JPS59214206A - Manufacture of permanent magnet material - Google Patents

Manufacture of permanent magnet material

Info

Publication number
JPS59214206A
JPS59214206A JP58002052A JP205283A JPS59214206A JP S59214206 A JPS59214206 A JP S59214206A JP 58002052 A JP58002052 A JP 58002052A JP 205283 A JP205283 A JP 205283A JP S59214206 A JPS59214206 A JP S59214206A
Authority
JP
Japan
Prior art keywords
binder
degreasing
temperature
permanent magnet
magnet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58002052A
Other languages
Japanese (ja)
Inventor
Kazunori Tawara
田原 一憲
Koichi Oda
光一 小田
Masao Ogata
正男 緒方
Norio Toyosaki
豊崎 則男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP58002052A priority Critical patent/JPS59214206A/en
Publication of JPS59214206A publication Critical patent/JPS59214206A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent

Abstract

PURPOSE:To avoid voids, crackings and breakage of a molded magnet body by a method wherein a plurality of organic materials are combined and the maximum value of defatted quantity at the specific temperature within the defatting temperature range is made less than approximately 20 times of the minimum value in heated quantity reduction ratio. CONSTITUTION:Al-Ni-Co system alloy powder is mixed or kneaded with a binder and then subjected to injection molding. Then the binder is defatted. Organic compound is used as the binder. The organic compound is composed of the combination of at least two kinds among thermoplastic resin, thermosetting resin, natural resin, rubber, elastomer, lubricant and plastsizer. Suitable organic materials are combined and the maximum value of defatted quantity at the specific temperature or temperature range within the total defatting temperature range is made less than approximately 20 times of the minimum value in heated quantity reduction ratio. With this constitution, the defatting is performed without producing voids, crackings and breakage in the surface or the inside of the molded body.

Description

【発明の詳細な説明】 本発明は粉末冶金法によって得られるアルニコ系永久磁
石材料に係るものであり、丈に詳しくは該永久磁石粉末
とバインダーとから成る混練物を射出成形法により高寸
法精度の成形体となし、特定の元素を含准させて高密度
の焼結性を得ると共に、優れた磁気特性Z有する永久礎
石材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alnico permanent magnet material obtained by a powder metallurgy method, and more specifically, a kneaded material consisting of the permanent magnet powder and a binder is molded with high dimensional accuracy by an injection molding method. The present invention relates to a permanent cornerstone material which is made into a molded body, which is impregnated with specific elements to obtain high-density sinterability, and which has excellent magnetic properties Z.

アルニコ系永久礎石は、一般には鋳造法で製造される。Alnico-based permanent cornerstone is generally manufactured by a casting method.

製造条件は、組成によって異なるが1例えば重量比”’
QA17〜12%、Nj 10〜20%、 Co 2B
〜50 % pCu 1〜7%、 Ti 4.0〜5.
5% を主成分であり、同時に添加物として0002〜
0.2%、801〜1.0%、 Nb O,5〜60チ
、Ti4.o〜5.5%奢含み、残部が実質的にFeか
ら成るアルニコ磁石では、注湯温度略1700℃であり
、1200℃以上で溶体処理後、冷却速度o、i〜0,
9℃/Sで磁場中冷却後、キーリ一点より約10〜50
℃低い一定温度で磁場中保持をおこない、更に550〜
650℃前後で時効乞おこなうことにより磁石材料ン得
ている。
Manufacturing conditions vary depending on the composition, but for example, the weight ratio
QA17-12%, Nj 10-20%, Co2B
~50% pCu 1-7%, Ti 4.0-5.
5% as the main component and at the same time as additives 0002~
0.2%, 801-1.0%, NbO, 5-60%, Ti4. For alnico magnets containing o ~ 5.5% richness and the remainder substantially consisting of Fe, the pouring temperature is approximately 1700°C, and after solution treatment at 1200°C or higher, the cooling rate is o, i ~ 0,
After cooling in a magnetic field at 9℃/S, approximately 10 to 50
Hold in a magnetic field at a constant low temperature of 550~
Magnetic materials are obtained by aging at around 650°C.

