JPS59214730A - Lens-decentering measuring device - Google Patents
Lens-decentering measuring deviceInfo
- Publication number
- JPS59214730A JPS59214730A JP8762383A JP8762383A JPS59214730A JP S59214730 A JPS59214730 A JP S59214730A JP 8762383 A JP8762383 A JP 8762383A JP 8762383 A JP8762383 A JP 8762383A JP S59214730 A JPS59214730 A JP S59214730A
- Authority
- JP
- Japan
- Prior art keywords
- light
- reflected
- lens
- prism
- index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
- G01B11/27—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
- G01B11/272—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、カメラレンズ、顕微鏡対物レンズ等の鏡枠に
組み込捷れた状態における個々のレンズ面の偏心1ri
−f::測定するためのレンズイl1ij心測定器に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to eccentricity 1ri of each lens surface when the camera lens, microscope objective lens, etc. are assembled in a lens frame and twisted.
-f::Relating to a lenticular heart measuring device for measuring.
この汀レンズ偏心測定器としては例えば第1図に示した
東独ソアイスのンユソフ(5c11uch )による静
止型レンズ偏心測定器が知られている。第1図において
、1は光源、2はレンズ、3は指標、4.5(は半透鏡
、6は全反射プリズム、7は反射鏡、8は結像レンズ、
9は被検レンズ、1oは接眼レンズである。光源1にょ
シレンズ2を介して照明された指標3がらの光は、半透
鏡4及び5で反射されて全反射プリズム6に入射し、全
反射プリズム6内で全反射された後膣全反射プリズム6
から出た光は反射鏡7で反射され再び全反射プリズム6
に入射して半透鏡5を透過し結像レンズ8を介して被検
レンズ9の偏心測定面の球心に向う。As this lens eccentricity measuring device, for example, the stationary lens decentering measuring device shown in FIG. 1 by Nyusof (5c11uch) of Soais, East Germany is known. In Fig. 1, 1 is a light source, 2 is a lens, 3 is an index, 4.5 (is a semi-transparent mirror, 6 is a total reflection prism, 7 is a reflecting mirror, 8 is an imaging lens,
9 is a lens to be tested, and 1o is an eyepiece lens. The light from the index 3 illuminated through the light source 1 and the lens 2 is reflected by the semi-transparent mirrors 4 and 5 and enters the total reflection prism 6. After being totally reflected within the total reflection prism 6, the light enters the vaginal total reflection prism. 6
The light emitted from the
The beam enters the beam, passes through the semi-transparent mirror 5, and passes through the imaging lens 8 toward the spherical center of the eccentricity measurement surface of the lens 9 to be tested.
該偏IL・測定面で反射した光は、逆行して半透鏡5で
反射された後半透鏡4を透過して指標3と共役な位置P
に結像する。尚、上記の関係は被検レンズ9の偏心測定
面がオートコリメーションの位置にあり且つ該偏心測定
面の偏心量が零である場合に得られ、被検レンズ9の各
偏心測定面に対するオートコリメーションの位置は全反
射プリズム6を矢印方向に移動させることにより調整さ
れ得る。The light reflected from the polarized IL/measurement surface travels backwards and passes through the second half mirror 4, which is reflected by the semi-transparent mirror 5, and reaches a position P that is conjugate with the index 3.
image is formed. The above relationship is obtained when the eccentricity measurement surface of the test lens 9 is at the autocollimation position and the amount of eccentricity of the eccentricity measurement surface is zero, and the autocollimation for each eccentricity measurement surface of the test lens 9 is The position of can be adjusted by moving the total reflection prism 6 in the direction of the arrow.
ここで偏心測定面が偏心している場合には、位置Pにお
ける指標の像は偏心測定面の偏心量に基づいて光軸に垂
直な方向にずれるので、このずれ量から偏心測定面の偏
心量が測定される。しかしながら、このレンズ偏心測定
器においては、光が何度も半透鏡を通るため光量の低下
が大きく、実際(では最初の光量の1/64になってし
まう。同時に半透鏡における損失光が非常に大きいフレ
アの発生源となるため、位置Pの近傍で得られる指標の
像は非常にコントラストが悪く、実用上問題があった。If the eccentricity measurement surface is eccentric, the image of the index at position P is shifted in the direction perpendicular to the optical axis based on the amount of eccentricity of the eccentricity measurement surface, so the amount of eccentricity of the eccentricity measurement surface can be determined from this amount of shift. be measured. However, in this lens eccentricity measurement device, the light passes through the semi-transparent mirror many times, resulting in a large drop in light intensity, and in reality, it becomes 1/64 of the initial light intensity.At the same time, the light lost in the semi-transparent mirror is extremely large. Since this is a source of large flare, the image of the index obtained near the position P has very poor contrast, which is a practical problem.
