JPS59125603A - Permanent magnet material and manufacture thereof - Google Patents

Permanent magnet material and manufacture thereof

Info

Publication number
JPS59125603A
JPS59125603A JP58000874A JP87483A JPS59125603A JP S59125603 A JPS59125603 A JP S59125603A JP 58000874 A JP58000874 A JP 58000874A JP 87483 A JP87483 A JP 87483A JP S59125603 A JPS59125603 A JP S59125603A
Authority
JP
Japan
Prior art keywords
magnet material
organic materials
binder
sintering
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58000874A
Other languages
Japanese (ja)
Inventor
Kazunori Tawara
田原 一憲
Koichi Oda
光一 小田
Masao Ogata
正男 緒方
Norio Toyosaki
豊崎 則男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP58000874A priority Critical patent/JPS59125603A/en
Publication of JPS59125603A publication Critical patent/JPS59125603A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the magnet material excellent in all of sintering property, dimensional accuracy and magnetic characteristics by injecting and molding powder consisting of an alnico (aluminum-nickel-cobalt) alloy group permanent- magnet material by using at least two kinds of organic materials, removing a binder and sintering a shape. CONSTITUTION:Alloy powder consisting of Al, Ni, Co, Cu, Ti, Nb, V and Fe and the binder consisting of HDPE, APP (high molecular weight) and APP (low molecular weight) are heated and mixed at a ratio of 98:5:9:3, and formed to a columnar shape by an injection molding machine. The shape is degreased through heating, sintered, solution heat treated in a magnetic field, quenched and aging-treated. A thermosetting resin, a natural resin, a rubber, an elastomer, etc. may be used besides the combination of a thermoplastic resin, a slip additive and a plasticizer as the organic materials, a heating loss curve is measured previously by a differential thermal analyzer, and a plurality of the binders are combined properly. Accordingly, the powder, the binders and the organic materials are mixed so as to be degreased at every approximately fixed quantity to a gradient of a heating temperature.

Description

【発明の詳細な説明】 本発明は粉末冶金法によって得られるアルニコ糸永久磁
石材料に係るものであり、更に詳しくは該永久磁石粉末
とバインダーとから成る混線物を射出成形法により高寸
法精度の成形体となし、特定の元素を含有させて高密度
の焼結性を得ると共に)唆れた磁気特性を有する永久磁
石材料およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alnico yarn permanent magnet material obtained by a powder metallurgy method, and more specifically, a mixed material consisting of the permanent magnet powder and a binder is molded with high dimensional accuracy by an injection molding method. The present invention relates to a permanent magnet material that is formed into a molded body, contains a specific element to obtain high-density sinterability, and has desirable magnetic properties, and a method for producing the same.

アルニコ糸永久磁石は、一般には鋳造法で製造される。Alnico yarn permanent magnets are generally manufactured by a casting method.

製造条件は、組成によって異るが、例えば重量比でAt
7〜12%、1’J110〜20%、0o28〜30%
Qul〜7%、  Ti4.O〜5.5%を主成分であ
り、同時に添加物として0002〜0.2%、SO,l
 NLO%、Bib05〜30%T140〜5.5%を
含み、残部が実質的にFeから成るアルニコ磁石では、
注湯温度路1700Cであり、1200C以上で溶体処
理後、冷却速度01〜09C/S″c磁場中冷却後、キ
ュリ一点より約10〜5oC低い一定温度で磁場中保持
をおこない、更に550−fr50c前後で時効をおこ
なうことにより磁石材料を得ている。
The manufacturing conditions vary depending on the composition, but for example, the weight ratio of At
7-12%, 1'J110-20%, 0o28-30%
Qul~7%, Ti4. O ~ 5.5% as the main component, and at the same time as additives 0002 ~ 0.2%, SO,l
In an alnico magnet containing NLO%, Bib05~30%, T140~5.5%, and the balance essentially consisting of Fe,
The pouring temperature path is 1700C, and after solution treatment at 1200C or higher, cooling in a magnetic field at a cooling rate of 01-09C/S''c, holding in a magnetic field at a constant temperature about 10-5oC lower than the Curie point, and then 550-fr50c. Magnet material is obtained by aging before and after.

