサの感湿抵抗値を低下
させる方法が行なわれている。しかし、この方法でセン
サの感湿抵抗値を低下させた場合には、センサの感湿物
質とセンサに混入されて使用される低抵抗iMt度不感
物質との経時変化の特性が一致しないため、その湿度の
測定値が安定して得られないという欠点がある。
この発明は前述の従来の湿度計での欠点を解決し、低抵
抗湿度不感物質を使用せず、経時変化をセンサの特性に
一致させるようにし、且つ湿度出力の温度依存性を取り
除いて広い温度範囲で一定の湿度出力を安定に得ること
ができる高精度の湿度計を提供するものである。
この発明では駆動信号発生回路によシ、はソ定電流特性
を有する交流信号が供給され、この交流信号が湿度セン
サを構成要素とする検出回路に与えられて検出回路から
は湿度センサの湿度による抵抗変化に基づいた降下電圧
がセンサの湿度出力として得られる。この検出回路から
の湿度出力は対数圧縮回路に入力として与えられ、対数
圧縮回路からは入力レベルに対して出力レベルが対数特
性となった出力信号が湿度信号として得られる。
この対数圧縮回路の湿度信号は部分補正手段及び全体補
正手段によって湿度信号の温度特性の勾配が所定の湿度
領域及び全体の湿度領域で制御補正されて、湿度信号の
温度依存性が除去される。
即ち、対数圧縮回路の湿度信号は部分補正手段によって
所定の湿度領域例えば中高湿度領域においてその温度特
性の勾配が制御補正されて、その勾配が揃えられる。又
全体補正手段によって湿度信号の温度特性の勾配の内、
部分補正手段で補正されない湿度領域における勾配が制
御補正されると共に、全湿度領域での湿度信号の温度特
性の勾配が制御され、湿度信号の温度依存性が除去され
る。
以下この発明の湿度計をその実施例に基つき図面を使用
して詳細に説明する。
第1図はこの発明の湿度計の基本的な実施例である第1
の実施例の構成を示すブロック図で、定電流特性の交流
信号2発生する駆動信号発生回路A、湿度センサを構成
要素として構成され、駆動信号が与えられた湿度センサ
の湿度による抵抗変化に基づく湿度出力を降下電圧とし
て得る検出回路B1検出回路Bに接続され湿度出力を対
数圧縮する対数圧縮回路01対数圧縮回路Cがら得られ
る湿度信号の温度特性の勾配の制御補正をHf定の湿度
゛咳域で部分的に行なう部分補正手段り及び湿度信号の
温度特性の勾配の制御′補正を全湿度領域に対して行な
う全体補正手段Eで構成される。
駆動信号発生回路Aは非安定マルチバイブレータ型の回
路であり、実施例においては差動増幅器11を中心に構
成される発信回路を主要部としている。差動増幅器11
の反転入力端子と出力端子間に抵抗12が接続され、同
時に反転入力端子はコンデンサ13を介してアースされ
る。
差動増幅器11の非反転端子は抵抗14を介してアース
され、同時に非反転端子と出力端子間には抵抗15が接
続される。一方、非反転端子と所定電圧が印加される端
子t1間には抵抗16が接続される。−動増幅器11の
出力端子にはコンデンサ17の正極側が接続され、この
コンデンサ17の負極側には抵抗18の一端が接続され
、抵抗工8の他端が駆動信号発生回路への出力端子とさ
れる。
実施例においては駆動信号発生回路Aからは約2KHz
の周波数でθ〜10■の波高値の矩形波の駆動信号が得
られる。周波数範囲が50〜50KHzでデユーティ比
がはソ50チの矩形波信号が安定に得られる回路であれ
ば、実施例に示す回路に限らず、この駆動信号発生回路
Aを構成することができる。コンデンサ17の正極が差
動増幅器11の出力端子に接続され、この正極に対して
電荷の注入放出が矩形波に従って繰り返され、得られる
交流駆動信号が抵抗18を介して検出回路Bに駆動信号
として与えられる。
検出回路Bは湿度センサ20を中心的な構成要素とし、
差動増幅器21の反転入力端子と出力端子間に湿度セン