本発明は、以」二の点に鑑み、光量の低下をできるたけ
少なくし従って測定に対して有害なフレアが殆ど発生し
ないレンズ偏心測定器を提供することを目的としており
、偏光によシ照明された指標と、該指標からの光を透過
(寸たは反射)する偏光ビームスプリッタと、該偏光ビ
ームスプリッタにより透過(寸たは反射)された光の光
路中で光源側から11「1に配設された1/4波長板及
0・光路に垂直な反射面と、該反射面で反射されて逆行
し/こ後^71 i、t+、ビームスプリッタにより反
射(寸たけ透過)さ11だ光を被検レンズの偏心測定面
に導く投影光学系と、該偏心測定面で反射して該投影光
学系を介して該ビームスプリッタにより反射(甘たけ透
過)されさらに1/4波長板1反射而、再びI/4波J
(板を介して該ビームスグリツタにより透過(または反
射)された光を光路外−・導く光学系とを含んでいるこ
とを特徴とするレンズ偏心…]]定器に」=すi′lI
記目的記述的される。In view of the following two points, the present invention aims to provide a lens eccentricity measuring instrument that minimizes the decrease in the amount of light and therefore causes almost no flare harmful to measurements. a polarizing beam splitter that transmits (reflects) the light from the index, and a polarizing beam splitter that transmits (reflects) the light from the index; The 1/4 wavelength plate and reflection surface perpendicular to the optical path are arranged, and it is reflected by the reflection surface and travels backwards. After that, it is reflected (transmitted by a small amount) by the i, t+, and beam splitter. A projection optical system that guides the light to the eccentricity measurement surface of the test lens, and a projection optical system that reflects the light on the eccentricity measurement surface, passes through the projection optical system, is reflected by the beam splitter (passes through the beam), and is further reflected by the quarter-wave plate 1. So, I/4 wave J again
(Lens eccentricity characterized by including an optical system that guides the light transmitted (or reflected) by the beam smitter through a plate out of the optical path...]
Purpose of writing is descriptive.
以下図面に示した実施例により本発明を説明すれば、第
2図において、第1図の従来例と同じ・:44成要素(
で(は同じ符号を伺してその説1.!Ijを省略すると
、11は偏光板、12は1/4波長板、13は光源1側
の面がスリット状の開口による指標I3aを有する反射
面として構成されているl/ 4 e長板から成る指標
板、14は偏光プリズム(または偏光ビームスプリッタ
)、15は図面左側の面が反射面として構成されている
l/4波長板から成る裏面鏡、16は偏光板である。尚
、光源1からの光は指標板13を透過した後偏光プリズ
ム14を透過し得る直線偏光となるように、設定されて
いる。The present invention will be explained below with reference to the embodiment shown in the drawings. In FIG. 2, the same 44 components (
(The same reference numerals apply to theory 1. If Ij is omitted, 11 is a polarizing plate, 12 is a quarter-wave plate, and 13 is a reflection plate whose surface on the side of light source 1 has an index I3a due to a slit-shaped aperture. 14 is a polarizing prism (or polarizing beam splitter); 15 is a back surface consisting of a 1/4 wavelength plate whose left side in the figure is configured as a reflective surface; The mirror 16 is a polarizing plate.The light from the light source 1 is set so that it becomes linearly polarized light that can be transmitted through the polarizing prism 14 after passing through the index plate 13.