一方、一般金属部品の製造法として粉末冶金技術が開発
され、自動車部品、電気部品、機械部品等に広く適用さ
れており、その効果は周知の通りである。アルニコ系合
金(以下本系合金と記す)に粉末冶金法すなわち焼結法
を適用するならは、溶解材の溶体化処理までの工程が粉
末混合、成形焼結の極めて簡単な工程となり、所望の形
状をした磁石材料を得ることができるか、またはそれに
近い形状のものとして仕上げ加工を施すことができる。
On the other hand, powder metallurgy technology has been developed as a manufacturing method for general metal parts, and has been widely applied to automobile parts, electrical parts, mechanical parts, etc., and its effects are well known. If the powder metallurgy method, that is, the sintering method is applied to alnico alloys (hereinafter referred to as the main alloys), the process up to the solution treatment of the molten material is an extremely simple process of powder mixing, shaping and sintering, and the desired result can be achieved. A shaped magnet material can be obtained, or it can be finished into a shape close to it.

しかしなから、本系合金の永久磁石材料を溶解鋳造法は
勿論のこと、通常のプレス成形法による焼結法を用いた
場合でも形状の複雑な製品や高度な寸法精度が要求され
る製品を製造する場合には素材を仕上は加工する必要が
ある。
However, even when the permanent magnet material of this alloy is melted and cast, or even sintered using the normal press forming method, it is difficult to produce products with complex shapes or products that require a high degree of dimensional accuracy. When manufacturing, it is necessary to finish and process the material.

本発明の永久磁石材料には、かかる形状の複雑な製品お
よび高度な寸法精度が要求される製品とするために、成
形工程に射出成形法を適用することか特徴のひとつであ
る。周知のように、射出成形法はプラスチックの成形分
野において、その威力を発揮しており、公差±αQ 1
m程度の成形精度を得ることができる。本系合金に射出
成形法を適用していくためには、金属粉の含有率の高い
モールディングミックス(コンパウンド)を作成するこ
とが肝要であり、このためには以下の知見が必要である
。すなわち(1)理論密度に対して65〜85%の高充
填を有する金属粉末の作成、(2)良好な流動性成形強
度、脱脂性にマツチしたバインダーの選定および(3)
これらの条件を満足させるその低添加物の選定について
槙々検討をおこない射出成形に適シタコンパウンドを得
ることかできた。
One of the features of the permanent magnet material of the present invention is that an injection molding method is applied to the molding process in order to produce a product with such a complicated shape and a product that requires a high degree of dimensional accuracy. As is well known, the injection molding method has demonstrated its power in the field of plastic molding, and the tolerance ±αQ 1
It is possible to obtain a molding accuracy of about m. In order to apply the injection molding method to this alloy, it is important to create a molding mix (compound) with a high content of metal powder, and the following knowledge is required for this purpose. Namely, (1) creation of a metal powder with high filling of 65 to 85% of the theoretical density, (2) selection of a binder that matches good fluidity, molding strength, and degreasability, and (3)
After extensive study on the selection of a low-additive material that satisfies these conditions, we were able to obtain a compound suitable for injection molding.

また、本系合金を永久磁石材料とするためには、射出成
形法による高度な寸法精度等を得るだ【づでなく、磁気
特性的にもμsれていることか必要である。一般に、焼
結法により製造さハた磁性材料においては、見掛け@!
度と磁気特性との1Rノには密接な関i係かあり、例え
は残留磁束密度(Br)は茫世に比例項る。従って浸れ
た磁気特性をもつ材料を得るためには、密度をできるだ
け理論密度に近づけることが肝要である。
In addition, in order to use the present alloy as a permanent magnet material, it is necessary not only to obtain a high degree of dimensional accuracy by injection molding, but also to have magnetic properties of μs. In general, in magnetic materials manufactured by the sintering method, the apparent @!
There is a close relationship between 1R and magnetic properties; for example, the residual magnetic flux density (Br) is proportional to the magnetic property. Therefore, in order to obtain a material with immersed magnetic properties, it is important to make the density as close to the theoretical density as possible.