サ20が接続され、差動増幅器21の反転入力端子が検
出回路Bの駆動信号の入力端子とされる。差動増幅器2
1の反転入力端子と出力端子間には湿度センサ20に並
列に抵抗22が接続される。又差動増幅器21の非反転
入力端子は抵抗23を介してアースされると共に、抵抗
24を介して所定の電圧が印加される端子t2に接続さ
れる。
差動増幅器2,1の出力端子はコンデンサ25を介して
差動増幅器26の非反転入力端子に接続され、この非反
転入力端子は抵抗27を介してアーイ スされる。差動増幅器26の出力端子は抵抗28を介し
てターイオード29の陽極側に接続され、夕゛イオード
29の陰極側はコンデンサ30の正極側に接続され、コ
ンデンサ30の負極側はアースされる。このダイオード
29の陰極側が検出回路Bの出力端子とされ、この出力
端子と差動増幅器26の”反転入力端子間には抵抗31
が接続され、一方差動増幅器26の反転入力端子は抵抗
32を介してアースされる。
端子t2に対して所定電圧が印加され、差動増幅器21
の非反転入力端子には抵抗23.24の接続点から6■
の電圧が印加されるように構成される。従ってコンデン
サ17の正極側に入力される0〜IOVの矩形波信号は
差動増幅器21により6■を中心とする振幅の交流信号
に変換される。
コンデンサ17の負極に得られる電圧信号をEinとし
差動増幅器21の出力電圧信号を:[i:outとすれ
ば抵抗18及び22の抵抗値をそれぞれR5、R6とし
て次式が成立する。
Ein−Eout            (1゜L(
5R6 それぞれの電流信号をIin及び■outとし、(1)
式にオームの法則を適用することにより、明らかに次式
が成立する。
ll1nl=I−Ioutl            
 (21(2)式より抵抗18を流れる電流は一定とな
り、湿度センサ20と抵抗22が並列接続されてなる湿
度センサ回路には一定の電流が流れ、又流定電流駆動が
行なわれる。
湿度センサ20に印加される電圧として(1)式からE
Out=IT−Elnが得られるので、】の最大値は湿
度センサ20が接続されていない状態で得られ6 ることは明らかである。従ってこの状態で1丁E i 
nを所定値に設定することにより、湿度センサ20に印
加される最大電圧を制限することがiJ能となる。
一般にこの種の湿度センサにはピーク間最大値が2■以
上の高電圧を長時間印加することは、経時変化の特性上
望ましくない。この印加電圧の制限を実施例においては
容易に設定することができる。
一方、湿度センサ20は一般にその感湿特性か非直線性
を呈するので、抵抗22の抵抗値を選析することにより
、この特性を直線特性に近づけることが可能である。
湿度センサ20の相対湿度をパラメータとした感湿抵抗
の温度特性を実測した結果を感湿抵抗を対数表示して相
対湿度をパラメータとしてその温度特性を図示すると第
2図の結果が得られる。第2図においては同一条件下で
測定して得た7個の測定値の平均値がプロットされてい
る。第2図で明らかなように対数表示した感湿抵抗値R
は湿度をパラメータとすると、温度に対してそれぞれの
勾配を有するはソ直線として表示される。しかし同一の
温度における抵抗値の感湿特性は直線性を保持していな
い。特に中低湿度側における非直線性が大きいことが第
2図から明らかである。
この発明においては湿度センサ20に対して抵抗22を
並列に接続することによシ、この非直線性の補償が行な
われる。発明者等は抵抗22の抵抗値範囲を数100に
Ω乃至数にΩに選定し、各種の抵抗値のものを感湿セン
サ20に並列に接続して実測を行ない、抵抗値が22に
Ωから18にΩのもので特に望ましい結果を得ることが
できだ。
第3図に示すのは抵抗22の抵抗値を22にΩに設定し
た時に得られた各相対湿度をパラメータとして得た感湿
抵抗の温度特性の実測値である。
