JPH0551662A - Manufacture of cu-ni alloy sintered body - Google Patents

Manufacture of cu-ni alloy sintered body

Info

Publication number
JPH0551662A
JPH0551662A JP23537691A JP23537691A JPH0551662A JP H0551662 A JPH0551662 A JP H0551662A JP 23537691 A JP23537691 A JP 23537691A JP 23537691 A JP23537691 A JP 23537691A JP H0551662 A JPH0551662 A JP H0551662A
Authority
JP
Japan
Prior art keywords
powder
sintered body
less
temperature
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23537691A
Other languages
Japanese (ja)
Inventor
Akihito Otsuka
昭仁 大塚
Shinichi Toki
真一 十亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP23537691A priority Critical patent/JPH0551662A/en
Publication of JPH0551662A publication Critical patent/JPH0551662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily and stably manufacture a Cu-Ni alloy sintered body having high density and excellent in glossiness and corrosion resistance. CONSTITUTION:This is the method for manufacturing a Cu-Ni alloy sintered body provided with processes in which a composition constituted of the powder of, by weight, 2.5 to 35% Ni and the balance substantial Cu and a binder and having <=45mum average particle size and <=8000wt.ppm oxygen content is subjected to injection molding, and this molded body is subjected to binder removing treatment and is furthermore sintered at the sintering temp. of 900 to 1080 deg.C, and at the temp. rising and temp. dropping rate of <=50 deg.C/min, and after that, this sintered body is taken out at <=200 deg.C furnace temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度で光沢性、耐食
性に優れているCu−Ni系合金焼結体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Cu-Ni based alloy sintered body which has a high density and is excellent in gloss and corrosion resistance.

【0002】[0002]

【従来の技術】Cu−Ni系合金は、大部分の種類の雰囲
気、自然水、工業用水、海水、多くの鉱酸及び有機酸に
対する耐食性は銅よりも著しく良好でまた含有ニッケル
のためにアルカリに対しても良好な耐食性を持ってい
る。従ってこの合金は、タービン翼、海水を使用する復
水管及び化学工業における反応容器のような腐食性の強
い溶液に対する耐食材料として使用されている。またニ
ッケル量の変化により種々の色彩にすることができるた
め装飾用金属としても使われている。従来、Cu−Ni系合
金は精密鋳造法で製造されているが、鋭利な部分の寸法
精度が悪く、鋳造欠陥が発生し易いことなどから、成形
品、特に複雑な形状を有する製品を得るには、切削加工
法、通常の粉末冶金法によって製造する試みがなされて
いる。
2. Description of the Prior Art Cu-Ni alloys have significantly better corrosion resistance to most types of atmospheres, natural water, industrial water, sea water, many mineral acids and organic acids than copper, and due to the nickel content, they are alkaline. It also has good corrosion resistance to. Therefore, this alloy is used as a corrosion resistant material for highly corrosive solutions such as turbine blades, condensate pipes using seawater and reaction vessels in the chemical industry. It is also used as a decorative metal because it can be made into various colors by changing the amount of nickel. Conventionally, Cu-Ni alloys are manufactured by precision casting, but the dimensional accuracy of sharp parts is poor, and casting defects are likely to occur, so it is necessary to obtain molded products, especially products with complicated shapes. Has been attempted to be manufactured by a cutting method, a usual powder metallurgy method.

【0003】[0003]