本系合金の組成は、特に限定されるものでは無く、公知
のアルニコ系磁石の基本組成および添加物系を包含する
。すなわち、Aχ量比でAt6〜12%N11(j−2
8%、005〜35% 、Cu O〜 7 % 、T土
 ○ 〜 8 %他に添加物として、Oo /−0,2
%、80〜1%、Nb0〜4%を含む場合があり、残部
はFeであり、唆れた磁気特性を有することは公知であ
る。更に、■を01〜05%添加することにより、保磁
力Hcおよび最大磁気エネルギー槓(BH) m を著
しく増加すること(特公昭47−44409 )も報告
されている。
The composition of the present alloy is not particularly limited, and includes the basic composition and additive system of known alnico magnets. That is, the Aχ amount ratio is At6~12%N11(j-2
8%, 005~35%, CuO~7%, T soil ○~8%Other additives include Oo/-0,2
%, 80-1%, and 0-4% Nb, with the remainder being Fe, and is known to have unique magnetic properties. Furthermore, it has been reported (Japanese Patent Publication No. 47-44409) that the coercive force Hc and the maximum magnetic energy (BH)m are significantly increased by adding 01 to 05% of ■.

すなわち、本発明はアルニコ系磁石の組成にかかわりな
く、アルニコ糸永久磁石材料において、該磁石材料から
成る粉末をバインダーと混合ないしは混練した後、射出
成形をおこない、次いで脱、<インダーおよび炉、結し
て成ることを特徴とする永久磁石材料である。
That is, regardless of the composition of the alnico magnet, the present invention involves mixing or kneading powder made of the magnet material with a binder, injection molding the alnico yarn permanent magnet material, and then removing the inder, furnace, and curing the alnico yarn permanent magnet material. It is a permanent magnetic material characterized by being made of.

ところで本系合金に射出成形法を適用する場合前記fl
) +21および(3)で述べた他にも脱脂工程を含め
た有機材料の選定が極めて重要である。射出成形に用い
られる有機材料としては、ポリスチレンなどが多用され
てはいるが、しかしながら殆んどの合成樹脂が用いられ
ており、いずれも一長一短がある。該成形用に添加する
有機材料は、熱可塑性樹脂、滑剤、可塑剤の組合せが一
般的であるが、熱硬化性根脂、天然樹脂、ゴム、エラス
トマーなども用いることかできる。これらの内、主拐と
なる熱可塑性樹脂の選定は特に重要であり、樹脂のコス
ト、本系合金との新和性(濡れ)、加熱流動性(成形性
)、熱分解性および分解残渣成分等が該成形法の特に重
要な点である。
By the way, when applying the injection molding method to this alloy, the fl
) In addition to those mentioned in +21 and (3), the selection of organic materials including the degreasing process is extremely important. Although polystyrene and the like are often used as organic materials for injection molding, most synthetic resins are used, and each has its advantages and disadvantages. The organic material added for molding is generally a combination of a thermoplastic resin, a lubricant, and a plasticizer, but thermosetting root fat, natural resin, rubber, elastomer, etc. can also be used. Among these, the selection of the main thermoplastic resin is particularly important, and the selection of the thermoplastic resin is particularly important, considering the cost of the resin, compatibility with the alloy (wettability), heat fluidity (moldability), thermal decomposability, and decomposition residue components. etc. are particularly important points of this molding method.