第3図では第2図と同様に感湿抵抗値を対数表示して示
し、同一条件下で測定して得た7個の測定値の平均値が
プロットされている。第3図に示すように抵抗22の抵
抗値を22にΩに選定することによシ、相対湿度30%
での感湿抵抗値を大幅に低下させることが可能となp一
定の温度に対して相対湿度に対する感湿抵抗値の変化を
対数表示でかなり等間隔に近づけることができる。即ち
湿度センサの抵抗値の感湿特性の対数表示での直線化が
実現される。
一方、第1図の検出回路Bにおいて、抵抗22の抵抗値
を18にΩとし、湿度センサ20に印加する電圧の最大
値をピーク間最大値でIVにするものとすると(1)式
からJ(in=10の条件下でR5→1」臼ユR61と
して、Rs=18’OKΩが得られる。こout のようにすると湿度センサ20に対する最大印加電圧が
例えば1■に制限され、且つ交流定電流駆動が行なわれ
て、湿度センサに対する理想的な駆動条件が設定される
湿度センサ20と抵抗22の並列接続回路で構成される
湿度センサ回路よシ降下電圧として得られる湿度に比例
した振幅を有する矩形波信号は最終出力信号を直流化す
る直流化手段によシ直流化される。実施例はこの直流化
手段が差動増幅器26及びダイオード29を主iな構成
菓子とする整流回路によシ構成された例であシ、この整
流回路により矩形波信号が信号の取り扱いの容易な直流
信号に変換される。
検出回路Bの出力信号として得られる湿度出力は感湿セ
ンサ20に並列接続される抵抗22によシ感湿特性が対
数表示ではソ直線化されたもので相対湿度−に対して指
数関数的に変化する。この検出回路Bで得られる湿度出
力が対数圧縮回路Cに入力として与えられ、対数圧縮さ
れる。
即ち、検出回路Bの出力端子は抵抗35を介してダイオ
ード36の陽極側に接続され、このダイオード36の陰
極側はアースされる。抵抗35とダイオード36との接
続点はコンデンサ38の正極側に接続され、コンデンサ
38の負極側はアースされる。このコンデンサ38の正
極側が対数圧縮回路Cの出力端子とされる。
実施例はこのようにダイオード36のI−V特性をその
まま利用して対数圧縮回路を構成したものである。この
対数圧縮回路は発明者等の実測によると数マイクロアン
ペアより数10ミリアンペアまでの広い範囲で安定した
対数変換特性が得られる。抵抗35はダイオード36に
対する電流制限抵抗であり、対数変換可能な電流値幅が
抵抗35により設定され、抵抗35の挿入によってダイ
オードの特性のばらつきを吸収することができる。
又コンデンサ38i雑音信号成分を吸収するために使用
される。
ダイオード36の電圧電流の出力特性を温度をパラメー
タとして示すと第4図のようになり、電流値を対数表示
すると互にはソ平行な直線群が得られ、優れた対数変換
特性を示すことが確認された。又対数圧縮回路Cにおけ
る対数特性に対する抵抗35の影響に関する発明者等に
よる実測結果は第5図に示すようになシ、入力信号の広
範囲な領域にわたって出力特性の対数圧縮の直線性が確
認された。この実測の結果、抵抗35を挿入することに
よシダイオード36自身の特性のばらつきが吸収補正さ
れるのが確認された。
この対数圧縮回路部分を例えば第12図に示すような構
成とし、差動増幅器37の非反転入力端子に対してダイ
オード36の陰極側を接続するような回路構成とすると
、第13図に示すようにその圧縮特性の勾配を逆にする
ことができる。このような回路を使用すると、検出回路
Bで得られる湿度出力を湿度に比例して信号値が増大す
る信号として取シ出すことが可能となる。
対数圧縮回路Cの出力として得られる湿度信号か部分補
正手段りに入力され、湿度信号の温度特性の勾配が所定
の湿度領域において補正される。
即ち、対数圧縮回路Cの出力端子が差動増幅器37の非
反転入力端子に接続され、差動増幅器37の反転入力端