一力、一般金属部品の製造法として粉末冶金技術が開発
され、自動車部品、電機部品、機械部品等に広く適用さ
れており、その効果は周知の通りである。アルニコ系合
金(以下本系合金と記j)に粉末冶金法すなわち焼結法
を適用するならば、溶解材の溶体化処理1での工程が粉
末混合、成形、焼結の極めて簡単な工程となり、所望の
形状をした磁石材料を得ることができるか、甘たはそれ
に近い形状のものとして仕上げ加工を施すことができる
Powder metallurgy technology was developed as a method for manufacturing general metal parts, and has been widely applied to automobile parts, electrical equipment parts, mechanical parts, etc., and its effects are well known. If the powder metallurgy method, that is, the sintering method is applied to alnico alloys (hereinafter referred to as this alloy), the process of solution treatment 1 of the molten material becomes an extremely simple process of powder mixing, molding, and sintering. It is possible to obtain a magnet material having a desired shape, or to finish it into a shape that is at least close to the desired shape.

しかしながら、本系合金の永久磁石材料を溶解鋳造法は
勿論のこと、通常のプレス成形法による焼結法を用いた
場合でも形状の複雑な製品や高度な寸法精度が要求され
る製品を製造する場合には素材を仕上り゛加工する必要
がある。
However, even when using this alloy permanent magnet material not only by melting and casting, but also by sintering using normal press forming, it is difficult to manufacture products with complex shapes or products that require a high degree of dimensional accuracy. In some cases, it is necessary to finish and process the material.

本発明の永久磁石材料には、か刀・る形状の複雑な製品
および高度な寸法精度が要求される製品とするために、
成形工程に射出成形法を適用することが特徴のひとつで
おる。周知のように、射出成形法はプラスチックの成形
分野において、その威力を発揮しており、公差±0.0
1+a程夏の成形精度ン得ることができる。本系合金に
射出成形法Z適用していくためには、金属粉の含有率の
高いモールデインクミノクス(コンパウンド)を作成す
ることが肝要であり、このためには以下の知見が必要で
ある。すなわち、(1)理論密度に対して65〜85%
の高充填を有する金属粉末の作成、(2)良好な流動性
、成形強度、脱脂性にマツチしたバインダーの選定、お
よび(6)これらの条件を満足させるその他派加物の選
定について種々検討をおこない射出成形に適したコンパ
ウンドを得ることができた。
In order to manufacture the permanent magnet material of the present invention into products with complex shapes and products requiring high dimensional accuracy,
One of the features is that the injection molding method is applied to the molding process. As is well known, the injection molding method has demonstrated its power in the field of plastic molding, and the tolerance is ±0.0.
A molding precision of about 1+a can be obtained. In order to apply the injection molding method Z to this alloy, it is important to create mold ink minox (compound) with a high content of metal powder, and for this purpose, the following knowledge is necessary. . That is, (1) 65 to 85% of the theoretical density
(2) selection of a binder that matches good fluidity, molding strength, and degreasing properties; and (6) selection of other additives that satisfy these conditions. We were able to obtain a compound suitable for injection molding.

また、本系合金を永久磁石材料とするためには、射出成
形法による高度な寸法精度等を得るだけでなく、砒気特
性的にも優れていることが必要である。一般に、焼結法
により製造されTこ磁性材料においては、見損は密度と
磁気特性との間には密接な関係があり、例えば残留侮東
密度(Br)は密度に比例する。従って優れた磁気特性
をもつ材料を得るためには、密度をできるだけ理論密度
に近づけることが肝要でおる。
In addition, in order to use this alloy as a permanent magnet material, it is necessary not only to obtain a high degree of dimensional accuracy through injection molding, but also to have excellent arsenic properties. Generally, in magnetic materials manufactured by sintering, there is a close relationship between density and magnetic properties; for example, residual density (Br) is proportional to density. Therefore, in order to obtain a material with excellent magnetic properties, it is important to make the density as close to the theoretical density as possible.