用いるバインダーは、脱バインダー(脱脂)工程におい
て分解ないしは揮散する必要があり、そのために有機化
合物を用いる。バインダーは一種類でも良いが、脱バイ
ンダ一工程を円滑におこなうためには、結合剤、滑剤、
可塑剤としての役割を果すバインダーを複数準備して、
予め示差熱分析装置により、加熱減量曲線の測定をおこ
ない、然る後、これらの複数のバインダーを適宜組合わ
せることにより、加熱温度の勾配に対して略一定量宛脱
脂するように混合することが望ましい。またバインダー
の種類によっては、本系合金との儒れ性を改善するため
に表面改質材を添加してもよい。
The binder used needs to be decomposed or volatilized in the binder removal (degreasing) step, and an organic compound is used for this purpose. One type of binder is sufficient, but in order to perform the binder removal process smoothly, binders, lubricants,
Prepare multiple binders that act as plasticizers,
By measuring the heating loss curve in advance using a differential thermal analyzer, and then appropriately combining these multiple binders, it is possible to mix them so as to degrease a substantially constant amount with respect to the heating temperature gradient. desirable. Further, depending on the type of binder, a surface modifying material may be added to improve the elasticity with the present alloy.

更には、特殊な場合には混合媒体を用いる場合もある。Furthermore, a mixed medium may be used in special cases.

本発明で称するバインダーとは、上記の各機能を分担す
る有機化合物および有機シリケート、有機チタネ゛互ト
などの有機無機錯化合物をも含むもエビのである。
The binder referred to in the present invention includes organic compounds that share the above-mentioned functions and organic-inorganic complex compounds such as organic silicates and organic titanium interconnects.

本合金系による永久磁石の製造は、焼結後磁場中熱処理
および時効処理といった従来の技術か利用できる。勿論
、焼結後にできる限り高い焼結密度が得られるよう適切
な粒子形状および粒度分布を有する合金粉末を選択使用
することは必要である。そのためには、アントリアゼン
の弐P −(xlD)(ここでアはある粒子径X以下の
含有率、Dは存在する最大の粒子径、m−17〜l//
3)に近い粒度分布を取ることが望ましい。また、脱脂
速度は、成形体の肉厚、雰囲気およびバインダーの種類
にもよるが、バインダーの分解ないしは揮散開始温度か
ら紅了する温度までの範囲において、略2レヘないし1
0 C/h程度が好適である。脱脂速度すなわち昇温速
度が急激すぎると成形体の表面・内部に発生 泡、キレツ、割れがちじ羨品とはならない、焼結温度に
ついては、1200〜1400Cが一般的であるが焼結
を速やかに進めるためには、また焼結密度を向上せしめ
るためには、1300〜1400 U &度で焼結をお
こなう。以下、本発明を実施例により詳細に説明する。
Permanent magnets based on the present alloy system can be manufactured using conventional techniques such as heat treatment in a magnetic field after sintering and aging treatment. Of course, it is necessary to select and use an alloy powder having an appropriate particle shape and particle size distribution so as to obtain the highest possible sintered density after sintering. For that purpose, the amount of anthriazene is 2P - (xlD) (where A is the content below a certain particle size X, D is the maximum particle size present, m-17~l/
It is desirable to have a particle size distribution close to 3). The degreasing speed depends on the thickness of the molded body, the atmosphere, and the type of binder, but in the range from the temperature at which the binder starts to decompose or volatilize to the temperature at which it turns red, the degreasing speed is about 2 to 1 hour.
Approximately 0 C/h is suitable. If the degreasing rate, that is, the rate of temperature rise, is too rapid, bubbles, cracks, and cracks will occur on the surface and inside of the molded product.It will not be a quality product.The sintering temperature is generally 1200 to 1400C, but sintering should be done quickly. In order to proceed to a higher temperature and to improve the sintering density, sintering is carried out at 1300 to 1400 U&degree. Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 重ft%でAt7 、Ni15.0o30 、qu 4
 、Ti 5 、Nb0.IVO,l残部78より成る
100メツシユ以下の合金粉末とHDPx、 APP 
(高分刊1及びAPP(低分子量〕とから成るバインダ
ーとを配合比粉末: )IDPEi ; APP (高
分子):APP(低分子)=98: 5 : 9 : 
3の比率で加熱混合し、スクリュータイプの射出成形機
によりφ20−10 tmの円柱状成形体を得た。次い
で140[より3c/hの昇温速度で脱脂をおこなった
。第1表に脱脂の温度に対する割合を示す。次いで真空
中で1100 U X 30m1n+1300 i;’
 X 2hで焼結をおこなった。
Example 1 At7, Ni15.0o30, qu4 in weight ft%
, Ti 5 , Nb0. Alloy powder of 100 mesh or less consisting of IVO, l remainder 78, HDPx, APP
(The blending ratio of the binder consisting of high molecular weight 1 and APP (low molecular weight) is powder: ) IDPEi; APP (polymer): APP (low molecular weight) = 98: 5: 9:
The mixture was heated and mixed at a ratio of 3 to 3, and a cylindrical molded body having a diameter of 20-10 tm was obtained using a screw type injection molding machine. Next, degreasing was carried out at a heating rate of 3 c/h from 140°C. Table 1 shows the ratio of degreasing to temperature. Then in vacuum 1100 U x 30 m1n + 1300 i;'
Sintering was performed for 2 hours.