子と出力端子間に抵抗40が接続され、差動増幅器37
の出力端子が部分補正手段りの出力端子tAとされる。
差動増幅器37の反転入力端子は抵抗41を介してアー
スされ、さらに差動増幅器37の反転入力端子と出力端
子間に抵抗42とダイオード43の直列接続回路が接続
される。即ち抵抗42の一端が差動増幅器37の反転入
力端子に接続され、その他端はダイオード43の陰極側
に接続され、ダイオード43の陽極側か差動増幅器37
の出力端子に接続される。
抵抗42とダイオード43の接続点に対して抵抗44の
一端が接続され、抵抗44の他端とアース間にサーミス
タ(登録商標名)などの負温度係数の抵抗温度素子45
が接続される。所定電圧が印加される端子t3とアース
間に抵抗47及び48の直列接続回路が接続され、抵抗
47と抵抗48の接続点と抵抗44と抵抗温度素子45
の接続点間に抵抗46が接続される。
この部分補正手段りは主として相対湿度60チ附近の中
高湿度領域の湿度信号の温度特性の勾配と相対湿度90
%附近の湿度信号の温度特性の勾配とを一致させるよう
に動作する。信号値の大きい低湿度の湿度信号に対して
はダイオード43が導通状態となシ、差動増幅器37は
温度に関係なく比較的低増幅度で湿度信号を増幅し出方
端子tAに供給する。一方、中高湿度領域の湿度信号に
対しては温度特性の勾配が制御される。即ち温度が高温
度側にある状態では抵抗温度素子45の抵抗値が低下し
ていて端子tBの電位が所定値以下となり、この電位が
端子tBがら抵抗42とダイオード43の接続点に与え
られ、信号値の小さい中高湿度領域の湿度信号に対して
もダイオード43が導通して差動増幅器37の反転入力
端子と出方端子間には抵抗40及び42が並列接続され
る。一方温度が一定値より低いと、抵抗温度素子45の
抵抗値が増加し、端子tBの電位が高くなり、ダイオー
ド43は非導通状態にあシ、差動増幅器370反転入力
端子と出方端子間には抵抗4oのみが接続される。
従ってこの夕゛イオード43の非導通状態では差動増幅
器37の利得は比較的大きくなる。一方、温度が一定値
を越えて上昇して夕゛イオード43が導通状態となると
差動増幅器37の反転入力端子と出力端子間には抵抗4
0と抵抗42が並列に接続され、差動増幅器37の利得
が低下する。このようにして高温度側で差動増幅器37
の利得が低“下することにより湿度信号の温度特性の勾
配が制御補正され、中高湿度領域において湿1凭信号の
温度特性の勾配がはソ一致するように補正される。
即ち実施例においては相対湿度60%を中心とする中高
湿度領域の湿度信号の温度特性の勾配と相対湿度90%
を中心とする高湿度領域の湿度信号の温度特性の勾配が
はソ一致するように湿度信号の温度特性の勾配の制御補
正が部分補正手段りで行なわれる。この部分補正手段り
においては端子tHに接続される抵抗温度素子45と抵
抗よりなる分圧回路の回路定数を選定することにより、
所望の温度域で温度特性の勾配の制御を行なわせて条件
に応じた補正を行なうことができる。
部分補正手段りの出力信号が全体補正手段Eに入力され
、湿度信号の温度特性の勾配の制御補正が湿度の全域に
対して行なわれる。
即ち、部分補正手段りの出力端子tAは抵抗5゜を介し
て差動増幅器51の反転入力端子に接続される。所定電
圧が印加される端子t4とアース間に抵抗52.53及
び54の直列接続回路が接続され、抵抗52と53の接
続点と差動増幅器51の非反転入力端子間に抵抗55及
び56の直列接続回路が接続される。
一方、所定電圧が印加される端子t5とアース間に抵抗
57.58及び59の直列接続回路が接続され、抵抗5
7と58の接続点と差動増幅器51の非反転入力端子間
に抵抗温度素子6oが接続される。差動増幅器51の出
力端子は抵抗61を介してコンデンサ62の正極に接続
され、コンデンサ62の負極はアースされる。抵抗61