【発明が解決しようとする課題】しかし、切削加工法は
製造コストがかかり、一方の通常の粉末冶金法は、原料
粉末を金型に挿入し、プレスによる圧縮成形を行うた
め、三次元の複雑形状製品を得ることは不可能である。
また、圧縮性の要求から平均粒径が 100μm 程度の比較
的大きな原料粉末を用いているため光沢性、耐食性に必
要な高密度化が難しく、また、最終製品寸法に仕上げる
のに、焼結体の切削加工を行う必要もあった。本発明の
課題は、上記のような従来の欠点を解消して、優れた光
沢性、耐食性を有し、要すれば複雑な形状のものであっ
ても容易に製造することができるCu−Ni系合金焼結体の
製造方法を提供することにある。
However, the cutting method has a high manufacturing cost. On the other hand, the ordinary powder metallurgy method inserts the raw material powder into the mold and performs compression molding by pressing, which results in a three-dimensional complicated process. It is impossible to obtain shaped products.
In addition, since a relatively large raw material powder with an average particle size of about 100 μm is used due to the requirement of compressibility, it is difficult to achieve high density required for glossiness and corrosion resistance. It was also necessary to carry out the cutting process. The object of the present invention is to eliminate the above-mentioned conventional drawbacks, have excellent gloss, corrosion resistance, and if necessary, Cu-Ni that can be easily manufactured even in a complicated shape. It is intended to provide a method for producing a system alloy sintered body.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記の課題
を達成すべく鋭意研究の結果、特定の割合で配合した特
定粒度の粉末を射出成形し、得られた成形体を脱バイン
ダー処理し、更に、焼結処理等を特定の選択した条件下
で行うことにより、上記課題を達成し得ることを見出し
た。即ち、本発明は、Niが 2.5〜35重量%、残部が実質
的にCuからなり、平均粒径が45μm 以下、酸素含有量が
8000重量ppm 以下の粉末及びバインダーからなる組成物
を射出成形し、得られた成形体を脱バインダー処理し、
更に、昇温及び降温速度が50℃/min 以下、焼結温度が
900〜1080℃で焼結処理を行い、焼結処理後の焼結体を
炉から炉内温度 200℃以下で取り出す工程を備えたCu−
Ni系合金焼結体の製造方法を提供する。
Means for Solving the Problems As a result of earnest research to achieve the above-mentioned object, the present inventor injection-molded a powder having a specific particle size blended in a specific ratio, and debinding the obtained molded product. However, it has been found that the above-mentioned problems can be achieved by further performing a sintering treatment or the like under a specific selected condition. That is, the present invention, Ni is 2.5 to 35 wt%, the balance is substantially composed of Cu, the average particle size is 45μm or less, the oxygen content is
A composition comprising powder and a binder of 8,000 ppm by weight or less is injection-molded, and the obtained molded body is debindered,
Furthermore, the rate of temperature increase and decrease is 50 ℃ / min or less, and the sintering temperature is
Cu- is equipped with a process of performing sintering treatment at 900 to 1080 ° C and taking out the sintered body after the sintering treatment from the furnace at an internal temperature of 200 ° C or less.
Provided is a method for manufacturing a Ni-based alloy sintered body.

【0005】原料粉末 出発材料である粉末は一組成の合金粉末でも異なる組成
の粉末2種以上の混合粉末でもよい。また、該粉末及び
焼結後の焼結体のNi含有量は 2.5〜35重量%であること
が必要であり、好ましくは5〜30重量%である。Ni含有
量が 2.5重量%未満では得られる焼結体の耐食性が劣
り、Ni含有量が35重量%を越えると焼結体が白色を帯び
てきて光沢性が低下するばかりでなく、高価なニッケル
量が多くなるため製造コストが高くなる。
Raw Material Powder The starting powder may be an alloy powder having one composition or a mixed powder of two or more powders having different compositions. Further, the Ni content of the powder and the sintered body after sintering needs to be 2.5 to 35% by weight, and preferably 5 to 30% by weight. When the Ni content is less than 2.5% by weight, the corrosion resistance of the obtained sintered body is poor, and when the Ni content exceeds 35% by weight, not only the sintered body becomes white and the gloss decreases but also expensive nickel is used. Since the amount is large, the manufacturing cost is high.

【0006】Cu、Ni以外の元素としては、耐食性の向上
のためにFe及び/又はMnが 2.5重量%以下で添加されて
もよいが、その他は不可避的に混入含有される不純物で
あることが望ましい。
As elements other than Cu and Ni, Fe and / or Mn may be added in an amount of 2.5 wt% or less in order to improve corrosion resistance, but other elements are inevitably contained as impurities. desirable.

【0007】粉末の平均粒径は45μm 以下であることが
必要であり、好ましくは5〜20μm以下である。平均粒
径が45μm を越える粉末では、この粉末とバインダーか
らなる組成物の流動性が低下してくるため、射出成形作
業がほとんど不可能となり、また射出成形ができたとし
ても成形体を焼結させる工程の進行が遅れてくる。その
ため、焼結体の最終密度が上昇しにくく、光沢性、耐食
性は低下する。
The average particle size of the powder must be 45 μm or less, preferably 5 to 20 μm or less. If the average particle size exceeds 45 μm, the fluidity of the composition consisting of this powder and the binder will decrease, making injection molding almost impossible, and even if injection molding is possible, the molded body will sinter. The progress of the process of delaying is delayed. Therefore, the final density of the sintered body is unlikely to increase, and the glossiness and corrosion resistance decrease.