第  1  表 この時の真空度は10−’torr程度以下であった。Table 1 The degree of vacuum at this time was about 10-'torr or less.

1100CX 30 minの保持は粉末中にごく@量
残存すると考えられるバインダーからのOと粉末中の0
2との反応を促進除失するためである。焼結後2000
0θの磁場中において、12501:で溶体化処理を施
した後急冷し、その後60017長時間時効処理をおこ
なった。得られた磁気特性は、Br=7590 G X
Hc −13300e (BH)max−3,2MGO
eでった。また、40個の試料数に対する寸法精度は土
Q、0511111以下であった。
Holding 1100CX for 30 min is due to O from the binder, which is thought to remain in a small amount in the powder, and O in the powder.
This is to promote and eliminate the reaction with 2. 2000 after sintering
In a magnetic field of 0θ, solution treatment was performed at 12501: followed by rapid cooling, followed by long-time aging treatment at 60017. The obtained magnetic properties are Br=7590G
Hc-13300e (BH)max-3,2MGO
It was e. Moreover, the dimensional accuracy for 40 samples was 0511111 or less for soil Q.

実施例2 重量%でAt18、N114.0024、Ou3、残部
7eより成る100メツシユ以下の合金粉末を実施例1
と類似の工程で処理して得た磁石材料の磁気特性は、B
r−12KG、 I(c =6000e、  (BH)
max−5,0MGOeであった。
Example 2 An alloy powder of 100 mesh or less consisting of At18, N114.0024, Ou3, and the balance 7e in weight% was prepared in Example 1.
The magnetic properties of the magnetic material obtained by processing similar to B
r-12KG, I (c = 6000e, (BH)
It was max-5.0 MGOe.

また、 4θ個の試料に対する寸法精度は、同様に±0
.5襲以下であった。
Also, the dimensional accuracy for 4θ samples is ±0.
.. It was less than 5 attacks.

以上の実施例から明らかなように、本発明材は焼結性、
寸法精度および磁気特性が共に曖れた磁石材料である。
As is clear from the above examples, the material of the present invention has sinterability,
It is a magnetic material with poor dimensional accuracy and magnetic properties.