とコンデンサ62の接続点にダイオード63の陰極側が
接続され、そΩ陽極側は抵抗64及び65の直列接続回
路を介して差動増幅器51の反転入力端子に接続ぢれる
又差動増幅器51の反転入力端子に抵抗温度素子66と
抵抗67との並列接続回路の一端が接続され、この並列
接続回路の他端はダイオード68の陽極側に接続される
。ダイオード68の陰極側とダイオード63の陽極側と
が互に接続される。
ダイオード68とダイオード63の接続点と全体補正手
段Eの出力端子tE間に抵抗69が接続される。又ダイ
オード63の陰極側及びダイオード68の陽極側はそれ
ぞれ抵抗70及び71を介して所定電圧が印加される端
子t6に接続される。
先ず非反転入力端子側の動作について説明する。
この非反転入力端子側は全湿度領域において湿度信号の
温度特性の勾配を制御して、その温度依存性を取シ除く
ような動作を行々う。温度が上昇すると抵抗温度素子6
0の抵抗値が低下するので、差動増幅器51の非反転入
力端子に印加される電位が減少する。一方、温度が低下
すると抵抗温度素子60の抵抗値が増大するので、差動
増幅器51の非反転入力端子に印加される電位が増加す
る。
従って差動増幅器51は温度が上昇すると湿度信号に対
して差動増幅器51の非反転入力端子側で加算される電
位成分が減少するように作動し、温度が低下すると差動
増幅器51の非反転入力端子側で湿度信号に加算される
電位成分が減少するように作動する。従って差動増幅器
51の反転入力端子に与えられる湿度信号に対する温度
特性の勾配の除去がこの差動増幅器51の非反転入力端
子側で行なわれる。
即ち、全体補正回路Eの反転入力端子に入力される湿度
信号の温度特性にはソ等しい温度関数が差動増幅器51
の非反転入力側に生成されて差動増幅器51の出力信号
の温度依存性が吸収される。
差動増幅器51の非反転入力端子に接続される抵抗温度
素子60と抵抗よシなる分圧回路ではその回路定数を選
択することによシ抵抗温度素子60のB定数や標準抵抗
値に左右されずに任意の温度関数を合成することが可能
である。
次に差動増幅器510反転入力端子側の動作について説
明する。
入力湿度信号が所定値以下、例えば相対湿度60チ以上
の中高湿度領域の湿度信号では差動増幅器51の反転入
力端子とダイオード63及び68の接続点間とに抵抗6
5及び64の直列回路が接続された状態となる。この状
態では差動増幅器51の増幅度は抵抗50.65及び6
4で定まる所定値に設定される。従ってこの中高湿度領
域では湿度入力信号は差動増幅器51の非反転端子に与
えられる温度補正関数に基づいて、その温度特性の勾配
が制御補正され、特性の温度依存性が補償される。
一方、湿度が低下して入力湿度信号が所定値以上となる
低湿度領域では差動増幅器51の反転入力端子とダイオ
ニトロ3及び68の接続点間とに抵抗温度素子66と抵
抗67との並列接続回路が接続された状態となる。この
状態では差動増幅器51はその増1幅度が抵抗温度素子
66により高温度側で増幅度が低下し、低温度側で増幅
度が増加するように作動して低湿度領域における湿度信
号の温度特性の勾配が制御補正され、湿度信号の温度特
性の勾配が全湿度領域においてはソ一致される。
従って全体補正手段Eでは主に部分補正手段りで補正が
行なわれなかった低湿度領域の湿度信号に対して温度特
性の勾配の制御補正がその反転入力端子側で行なわれ、
さらに非反転入力端子側において全温度領域において湿
度信号の温度特性の勾配を取シ除くように湿度信号の温
度特性の勾配が制御される。このように全体補正手段E
により低湿度領域に□対して湿度出力信号の温度特性の
勾配が中高湿度領域のものに一致制御されると共に全湿
度領域の湿度信号に対しての温度依存性補償の勾配の制
御補正が行なわれる。
第9図に第1図と同一部分に対して同一符号を付してそ