【0008】また酸素含有量は8000重量ppm 以下、好ま
しくは5000重量ppm 以下である。酸素含有量が8000重量
ppm を越える粉末では、表面の酸化層の影響で焼結体の
最終密度が上昇しにくく、光沢性、耐食性が低下する。
The oxygen content is 8000 ppm by weight or less, preferably 5000 ppm by weight or less. Oxygen content is 8000 weight
When the powder content exceeds ppm, the final density of the sintered body is hard to increase due to the influence of the oxide layer on the surface, and the glossiness and the corrosion resistance decrease.

【0009】バインダー バインダーとしては、通常射出成形粉末冶金法に使用さ
れるバインダー、例えばポリエチレン、ポリプロピレ
ン、天然ワックスなどを使用することができる。バイン
ダーの配合量は、配合後の組成物において60容量%以下
が好ましい。成形体からバインダーを除去する方法とし
ては、使用するバインダーの種類によって、加熱脱脂、
溶剤脱脂、その他公知の方法が使用できるが、加熱脱脂
装置は他の方法の装置と比較して簡便であるために、量
産時には窒素又は水素雰囲気中あるいは真空中で行う加
熱脱脂が好ましい。
Binder As the binder, a binder usually used in injection molding powder metallurgy, such as polyethylene, polypropylene or natural wax, can be used. The compounding amount of the binder is preferably 60% by volume or less in the composition after compounding. As a method of removing the binder from the molded body, depending on the type of binder used, heat degreasing,
Although solvent degreasing and other known methods can be used, the heat degreasing apparatus is preferably simpler than that of other methods, and therefore, heat degreasing performed in a nitrogen or hydrogen atmosphere or in vacuum during mass production is preferable.

【0010】焼結処理 脱バインダーされた成形体を焼結処理する場合には、昇
温・降温速度が50℃/min 以下、好ましくは20℃/min
以下であり、焼結温度が 900〜1080℃、好ましくは1000
〜1050℃で行なう。雰囲気は非酸化性雰囲気が好まし
く、例えば水素中、真空中が望ましい。昇温速度が50℃
/min を越えると、焼結時の異方性が生じ、焼結体の寸
法精度が悪くなる。また降温速度が50℃/min を越える
と焼結体の変形が生じやすくなる。
Sintering treatment When the debindered molded body is subjected to a sintering treatment, the temperature rising / falling rate is 50 ° C./min or less, preferably 20 ° C./min.
And the sintering temperature is 900 to 1080 ℃, preferably 1000
Perform at ~ 1050 ° C. The atmosphere is preferably a non-oxidizing atmosphere, for example, hydrogen or vacuum. Temperature rising rate is 50 ° C
If it exceeds / min, anisotropy will occur during sintering, and the dimensional accuracy of the sintered body will deteriorate. If the cooling rate exceeds 50 ° C / min, the sintered body is likely to be deformed.

【0011】焼結温度が 900℃未満の温度では長時間保
持しても焼結が進行しにくく焼結体の最終密度が上昇せ
ず、光沢性、耐食性は低下する。また、1080℃を越える
温度では高密度の焼結体は得られるが、焼結時に液相が
出現するおそれがあり、このため形が崩れたり、表面が
溶融し、所定の形状、寸法のものを製造することができ
ない。焼結処理後の炉内からの焼結体の取出し温度は 2
00℃以下、好ましくは 100℃以下で行う。取出し温度が
200℃を越えると、焼結体の表面が酸化して、表面の光
沢が失われてしまう。
If the sintering temperature is lower than 900 ° C., the sintering is difficult to proceed even if it is held for a long time, the final density of the sintered body does not increase, and the glossiness and the corrosion resistance decrease. Moreover, although a high-density sintered body can be obtained at a temperature exceeding 1080 ° C., a liquid phase may appear during sintering, which causes the shape to collapse and the surface to melt, resulting in a predetermined shape and size. Cannot be manufactured. The temperature at which the sintered body is taken out of the furnace after the sintering process is 2
It is performed at 00 ° C or lower, preferably 100 ° C or lower. Take-out temperature is
If the temperature exceeds 200 ° C, the surface of the sintered body will be oxidized and the surface gloss will be lost.