本系合金の組成は、特に限定されるものでは無く、公知
のアルニコ系磁石の基本組成および添加物系を包含する
。すなわち、重量比でAt6〜12%。
The composition of the present alloy is not particularly limited, and includes the basic composition and additive system of known alnico magnets. That is, At 6 to 12% by weight.

N110〜28%、005〜35%、C110〜7%、
Tin〜8%。
N110-28%, 005-35%, C110-7%,
Tin~8%.

他に添加物として、CO〜0.2%、So〜1%、 N
b 0〜4%を含む場合がおり、残部はFeであり、優
れた磁褒特性ケ有することは公知である。更に、■を0
1〜0.5%添加することにより、保砒力1l−1cお
よび最大磁気エネルギー積(BH)mを著しく増加する
こと(%公昭47−44409)も報告されている。
Other additives include CO~0.2%, So~1%, N
It may contain 0 to 4% b, and the remainder is Fe, and is known to have excellent magnetic properties. In addition, change ■ to 0
It has also been reported that by adding 1 to 0.5%, the coercive force 1l-1c and the maximum magnetic energy product (BH) m are significantly increased (% Kosho 47-44409).

すなわち、本発明はアルニコ系磁石の組成にかかわりな
く、アルニコ系永久磁石材料において、該礎石材料から
成る粉末をバインダーと混合ないしは混練した後、射出
成形?おこない、次いで脱バインダーおよび焼結して成
ること乞特徴とする永久磁石材料である。
That is, regardless of the composition of the alnico magnet, the present invention applies to injection molding of alnico permanent magnet material after mixing or kneading powder of the cornerstone material with a binder. This is a permanent magnet material that is characterized in that it is made by debinding, followed by debinding and sintering.

ところで本系合金に射出成形法を適用する場合前記(1
) 、 (2)および(6)で述べた他にも脱脂工程を
含めた有機材料の選定が極めて重要である。
By the way, when applying the injection molding method to this alloy, the above (1)
), (2) and (6), the selection of organic materials including the degreasing process is extremely important.

射出成形に用いられる有機材料としては、ポリスチレン
などが多用されてはいるが、しかしながら殆んどの合成
樹脂が用いられており、いずれも一長一短がある。該成
形用に添加する有機材料は熱可塑性樹脂、滑剤、可塑剤
の組合せが一般的であるが、熱硬化性樹脂、天然樹脂、
ゴム、ニジストマーなとも用いることができる。これら
の内、主材となる熱可塑性樹脂の選定は特に重要でおり
樹脂のコスト、本系合金との親和性(濡れ)、加熱流動
性(成形性)、熱分解性および分解残渣成分等が該成形
法の特に重要な点である。
Although polystyrene and the like are often used as organic materials for injection molding, most synthetic resins are used, and each has its advantages and disadvantages. The organic material added for molding is generally a combination of thermoplastic resin, lubricant, and plasticizer, but thermosetting resin, natural resin,
Rubbers, nidistomers, etc. can also be used. Among these, the selection of the thermoplastic resin as the main material is particularly important, and the cost of the resin, affinity with the alloy (wetting), heat fluidity (formability), thermal decomposition, decomposition residue components, etc. This is a particularly important point in this molding method.

本願発明においては、本系合金に適用する有機材料につ
き種々検討をおこなった結果、下記方法により好適な永
久磁石材料を得ることができた。
In the present invention, as a result of various studies on organic materials to be applied to the present alloy, it was possible to obtain a suitable permanent magnet material by the following method.

(1)本系合金材料粉末をバインダーと共に混合ないし
は混練したのち、射出成形をおこない、脱バインダー及
び焼結を施して永久磁石材料を得る場合。
(1) When the present alloy material powder is mixed or kneaded with a binder, injection molding is performed, and the binder is removed and sintered to obtain a permanent magnet material.