の構成を示したのは、この発明の第2の実施例でアシ、
この実施例は第1の実施例に対して湿度制御回路Fが設
けられたものである。
即ち全体補正手段Eのダイオード63及び68の接続点
が差動増幅器71の反転入力端子に接続され、湿度基準
信号入力端子t7が抵抗72を介して差動増幅器71の
非反転入力端子に接続される。
差動増幅器71の非反転入力端子と出力端子間には抵抗
73が接続され、差動増幅器の出力端子と湿度制御回路
Fの出力端子tF間には抵抗74が接続される。
検出回路Bで検出される湿度出力は前述のように部分補
正手段り及び全体補正手段Eで所定の湿度領域及び全湿
度領域に対する湿度信号の温度特性の勾配の制御補正が
行なわれて全体補正手段Eの出力端子から差動増幅器7
1の反転入力端子に湿度入力信号として与えられる。こ
の湿度入力信号が湿度基準信号入力端子t7に与えられ
る基準信号を越えると、湿度制御回路Fの出力端子tF
に湿 ゛度制御信号が得られる。この湿度制御信号を使
用して定湿度制御など所望の制御を行なわせることが可
能となる。
第10図に他の実施例と同一部分に同一符号を付してそ
の構成を示したのは、この発明の第3の実施例であシ、
この実施例では第1の実施例に対して温度検出回路Gが
付加されたものである。
即ち第1の実施例と同一構成の部分補正回路りの抵抗4
4及び46の接続点端子tcが抵抗76を介して差動増
幅器77の反転入力端子に接続される。差動増幅器77
の反転入力端子と出力端子間に抵抗78が接続される。
一方、差動増幅器77の非反転入力端子と、温度表示信
号入力端子t9間には抵抗79が接続され同時に非反転
入力端子は抵抗80を介してアースされる。
差動増幅器77の出力端子と温度信号端子t。
間には抵抗81が接続される。この第3の実施例におい
ては、接続点端子tcに得られる温度信号が差動増幅器
77において反転入力端子に入力として与えられる。一
方、温度表示信号入力端子t9には温度表示信号が印加
され、この温度表示信号に基づいて温度信号端子t9に
は表示温度信号が得られ、この表示温度信号により温度
表示が行なわれる。従って第3の実施例においては前述
のように全湿度領域について温度特性の勾配の制御補正
が施された湿度1言号が得られると共に温度信号端子t
Oに得られる表示温度信号で湿度測定時の温度を表示す
ることができる。
第11図に他の実施例と同一部分に対し、て同一符号を
付してその構成を示したのは、この発明の第4の実施例
であり、この実施例は前述の第3の実施例において湿度
制御回路Fを付加し、さらに新たに温度制御回路Hを設
けたものである。
湿度制御回路Fとしては第2の実施例ですでに説明した
構、成のものを付加するので、この部分に対する重複説
明は省略する。新だに設ける温度制御回路Hについて説
明すると、温度検出回路Gの差動増幅器77の出力端子
が差動増幅器830反転入力端子に一接続される。差動
増幅器83の非反転入力端子と出力端子間には抵抗84
が接続され、差動増幅器83の出力端子と温度制御回路
Hの出力端子tH間に抵抗85が接続される。・一方、
温度基準信号入力端子tloと差動増幅器83の非反転
入力端子間に抵抗86が接続される。
この第4の実施例においては、差動増幅器77の出力端
子の表示温度信号が差動増幅器83の反転入力端子に与
えられる。この表示温度信号が差動増幅器83の非反転
入力端子に対して温度基準信号入力端子txoから印加
される温度基準信号を越えると差動増幅器83の出力端
子を介して温度制御回路Hの出力端子1.に温度制御信
号が得られる。従って表示温度信号が予め設定された設
定温度を越えた時に温度制御信号が温度制御回路Hの出
力端子tHから供給され、この温度制御信号によって各
種の制御を行なわせることが可能である。
このように第4の実施例では温度及び湿度の測定を行な