Claims (1)

【特許請求の範囲】 1、 アルニコ糸永久磁石材料において、該磁石材料か
ら成る粉末をバインダーと混合ないしは混練したのち、
射出成形をおこない、次いで脱バインダー及び焼結を施
してなる永久磁石材料において少く共2柚類の有機材料
を用いて射出成形して成ることを特徴とする永久磁石材
料。 2 熱可塑性樹脂、熱硬化性樹脂、天然樹脂、ゴム、エ
ラストマー、滑剤、可塑剤の内から少く共2種類の有機
材料をアルニコ糸磁石材料粉末に添加混合ないしは混練
したのち射出成形することを特徴とする特i釉求の範囲
第1項記載の永久磁石材料の製造方法。
[Claims] 1. In the alnico thread permanent magnet material, after mixing or kneading the powder made of the magnet material with a binder,
1. A permanent magnet material which is formed by injection molding, followed by debinding and sintering, and is made by injection molding using at least two types of organic materials. 2. At least two types of organic materials selected from among thermoplastic resins, thermosetting resins, natural resins, rubber, elastomers, lubricants, and plasticizers are added to the alnico thread magnet material powder, mixed or kneaded, and then injection molded. A method for producing a permanent magnet material according to item 1, in which:
JP58000874A 1983-01-07 1983-01-07 Permanent magnet material and manufacture thereof Pending JPS59125603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58000874A JPS59125603A (en) 1983-01-07 1983-01-07 Permanent magnet material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58000874A JPS59125603A (en) 1983-01-07 1983-01-07 Permanent magnet material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59125603A true JPS59125603A (en) 1984-07-20

Family

ID=11485812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58000874A Pending JPS59125603A (en) 1983-01-07 1983-01-07 Permanent magnet material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59125603A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1071047C (en) * 1992-06-26 2001-09-12 住友特殊金属株式会社 Alloy powders for bond magnet and bond magnet technical field
CN103233156A (en) * 2013-03-11 2013-08-07 深圳市英族科技有限公司 Manufacturing method of columnar crystal Al-Ni-Co-Ti permanent magnetic alloy
CN112582122A (en) * 2019-09-27 2021-03-30 河北泛磁聚智电子元件制造有限公司 Preparation method of high-knee-point coercive force sintered samarium-cobalt magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1071047C (en) * 1992-06-26 2001-09-12 住友特殊金属株式会社 Alloy powders for bond magnet and bond magnet technical field
CN103233156A (en) * 2013-03-11 2013-08-07 深圳市英族科技有限公司 Manufacturing method of columnar crystal Al-Ni-Co-Ti permanent magnetic alloy
CN112582122A (en) * 2019-09-27 2021-03-30 河北泛磁聚智电子元件制造有限公司 Preparation method of high-knee-point coercive force sintered samarium-cobalt magnet

Similar Documents

Publication Publication Date Title
US4721599A (en) Method for producing metal or alloy articles
EP1455368B1 (en) Corrosion-resistant rare earth element magnet
CN105665715A (en) Iron-silicon series magnetically soft alloy prepared through powder metallurgy process and method
JP2005520351A (en) Bond magnet manufactured using atomized permanent magnet powder
JPS59125603A (en) Permanent magnet material and manufacture thereof
JPS59140335A (en) Manufacture of rare earth-cobalt sintered magnet of different shape
JPS59125602A (en) Permanent magnet material and manufacture thereof
JPS59214206A (en) Manufacture of permanent magnet material
JPS59126602A (en) Manufacture of permanent magnet
JPS60230957A (en) Manufacture of permanent magnet
JPS60113403A (en) Manufacture of rare earth resin magnet
JPS5976859A (en) Permanent magnet material
JPS59125604A (en) Permanent magnet material
JPS5976860A (en) Permanent magnet material
JPH06172810A (en) Production of tungsten alloy sintered compact
JP2002231548A (en) Magnet composition and manufacturing method thereof
JPS60254603A (en) Manufacture of permanent magnet
KR970002093B1 (en) Method of sintering object
KR970005878B1 (en) Powder coupling agent, method for preparing of molding using powder coupling agent
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH0551662A (en) Manufacture of cu-ni alloy sintered body
JPS6110050A (en) Ceramic composition for injection molding
JP2004216663A (en) Method for preparing injection molding composition
JP2020113682A (en) Manufacturing method of concentrated orientation magnet
JPS6115933A (en) Manufacture of permanent-magnet alloy