本発明実施例は以上のように構成されているから、光源
1からレンズ2を介して指標板13の指標13aを照明
する光は、先づ偏光板11によシ直線偏光になり続いて
1/4波長板12によシ円偏光になる。指標13aを照
明しだ円偏光は指標板13により再び直線偏光となり、
偏光プリイムI4を通過しさらに全反射プリズム6に入
射しその内部で全反射した後裏面鏡15に入射する。裏
面鏡15は片面が反射面である1/4波長板として構成
されているため、該裏面鏡15に入射した直線偏光はこ
れに直交する直線偏光となって反射され、再び全反射プ
リズム6を通過した後偏光プ・リズム14により反射さ
れ結像レンズ8を介して被検レンズ9の偏心測定面の球
心に向う。被検レンズ9の偏心測定面は第1図の場合と
同様に全反射プリズム〔)を矢印方向に移動することに
よりオートコリメーションの位置にあるから、該偏心θ
1j定而で反射された直線偏光は逆行し偏光プリズム1
4で反射され全反射プリズム6を介して裏面鏡15で反
射された後再び全反射プリズム6を介して偏光プリズム
14に入射するが、偏光方向が90’回転しているので
偏光プリズム14を透過する。flHj光プリズム14
を透過した直線偏光は、指標板13で反射されるが、こ
のとき1/4波長板を二回通過するため偏光方向が90
°回転せしめられる。従って、指標13aの像は偏光プ
リズム14に入射してこれにより反射され、偏光板16
及び接眼レンズlOを介して観察され得る。尚、偏光板
16は観察光の偏光方向と直角に配設されていてフレア
を除去するために役立つ。Since the embodiment of the present invention is constructed as described above, the light that illuminates the index 13a of the index plate 13 from the light source 1 through the lens 2 is first converted into linearly polarized light by the polarizing plate 11, and then becomes linearly polarized light. The /4 wavelength plate 12 converts the light into circularly polarized light. The elliptical polarized light that illuminates the index 13a becomes linearly polarized light again by the index plate 13.
The light passes through the polarizing prism I4, enters the total reflection prism 6, is totally reflected inside the prism, and then enters the back mirror 15. Since the back mirror 15 is configured as a 1/4 wavelength plate with one side being a reflective surface, the linearly polarized light incident on the back mirror 15 is reflected as linear polarized light orthogonal to the linearly polarized light, and then passes through the total reflection prism 6 again. After passing through, it is reflected by the polarizing prism 14 and goes through the imaging lens 8 toward the spherical center of the eccentricity measurement surface of the lens 9 to be tested. Since the eccentricity measurement surface of the test lens 9 is located at the autocollimation position by moving the total reflection prism [ ) in the direction of the arrow as in the case of FIG. 1, the eccentricity θ
1j The linearly polarized light reflected by the fixed object goes backwards and passes through the polarizing prism 1.
4, is reflected by the back mirror 15 via the total reflection prism 6, and then enters the polarization prism 14 via the total reflection prism 6 again, but since the polarization direction has been rotated by 90', it passes through the polarization prism 14. do. flHj optical prism 14
The linearly polarized light that has passed through is reflected by the index plate 13, but at this time it passes through the 1/4 wavelength plate twice, so the polarization direction is 90°.
° Rotated. Therefore, the image of the index 13a enters the polarizing prism 14 and is reflected by it, and the polarizing plate 16
and can be observed through the eyepiece lO. Note that the polarizing plate 16 is disposed perpendicular to the polarization direction of the observation light and is useful for removing flare.
第3図は第二の実施例を示しており、第2図の実MM例
と比較して光源系と被検レンズ系が入れ換わっており、
1だ偏光プリズム14′は第2図の偏光プリズムと光源
からの入射光に対する偏光方向が90たけ異なっている
。従って、偏光プリズム14′における反射、透過が逆
になり、全体の作用は第2図の実施例と同様である、3
この第二の実施例は、偏光プリズムの反射特性が接合面
の向きで黄なる場合に特に好適である。FIG. 3 shows a second embodiment, in which the light source system and the test lens system are interchanged compared to the actual MM example shown in FIG.
The polarizing prism 14' differs from the polarizing prism shown in FIG. 2 by 90 degrees in terms of the polarization direction of the incident light from the light source. Therefore, the reflection and transmission at the polarizing prism 14' are reversed, and the overall operation is similar to the embodiment shown in FIG.
This second embodiment is particularly suitable when the reflection characteristics of the polarizing prism become yellow depending on the direction of the cemented surface.
第4図は第三の実施例を示しており、基本的には第2図
の実施例と同じ構造及び作用であって、17は光源1と
反対側の面がスリット状の開口による指4>’0,17
aを有する反射内として構成されている平面ガラス板か
ら成る指標板で、光軸に対し2て僅かに傾いて配設され
ている。この指標板17の傾斜によって指標17aの像
の光軸からのずれ量か太きいときにはピントがぼけるが
、構成か極めて簡単であυ、第2図及び第3図の実施例
に比へてさらにフレアが少なくなるという利点を有して
いる。、また光源にレーザーを使用すれば偏光板1ノが
不要となり、さらに光量の低下か減少する。FIG. 4 shows a third embodiment, which basically has the same structure and function as the embodiment shown in FIG. >'0,17
Indicator plate consisting of a flat glass plate configured as a reflective interior with a and arranged at a slight inclination to the optical axis 2. The inclination of the index plate 17 causes the image of the index 17a to be out of focus if the amount of deviation from the optical axis is large; This has the advantage of reducing flare. Furthermore, if a laser is used as a light source, the polarizing plate 1 is not necessary, and the amount of light is further reduced.