有機材料として少なく共2種類の有機材料音用いる。At least two types of organic materials are used as organic materials.

(2)有機材料としては、熱可塑性樹脂、熱硬化性樹脂
、天然樹脂、ゴム、エラストマー、滑剤、可塑剤の内か
ら少なく共2種類を組合わせて用いる。
(2) As the organic material, at least two of thermoplastic resins, thermosetting resins, natural resins, rubbers, elastomers, lubricants, and plasticizers are used in combination.

すなわち、用いるバインダーは、脱バインダー(脱脂)
工程において分解ないしは揮散する必要かあり、そのた
めに有機化合物を用いる。バインダーは一柚類でも良い
が、脱バインダ一工程を円滑におこなうためには、結合
剤、消削、可塑剤としての役割を果すバインダーを複数
準備して、第1図に示すように予め示差熱分析装置等に
より、加熱減量曲線の測定をおこない、然る後、これら
複数のバインダーを適宜糾合ゎせることにより、加熱温
度の勾配に対して第2図に示すように詳細は実施例で述
べるが略一定量宛脱脂するように混合することが望寸し
い。寸た、バインダーの種類によっては、本系合金との
濡れ性を改善するために表面改質拐を添加してもよい。
That is, the binder used is binder-removed (degreased)
It is necessary to decompose or volatilize in the process, and organic compounds are used for this purpose. The binder may be a single yuzu type, but in order to perform the binder removal process smoothly, prepare multiple binders that serve as binders, erasers, and plasticizers, and prepare differential binders in advance as shown in Figure 1. The heating loss curve is measured using a thermal analyzer, etc., and then, by appropriately combining these multiple binders, the heating temperature gradient is shown in Fig. 2. Details will be described in Examples. It is desirable to mix so that a substantially constant amount of fat is removed. Depending on the type of binder, surface-modifying particles may be added to improve wettability with the present alloy.

更には、特殊な場合媒体を用いる場合もある。Furthermore, a medium may be used in special cases.

本発明で称するバインダーとは、上記の各機能を分担す
る有機化合物および有機シリゲート、有機チタネートな
どの有機無機錯化合物をも含むものである。
The binder referred to in the present invention includes organic compounds that share each of the above functions and organic-inorganic complex compounds such as organic silicates and organic titanates.

本合金系による永久磁石の製造は、焼結後浴体化処理お
まひ時効処理といった従来の技術が利用できる。勿論、
焼結後にできる限り高い焼結密度が得られるよう適切な
粒子形状および粒度分布を有する合金粉末を選択使用す
ることは必要である。
For the manufacture of permanent magnets based on the present alloy system, conventional techniques such as sintering bath formation treatment and Omai aging treatment can be used. Of course,
It is necessary to select and use an alloy powder having an appropriate particle shape and particle size distribution in order to obtain the highest possible sintered density after sintering.

そのためには、アントリアゼンの弐P = (x 7′
D )m(ここでPはある粒子径X以下の含有率、Dは
存在する最大の粒子径、m−/2〜4)に近い粒度分布
2取ることが望ましい。−!た、脱脂速度は、成形体の
肉厚、雰囲気およびバインダーの種類にもよるが、バイ
ンダーの分解ないしは揮散開始温度から終了する温度壕
での範囲において、略2℃/hないし10℃/′h程度
が好適である。脱脂速度すなわち昇温速度が急激丁きる
と成形体の表面・内部に発泡、キレン、割れが生じ製品
とはならない。
For that purpose, Antriazen's 2P = (x 7'
D) It is desirable to have a particle size distribution 2 close to m (where P is the content of a certain particle size X or less, D is the maximum existing particle size, m-/2 to 4). -! In addition, the degreasing speed depends on the thickness of the molded body, the atmosphere, and the type of binder, but it is approximately 2°C/h to 10°C/'h in the temperature range from the binder's decomposition or volatilization start temperature to the end temperature. degree is suitable. If the degreasing rate, that is, the rate of temperature increase, stops suddenly, foaming, cracking, and cracking will occur on the surface and inside of the molded product, and the product will not be finished.