うことが可能で、亘つ予め設定した温度及び湿度に達す
ると温度制御信号及び湿度制御信号を発して温度制御及
び湿度制御を行なわせることが可能となり、湿度及び温
度の総合的な測定を行ない、これらの測定値が予め設定
した基準値を越えることを検知して温度制御信号及び湿
度制御信号を発して各種の制御をも行なわせることが可
能である。
第6図はこの発明の湿度計の実施例による湿度測定例を
示すもので5〜35℃の温度範囲での測定結果を示す。
図示のように湿度に対する湿度出力信号の関係は広い湿
度範囲において高精度で完全な直線性を示している。第
7図はこの発明の湿度計の実施例による温度測定の温I
!lt特性を示すもので、広い湿度範囲にわたって湿度
信号の温度依存性が殆んど完全に除去され湿度1g号は
湿度に対応して直勝性が保持されていることが示されて
いる。第8図はこの発明の湿度計の第3もしくは第4の
実施例における温度測定の特性を示すもので広い温度範
囲にわたって出力信号の直線性が保持されていることが
示される。
各実施例について説明したように、この発明によると湿
度セ/すに対して低湿度領域での感湿抵抗値を低下させ
て湿度センサの感湿特性を広い湿度領域に対してはソ直
線化することが可能である、又部分補正手段及び全体補
正手段により湿度センサで得られる湿度信号の温度依存
性を広い湿度範囲にわたってはソ完全に除去することが
b」能である。この部分補正手段及び全体補正手段では
、回路定数を選択することにより抵抗温度素子の素子固
有の定数に左右されずに所定の温度関数を発生させ、完
全な温度補正が実現される。
この発明では基本的な実施例において広い湿度領域にわ
たってはソ完全に温度依存性が除去された高精度の湿度
測定が可能な湿度計が実施され、この基本的な実施例を
基にして他の各実施例においては湿度測定の他に温度測
定を行なわせることも可能であり、或は湿度もしくは温
度の測定の他に、これらの測定値に基づいて測定値が予
め設定した基準値を越えると湿度温度の制御信号を発生
させるように構成して、湿度、温度に対する各種の制御
を行なわせることが可能となる。
以上詳細に説明したように、この発明によると広い湿度
領域にわたって湿度センサの複雑な温度依存性をはソ完
全に補償し、高精度の゛湿度測定を実現可能な湿度計を
提供することができる。又、この発明からその湿度計を
基礎にして温度測定及び測定湿度或は温度が設定値を越
えることを検出して湿度制御信号或は温度制御信号を発
して雰囲気や湿度や温度の制御など各種の制御を行なわ
せる構成のものを提供することが可能である。
【図面の簡単な説明】
第1図はこの発明の湿度計の第1の実施例の構成を示す
ブロック図、第2図は湿度センサの感湿抵抗の温度特性
を示す図、第3図は並列抵抗を具備する湿度センサの感
湿抵抗の温度特性を示す図、第4図はこの発明の湿度計
に使用する対数圧縮回路の出力特性を示す図、第5図は
この発明の湿度計に使用する対数圧縮回路の抵抗値によ
゛る出力特性の変化を示す図、第6図、第7図及び第8
図はそれぞれこの発明の湿度計の実施例における感湿特
性、湿度信号の温度特性及び感温特性を示す図、第9図
はこの発明の湿度計の第2の実施例の構成を示すブロッ
ク図、第10図はこの発明の湿度計の第3の実施例の構
成を示すブロック図、第11図はこの発明の湿度計の第
4の実施例の構成を示すブロック図、第□12図は対数
圧縮回路の他の例を示す図、第13図は第12図に示す
対数圧縮回路の出力特性を示す図である。 A:駆動信号発生回路、B:検出回路、C:対数圧縮回
路、D=部分補正手段、E:全体補正手段、F:湿度制
御回路、G:温度検出回路、H:温度制御回路、11,
21,26.37゜51.71,77.83:差動増幅
器、2o:湿度センサ、18.22〜24,27,28
:抵抗、17,25,30,38:コンデンサ、32.