以上述へたように本発明によれば、偏光プリズムを利用
することにより、指標からの光の光量低下は実質的に殆
どなくなり、従ってフレアも殆となくなるので、従来に
比べて明るく而もコントラスト
尚、被検レンズの表面は一般にilii視光に対する反
則防1]膜が施されているので、ilill定光として
赤夕(糺にVたけ紫外線を使用すれば偏心測定]n]゛
からの反射光:j)か大きくなり、明るい指標の像がイ
!jられる,、即ち、偏心4)す定面の反射防止j漠に
よる反対向[−1効果の少ない波長の光を測定光として
使用することかl1件しい1、この場合、使用する測定
光に感度をもつ検出素子か必要となる3、従って、赤1
)l線。As described above, according to the present invention, by using a polarizing prism, there is virtually no reduction in the amount of light from the index, and therefore there is almost no flare, so it is brighter and has a higher contrast than before. In addition, since the surface of the lens to be tested is generally coated with a film that prevents fouling against visible light, the reflected light from the red evening light (if ultraviolet rays are used for the purpose of measuring eccentricity) is used as illill constant light. :j) The image of the indicator becomes larger and brighter! 4) Anti-reflection of a fixed surface 4) Opposite direction due to the anti-reflection of a fixed surface 3, which requires a sensitive detection element, so red 1
) l line.
紫外線を測定光として使用する場合には、指標の像か肉
眼で観桜され得ないので、指標の像の形成される位置に
使用する測定光に対して感度をもつ例えばボジンヨンセ
ンザ〜の如き検出装置を配設し7て偏心測定面の偏心量
を測定する63寸だ、以llの実施例においては倒れも
偏光プリズムを使用し7ているが、これに限らず偏光プ
リズムを含む偏光ビーノ、スプリッタであればよい。When using ultraviolet rays as measurement light, the image of the index cannot be seen with the naked eye, so a detection device such as a sensor that is sensitive to the measurement light used is used at the position where the index image is formed. It is 63 inches to measure the amount of eccentricity of the eccentricity measurement surface.In the following embodiments, a polarizing prism is used for tilting, but it is not limited to this. Good to have.
第1図は従来のレンズ偏心測定器の概略図、第2図は本
発明によるレンズ偏心測定器の一実施例を示ず1ン1、
第3図及び第4図は本発明の他の実施例を示す概略図で
ある。
1・・・ 光源、2・・・・レンズ、3・・・・指標、
4。
5・・・・半透鏡、6・・・・全反射プリズム、7・・
・・反Q6鏡..8・・・・結像レンズ、9・・・・被
検レンズ、10・・・・接眼レンズ、II,16・・・
・(rtδ光板、12・・・・1/4波長板、] 3
、 1. 7・・・・指標板、141、4’・・・・偏
光プリズム、15・・・・裏面鏡。
代理人 篠原泰司FIG. 1 is a schematic diagram of a conventional lens eccentricity measuring instrument, and FIG. 2 shows an embodiment of the lens eccentricity measuring instrument according to the present invention.
3 and 4 are schematic diagrams showing other embodiments of the present invention. 1... Light source, 2... Lens, 3... Index,
4. 5... Semi-transparent mirror, 6... Total reflection prism, 7...
・Anti-Q6 mirror. .. 8... Imaging lens, 9... Test lens, 10... Eyepiece lens, II, 16...