焼結温度については、1200〜1400℃が一般的で
めろが、焼結を速やかに進めるためには、また焼結密度
ビ向上せしめるためには、1500〜14oo℃&度で
焼結をおこなう。以下、本発明を実施例により詳細に説
明する。
The sintering temperature is generally 1200-1400℃, but in order to speed up the sintering and improve the sintered density, sintering should be performed at 1500-140℃. . Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 重量%でAt7.Ni 15.Co50.Cu4.Ti
 5゜Nb o、1. V o1残部Fe x r)成
ル100 )’ 7 シs−以下の合金粉末と)IDP
E、APP (高分子量)及びAPP(低分子量)とか
ら成るバインダーとを配合比粉末:)IDPH:APP
(高分子):APP(低分子)=98 : 5 : 9
 : 3の比率で加熱混合し、スクリーータイプの射出
成形機によりφ2020−1Otの円柱状成形体を得た
。次いで、140℃より3℃/hの昇温速度で脱脂をお
こなった。第2図に本実施例で用いた有機材料の脱脂状
態を温度に対する加熱減量係で示す。図中の○印は第1
図に示す昇温2℃/jlII+での各ポリマーの熱分解
曲線より得た計算値である。
Example 1 At 7.0% by weight. Ni 15. Co50. Cu4. Ti
5°Nbo, 1. V o1 remainder Fe x r) formed 100 )' 7 s- or less alloy powder) IDP
E, a binder consisting of APP (high molecular weight) and APP (low molecular weight), and the blending ratio powder:) IDPH:APP
(Polymer): APP (Low molecule) = 98: 5: 9
: The mixture was heated and mixed at a ratio of 3, and a cylindrical molded body with a diameter of 2020-1 Ot was obtained using a scree type injection molding machine. Next, degreasing was performed at a temperature increase rate of 3°C/h from 140°C. FIG. 2 shows the degreased state of the organic material used in this example as a function of heating loss versus temperature. The ○ mark in the diagram is the first
These are calculated values obtained from the thermal decomposition curves of each polymer at a temperature increase of 2° C./jlII+ shown in the figure.

図のCuは実際の成形品の脱脂した実測値である。Cu in the figure is an actual value measured after degreasing an actual molded product.

第2図から脱脂量は、脱脂温度に対して略@線的に変化
していることが分る。これに対して、APP(高分子量
)およびパラフィンワックス(68/66〕をそれぞれ
単一に用いて成形体を作成し脱脂をおこなった場合、第
1図からも予想されるように、それぞれ220〜260
℃および180〜210℃で急激に脱脂が進行し、成形
体にキレンおよび発泡の発生を伴った、脱脂条件につい
て種々検討した結果、成形体の肉厚および形状等にもよ
るか略以下の結果ビ得た。すなわち熱可塑性樹脂、滑剤
および可塑剤の内から選択された複数の有機材料を適宜
組み合せることによって、これら有機材料の脱脂開始温
度から終了温度までの全脱脂温度範囲のなかで。
It can be seen from FIG. 2 that the amount of degreasing changes approximately linearly with respect to the degreasing temperature. On the other hand, when a molded body is made using only APP (high molecular weight) and paraffin wax (68/66) and degreased, as expected from Fig. 260
℃ and 180 to 210℃, degreasing progressed rapidly, and the molded product was accompanied by clearing and foaming.As a result of various studies on degreasing conditions, the following results were obtained, depending on the wall thickness and shape of the molded product. I got it. That is, by appropriately combining a plurality of organic materials selected from thermoplastic resins, lubricants, and plasticizers, the degreasing can be carried out within the entire degreasing temperature range from the degreasing start temperature to the finish temperature of these organic materials.