【0012】[0012]

【実施例】実施例1 原料粉として表1に示す組成、平均粒径及び酸素含有量
のCu−Ni合金粉を用いて、これに天然ワックスとアクリ
ル樹脂とを6:4の比率で含むバインダーを45容量%と
なるように加え、 150℃で混練後ペレット状に造粒し
た。このペレットを射出成形機を用いて射出圧力1200kg
/cm2 の条件で金型に射出成形した。得られた成形体を
300℃に保持してバインダーの除去を行った。その後、
真空中(×10-3〜10-2Torr)、1030℃にて1時間の焼結
処理を施した。その際、昇温及び降温の速度は10℃/mi
n に制御した。その後、 100℃で焼結体を取り出した
後、焼結体の表面をガラスビーズでブラスト処理した。
Example 1 A Cu-Ni alloy powder having the composition, average particle size and oxygen content shown in Table 1 was used as a raw material powder, and a binder containing natural wax and acrylic resin in a ratio of 6: 4. Was added so as to be 45% by volume, and the mixture was kneaded at 150 ° C., and then pelletized. Injection pressure of these pellets is 1200kg using an injection molding machine
It was injection-molded in a mold under the condition of / cm 2 . The obtained molded body
The binder was removed by holding at 300 ° C. afterwards,
Sintering treatment was performed at 1030 ° C. for 1 hour in vacuum (× 10 −3 to 10 −2 Torr). At that time, the rate of temperature increase and decrease is 10 ℃ / mi
controlled to n. Then, after taking out the sintered body at 100 ° C., the surface of the sintered body was blasted with glass beads.

【0013】このようにして得られた焼結体の焼結密
度、光沢性、及び耐食性を調べた。光沢性の評価は、目
視で光沢が有るか否かを観察して行った。耐食性の評価
は、pHが 6.5の5%NaCl水溶液中に室温(25℃)で24hr
浸漬した後、錆の発生の有無を目視で観察して評価し
た。結果を表1に示す。
The sintered body thus obtained was examined for sintered density, gloss and corrosion resistance. The glossiness was evaluated by visually observing whether or not there is gloss. Corrosion resistance is evaluated in a 5% NaCl aqueous solution with a pH of 6.5 at room temperature (25 ° C) for 24 hours.
After immersion, the presence or absence of rust was visually observed and evaluated. The results are shown in Table 1.

【0014】実施例2〜7、比較例1〜8 原料及び製造条件として表1に示したものを各実施例及
び比較例に採用した以外は実施例1と同様にして焼結体
を製造し、得られた焼結体の特性も同様に評価した。結
果を表1に示す。各比較例は次のような特徴を有し、そ
の結果から以下の知見を得ることができた。
Examples 2 to 7 and Comparative Examples 1 to 8 Sintered bodies were manufactured in the same manner as in Example 1 except that the raw materials and manufacturing conditions shown in Table 1 were adopted in each of the Examples and Comparative Examples. The properties of the obtained sintered body were evaluated in the same manner. The results are shown in Table 1. Each comparative example had the following features, and the following findings could be obtained from the results.

【0015】比較例1はCu−Ni合金粉のNi量を1重量%
であり、 2.5重量%より少ない組成であるため、焼結体
の耐食性が劣っている。
In Comparative Example 1, the Cu content of the Cu-Ni alloy powder was 1% by weight.
Since the composition is less than 2.5% by weight, the corrosion resistance of the sintered body is inferior.

【0016】比較例2はCu−Ni合金粉の平均粒径が50.5
μm であり、45μm より粗い粉末を使用したため、焼結
体の密度が低くなり、光沢がなく耐食性も劣っている。
In Comparative Example 2, the Cu-Ni alloy powder has an average particle size of 50.5.
Since the powder used is coarser than 45 μm, the density of the sintered body is low, it has no gloss and the corrosion resistance is poor.