・(rtδ light plate, 12...1/4 wavelength plate,] 3
, 1. 7... Index plate, 141, 4'... Polarizing prism, 15... Back mirror. Agent Yasushi Shinohara
Claims (2)
透過(または反射)する偏光ビームスプリッタと、該偏
光ビームスグリツタにより透過(または反射)された光
の光路中で光源側から順に配設された1/4波長板及び
光路に垂直な反射面と、該反射面で反射されて逆行した
後前記ビームスプリッタにより反射(または透過)され
た光を被検レンズの偏心測定面に導く投影光学系と、該
偏心測定面で反射して該投影光学系を介して該ビームス
プリッタによ逆反射(または透過)され更に1/4波長
板1反射面、再び1/4波長板を介して該ビームスプリ
ッタによシ透過(捷たけ反射)された光を光路外へ導く
光学系とを含んでいることを特徴とするレンズ偏心測定
器。(1) An index illuminated with polarized light, a polarizing beam splitter that transmits (or reflects) the light from the index, and an optical path of the light transmitted (or reflected) by the polarized beam splitter in order from the light source side. A 1/4 wavelength plate and a reflective surface perpendicular to the optical path are provided, and the light reflected by the reflective surface and reflected (or transmitted) by the beam splitter is guided to the eccentricity measurement surface of the test lens. The beam is reflected by the projection optical system, the decentered measurement surface, is reflected back (or transmitted) by the beam splitter via the projection optical system, and is further transmitted to the reflecting surface of the quarter-wave plate 1 and again via the quarter-wave plate. and an optical system that guides the light transmitted (split and reflected) by the beam splitter out of the optical path.
防止効果の少ない波長域の偏光で指標が照明されるよう
にしたことを特徴とする特許請求の範囲(1)に記載の
レンズ偏心測定器。(2) Lens eccentricity according to claim (1), characterized in that the indicator is illuminated with polarized light in a wavelength range in which the antireflection effect of the antireflection coating on the eccentricity measurement surface of the lens to be tested is low. Measuring instrument.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8762383A JPS59214730A (en) | 1983-05-20 | 1983-05-20 | Lens-decentering measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8762383A JPS59214730A (en) | 1983-05-20 | 1983-05-20 | Lens-decentering measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59214730A true JPS59214730A (en) | 1984-12-04 |
Family
ID=13920097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8762383A Pending JPS59214730A (en) | 1983-05-20 | 1983-05-20 | Lens-decentering measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59214730A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103471562A (en) * | 2013-09-09 | 2013-12-25 | 北京航天计量测试技术研究所 | Auto-collimation measurement method and device for long-distance dynamic contact ratio of quasi parallel light |
CN118032302A (en) * | 2024-04-11 | 2024-05-14 | 深圳市壹倍科技有限公司 | Detection system for polarization beam splitter prism and corresponding method |
-
1983
- 1983-05-20 JP JP8762383A patent/JPS59214730A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103471562A (en) * | 2013-09-09 | 2013-12-25 | 北京航天计量测试技术研究所 | Auto-collimation measurement method and device for long-distance dynamic contact ratio of quasi parallel light |
CN118032302A (en) * | 2024-04-11 | 2024-05-14 | 深圳市壹倍科技有限公司 | Detection system for polarization beam splitter prism and corresponding method |
CN118032302B (en) * | 2024-04-11 | 2024-06-11 | 深圳市壹倍科技有限公司 | Detection system for polarization beam splitter prism and corresponding method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3958884A (en) | Interferometric apparatus | |
KR100225923B1 (en) | Ideal diffraction interferometer | |
US12000752B2 (en) | Deflectometry measurement system | |
JPS58145911A (en) | Optical system for testing with light transmission microscope by reflected light irradiation | |
JPH0324431A (en) | Optical instrument for phase detection inspection of optical system, particularly spectacle lens | |
JPH08122211A (en) | Spectacle lens measuring device | |
JPH0627706B2 (en) | Reflectance measuring device | |
US4762417A (en) | Fringe scanning point diffraction interferometer by polarization | |
JP2000241128A (en) | Plane-to-plane space measuring apparatus | |
US4033696A (en) | Lens meter | |
JPS59214730A (en) | Lens-decentering measuring device | |
US4105335A (en) | Interferometric optical phase discrimination apparatus | |
US6486942B1 (en) | Method and system for measurement of a characteristic of lens | |
JP2003240526A (en) | Apparatus and method for measurement of surface | |
US3288021A (en) | Microscope for measuring the size of an object | |
JPS6024401B2 (en) | How to measure the physical constants of a measured object | |
JPH0118370B2 (en) | ||
CN114593670B (en) | Implanted coaxial and off-axis digital holographic switching device based on Rochon prism | |
US3586447A (en) | Split image measuring device for a microscope | |
JP2000088513A (en) | Aspherical wave generating lens system assembling adjusting equipment | |
JPS6029057B2 (en) | Reflection inspection device for three-sided mirror reflector | |
TW392061B (en) | An optical mechanism for accurate control of light beam incident angle across a large angular region | |
JPS60211304A (en) | Measuring instrument for parallelism | |
Puntambekar et al. | A simple inverting interferometer | |
JPS59154309A (en) | Interferometer for measuring face shape |