成る特定した温度ないしは温度中における脱脂量の最大
値が加熱減量比率で最小値の略2o倍以下好葦しくは略
10倍以下となるように制御する必要がある。該加熱減
量比率が20倍9、上になると昇温速度2℃/′h程度
の低速昇温の場合にも少なく共キレンの発生を伴ったが
、10倍以下では上記昇温度でキレン、発泡を伴うこと
なく脱脂することができた。
It is necessary to control the amount of degreasing so that the maximum value of the amount of degreasing at or within the specified temperature is approximately 20 times or less, preferably approximately 10 times or less, of the minimum value in terms of heating loss ratio. When the heating loss ratio exceeded 20 times 9, even when the temperature was raised at a slow rate of about 2°C/'h, a small amount of co-killen was generated, but below 10 times, the above-mentioned temperature increase caused the generation of co-killen. It was possible to remove fat without causing any damage.

次イテ、真空中1100℃Xlam+13001:X2
hで焼結をおこなった。この時の真窒度は1O−4to
rr 程度以下であった。1000℃X1Ojllll
の保持は粉末中にごく微量残存すると考えられるバイン
ダーからのCと粉末中の02との反応を促進除去するた
めである。焼結後20000e の@場中1250℃で
溶体化処理を施した後、600℃で長時間熱処理をおこ
なった。
Next iteration, 1100℃Xlam+13001:X2 in vacuum
Sintering was performed at h. The true nitrogen degree at this time is 1O-4to
It was below about rr. 1000℃X1Ojllll
The purpose of this retention is to promote the reaction between C from the binder, which is thought to remain in a very small amount in the powder, and 02 in the powder. After sintering, solution treatment was performed at 1250°C in the field at 20000e, followed by long-term heat treatment at 600°C.

得られた磁気特性は、Br=7600a 、 HC=1
350ue。
The obtained magnetic properties are Br=7600a, HC=1
350ue.

(BH)m = 5.2 MGOeであツタ。(BH) m = 5.2 Ivy in MGOe.

また40個の試料数に対する寸法精度は±0.05wm
以下でめった。
Also, the dimensional accuracy for 40 samples is ±0.05w
I encountered the following.

実施例2 重fi%でAt18.Ni14.Co24.Cu5、残
部Feより成る100メツシー以下の合金粉末を実施例
1と類似の工程で処理して得た磁石材料の磁気特性は、
Br=12KG 、 HC=6000e 、 (B)l
)may=5.0MG(Jeであった。捷だ、40個の
試料に対する寸法精度は、同様に±05−以下であった
Example 2 At18. Ni14. Co24. The magnetic properties of a magnet material obtained by processing an alloy powder of 100 mesh or less consisting of Cu5 and the balance Fe in a process similar to Example 1 are as follows:
Br=12KG, HC=6000e, (B)l
) may=5.0 MG (Je.) The dimensional accuracy for the 40 samples was also ±05- or less.

以上の実施例から明らかなように、本発明材は、焼結性
、寸法精度および磁気特性が共に優れた磁石材料である
As is clear from the above examples, the material of the present invention is a magnetic material with excellent sinterability, dimensional accuracy, and magnetic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、高分子材料、滑剤、可塑剤の示差熱分析装置
による熱分解曲線である。 第2図は、複数の有機化合物を用いた本系合金コンパウ
ンドの脱脂曲線である。 オ  1 図 オ ′l 図 jE刀(じCン
FIG. 1 shows thermal decomposition curves of polymer materials, lubricants, and plasticizers measured using a differential thermal analyzer. FIG. 2 is a degreasing curve of the present alloy compound using a plurality of organic compounds. O 1 Figure O 'l Figure jE sword (jiCn

Claims (1)