【0017】比較例3はCu−Ni合金粉の酸素含有量が95
00重量ppm で、8000重量ppm より多い粉末を使用したた
め、焼結体の密度が低く、光沢がなく耐食性が劣ってい
る。
In Comparative Example 3, the Cu--Ni alloy powder has an oxygen content of 95.
Since the powder used is more than 8000 ppm by weight at 00 ppm by weight, the density of the sintered body is low, it has no gloss and the corrosion resistance is poor.

【0018】比較例4は昇温速度が70℃/min であり、
50℃/min より早い速度で焼結したため、焼結体に変形
が生じた。
In Comparative Example 4, the heating rate was 70 ° C./min,
Since the sintering was performed at a speed faster than 50 ° C / min, the sintered body was deformed.

【0019】比較例5は降温速度を80℃/min であり、
50℃/min より早い速度で冷却したため、焼結体の形状
に変形が生じた。
In Comparative Example 5, the temperature decreasing rate was 80 ° C./min,
Since the cooling rate was faster than 50 ° C / min, the shape of the sintered body was deformed.

【0020】比較例6は焼結温度が 850℃で、 900℃よ
り低いため焼結体の密度が低下し、光沢がなく耐食性が
劣っている。
In Comparative Example 6, the sintering temperature is 850 ° C., which is lower than 900 ° C., so that the density of the sintered body is lowered, the gloss is low and the corrosion resistance is poor.

【0021】比較例7は焼結温度が1100℃で、1080℃よ
り高い温度で焼結したため焼結体の表面に溶融が生じ
た。
In Comparative Example 7, the sintering temperature was 1100 ° C. and the sintering was carried out at a temperature higher than 1080 ° C. Therefore, melting occurred on the surface of the sintered body.

【0022】比較例8は焼結体の炉内からの取り出し温
度が 250℃であり、 200℃より高い温度で取り出したた
め、焼結体の色が酸化により変色し、光沢性が劣ってい
る。
In Comparative Example 8, the temperature at which the sintered body was taken out of the furnace was 250 ° C., and since the temperature was taken out at a temperature higher than 200 ° C., the color of the sintered body was discolored by oxidation and the glossiness was poor.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明の製造方法によれば、従来の粉末
冶金法で製造されたものと比較して高密度化で、優れた
光沢性、耐食性を有しているCu−Ni系合金焼結体を容易
にかつ安定して製造することができる。射出成形法を用
いているので、複雑な形状を有する製品でも容易に製造
することができる。
According to the manufacturing method of the present invention, a Cu-Ni alloy alloy having a high density and excellent gloss and corrosion resistance as compared with those manufactured by the conventional powder metallurgy method is used. It is possible to easily and stably produce a bound body. Since the injection molding method is used, a product having a complicated shape can be easily manufactured.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 Niが 2.5〜35重量%、残部が実質的にCu
からなり、平均粒径が45μm 以下、酸素含有量が8000重
量ppm 以下の粉末及びバインダーからなる組成物を射出
成形し、得られた成形体を脱バインダー処理し、更に、
昇温速度及び降温速度が50℃/min 以下、焼結温度が 9
00〜1080℃で焼結処理を行い、焼結処理後の焼結体を炉
から炉内温度 200℃以下で取り出す工程を備えたCu−Ni
系合金焼結体の製造方法。
1. Ni-2.5 to 35% by weight, the balance being substantially Cu
Consisting of a powder having an average particle diameter of 45 μm or less and an oxygen content of 8,000 ppm by weight or less and injection-molding a composition consisting of a binder, and subjecting the obtained molded body to a binder removal treatment,
Temperature rising / falling rate is 50 ℃ / min or less, sintering temperature is 9
Cu-Ni with the process of performing the sintering process at 0 to 1080 ° C and taking out the sintered body after the sintering process from the furnace at an internal temperature of 200 ° C or less
Method for producing a base alloy sintered body.
【請求項2】 請求項1の方法であって、前記粉末が同
一組成の合金粉末または相異する組成の粉末2以上の混
合粉末である方法。
2. The method according to claim 1, wherein the powder is an alloy powder having the same composition or a mixed powder of two or more powders having different compositions.
【請求項3】 請求項1の方法であって、前記粉末のNi
含有量が5〜30重量%である方法。
3. The method of claim 1, wherein the powdered Ni
A method in which the content is 5 to 30% by weight.
【請求項4】 請求項1〜3のいずれか1項の方法であ
って、前記粉末の平均粒径が5〜20μm である方法。
4. The method according to claim 1, wherein the powder has an average particle size of 5 to 20 μm.
【請求項5】 請求項1〜4のいずれか1項の方法であ
って、前記粉末の酸素含有量が5000重量ppm 以下である
方法。
5. The method according to claim 1, wherein the powder has an oxygen content of 5000 ppm by weight or less.
【請求項6】 請求項1〜5のいずれか1項の方法であ
って、前記組成物のバインダーの含有量が60容量%以下
である方法。
6. The method according to any one of claims 1 to 5, wherein the binder content of the composition is 60% by volume or less.
【請求項7】 請求項1〜6のいずれか1項の方法であ
って、前記の昇温速度及び降温速度が20℃/min 以下で
ある方法。
7. The method according to claim 1, wherein the rate of temperature increase and the rate of temperature decrease are 20 ° C./min or less.
【請求項8】 請求項1〜7のいずれか1項の方法であ
って、前記の焼結温度が1000〜1050℃である方法。
8. The method according to claim 1, wherein the sintering temperature is 1000 to 1050 ° C.
【請求項9】 請求項1〜8のいずれか1項の方法であ
って、前記の炉内温度が 100℃以下である方法。
9. The method according to claim 1, wherein the furnace temperature is 100 ° C. or lower.
【請求項10】 請求項1〜9のいずれか1項の方法で
あって、前記の粉末がNi及びCuの他に 2.5重量%以下の
Fe及び/又はMn並びに不可避的に混入する不純物を含有
するものである方法。
10. The method according to claim 1, wherein the powder contains 2.5% by weight or less of Ni and Cu.
A method containing Fe and / or Mn and impurities inevitably mixed.
【請求項11】 請求項1〜10のいずれか1項の方法で
あって、焼結処理が非酸化性雰囲気で行われる方法。
11. The method according to claim 1, wherein the sintering treatment is performed in a non-oxidizing atmosphere.
【請求項12】 請求項11の方法であって、雰囲気が真
空又は水素中である方法。
12. The method of claim 11, wherein the atmosphere is vacuum or hydrogen.
JP23537691A 1991-08-22 1991-08-22 Manufacture of cu-ni alloy sintered body Pending JPH0551662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23537691A JPH0551662A (en) 1991-08-22 1991-08-22 Manufacture of cu-ni alloy sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23537691A JPH0551662A (en) 1991-08-22 1991-08-22 Manufacture of cu-ni alloy sintered body