35,40,41,44.46〜48゜50.52〜5
9,64,65,67.70〜74.78〜81.84
〜86:抵抗、29゜36.43,63,68:ダイオ
ード、45゜60.66:抵抗温度素子。 特許出願人 東京コスモス電機株式会社代理人草野 承

Claims (1)

    【特許請求の範囲】
  1. (1)はゾ定電流特性を有する交流駆動信号を発生する
    駆動信号発生回路と、この駆動信号発生回路で得られる
    交流駆動信号が湿度センサに与えられ降下電圧をセンサ
    の湿度出力として得る検出回路と、この検出回路の湿度
    出力を入力レベルに対して出力レベルが対数特性になる
    ように対数圧縮する対数圧縮回路と、この対数用網回路
    の出力信号として得られる湿度信号の温度特性の勾配を
    所定の湿度領域で制御補正する部分補正手段と、前記湿
    度信号の温度特性の勾配を全湿度領域で制御補正する全
    体補正手段と、最終出力信号を直流化する直流化手段と
    を有することを特徴とする湿度計。
JP8951783A 1983-05-20 1983-05-20 湿度計 Pending JPS59214749A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8951783A JPS59214749A (ja) 1983-05-20 1983-05-20 湿度計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8951783A JPS59214749A (ja) 1983-05-20 1983-05-20 湿度計

Publications (1)

Publication Number Publication Date
JPS59214749A true JPS59214749A (ja) 1984-12-04

Family

ID=13972986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8951783A Pending JPS59214749A (ja) 1983-05-20 1983-05-20 湿度計

Country Status (1)

Country Link
JP (1) JPS59214749A (ja)

Similar Documents

Publication Publication Date Title
US3993945A (en) Measuring cells for measuring electrical conductivity of liquids
US4114090A (en) Electronic moisture meter
US4970456A (en) Temperature compensated power detector
US8228054B2 (en) Method and apparatus for amplifying a signal and test device using same
US4259633A (en) Method and apparatus for measuring the moisture content of wood
US3973147A (en) Temperature measuring circuit
US3510696A (en) Transducer output correction circuitry
US3952595A (en) Temperature correcting circuit
US5073758A (en) Resistance measurement in an active and high temperature environment
JPS59214749A (ja) 湿度計
US6107861A (en) Circuit for self compensation of silicon strain gauge pressure transmitters
US3820398A (en) System for providing a linear output from a non linear condition responsive device
US4719432A (en) Oscillator for measuring temperature
JP3310479B2 (ja) 穀物の水分測定装置
JPS59780B2 (ja) 測定装置
JP2885417B2 (ja) ガスセンサの温度補償装置
JP3106660B2 (ja) 湿度検出装置
JP3048377B2 (ja) 穀物の水分測定装置
Križan Methods of realisation of short rise-times of the cell voltage in pulse polarography
JPS649581B2 (ja)
JPH0624747Y2 (ja) 温度/電圧変換回路
JPS6135967Y2 (ja)
JPH0387641A (ja) 湿度センサの信号処理回路
JP2769911B2 (ja) 感圧回路
RU2024885C1 (ru) Устройство для измерения электропроводимости