【特許請求の範囲】[Claims] アルニコ系永久磁石材料において、該磁石材料から成る
粉末を有機材料と混合ないしは混練したのち、射出成形
をおこない、次いで脱脂、焼結および熱処理を施してな
る永久磁石材料の製造方法において、熱可塑性樹脂、消
削および可塑剤の内から選択された複数の電機材料を適
宜組み合せることによって、該有機材料の脱脂開始温度
から終了温度までの全脱脂温度範囲のなかで、成る特定
した温度ないしは温度中における脱脂量の最大値が加熱
減量比率で最小値の略20倍以下であることを特徴とす
る永久磁石材料の製造方法。
In a method for producing an alnico-based permanent magnet material, the powder made of the magnet material is mixed or kneaded with an organic material, injection molded, and then degreased, sintered, and heat treated. By appropriately combining a plurality of electrical materials selected from , degreasing, and plasticizers, it is possible to achieve a specified temperature within the entire degreasing temperature range from the degreasing start temperature to the end temperature of the organic material. A method for producing a permanent magnet material, characterized in that the maximum value of the amount of degreasing in is approximately 20 times or less of the minimum value in terms of heating loss ratio.
JP58002052A 1983-01-10 1983-01-10 Manufacture of permanent magnet material Pending JPS59214206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58002052A JPS59214206A (en) 1983-01-10 1983-01-10 Manufacture of permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58002052A JPS59214206A (en) 1983-01-10 1983-01-10 Manufacture of permanent magnet material

Publications (1)

Publication Number Publication Date
JPS59214206A true JPS59214206A (en) 1984-12-04

Family

ID=11518560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58002052A Pending JPS59214206A (en) 1983-01-10 1983-01-10 Manufacture of permanent magnet material

Country Status (1)

Country Link
JP (1) JPS59214206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567757A (en) * 1995-07-18 1996-10-22 Rjf International Corporation Low specific gravity binder for magnets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567757A (en) * 1995-07-18 1996-10-22 Rjf International Corporation Low specific gravity binder for magnets
WO1997004468A1 (en) * 1995-07-18 1997-02-06 Rjf International Corporation Low specific gravity binder for magnets

Similar Documents

Publication Publication Date Title
EP1455368B1 (en) Corrosion-resistant rare earth element magnet
EP0428719B1 (en) Method of forming shaped components from mixtures of thermosetting binders and powders having a desired chemistry
EP1083239B1 (en) Non-magnetic, high density tungsten alloy
CN105665715B (en) Iron-silicon series soft magnetic alloy prepared by powder metallurgy process and method
EP0166597B1 (en) Magnetic powder and production process thereof
DE10022940A1 (en) Molding of magnetic article e.g., magnetic core used in automotive industry involves forming encapsulated layer of ceramic material on ferromagnetic particles, compacting the particles and annealing the resultant magnetic article
JPS59214206A (en) Manufacture of permanent magnet material
JP2751966B2 (en) Injection molding composition
CN1030290C (en) Method for making high strength injection moulded ferrous material
JPS59125603A (en) Permanent magnet material and manufacture thereof
JPS59125602A (en) Permanent magnet material and manufacture thereof
JPS59126602A (en) Manufacture of permanent magnet
JP7461852B2 (en) Bonded magnet manufacturing method
JPS59125604A (en) Permanent magnet material
JP3694968B2 (en) Mixed powder for powder metallurgy
JPS5976859A (en) Permanent magnet material
KR970005878B1 (en) Powder coupling agent, method for preparing of molding using powder coupling agent
JPH03195773A (en) Melt viscosity stabilization of polyphenylene sulfide resin and iron-based molding material containing same
JPH07179983A (en) Sintered soft-magnetic material having high electric resistance value and its production
JPH04210404A (en) Composition for injection molding
JPH0618130B2 (en) Permanent magnet material composition
JP2001152264A (en) Manufacturing method of high specific gravity sintered body
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JP3174443B2 (en) Method for producing sintered R-Fe-B magnet by injection molding method
JPS60230957A (en) Manufacture of permanent magnet