Publications (1)

Publication Number Publication Date
JPH0551662A true JPH0551662A (en) 1993-03-02

Family

ID=16985170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23537691A Pending JPH0551662A (en) 1991-08-22 1991-08-22 Manufacture of cu-ni alloy sintered body

Country Status (1)

Country Link
JP (1) JPH0551662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788332A (en) * 2018-03-01 2020-10-16 三菱综合材料株式会社 Cu-Ni alloy sputtering target
KR20200144088A (en) 2018-04-17 2020-12-28 미쓰비시 마테리알 가부시키가이샤 Cu-Ni alloy sputtering target

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788332A (en) * 2018-03-01 2020-10-16 三菱综合材料株式会社 Cu-Ni alloy sputtering target
CN111788332B (en) * 2018-03-01 2021-08-06 三菱综合材料株式会社 Cu-Ni alloy sputtering target
KR20200144088A (en) 2018-04-17 2020-12-28 미쓰비시 마테리알 가부시키가이샤 Cu-Ni alloy sputtering target

Similar Documents

Publication Publication Date Title
EP0379583B1 (en) SINTERED MAGNETIC Fe-Co MATERIAL AND PROCESS FOR ITS PRODUCTION
JPH01129902A (en) Method for processing parts from granular material and feed raw material
JP2018538433A (en) Powder forming method of aluminum and aluminum alloy
EP0378702B1 (en) Sintered alloy steel with excellent corrosion resistance and process for its production
WO2008002001A1 (en) Fabrication method of alloy parts by metal injection molding and the alloy parts
KR20170093951A (en) Magnetic-material sputtering target and method for producing same
JP2003166003A (en) Stainless steel powder for sintering, granulated powder for manufacturing sintered stainless steel, and sintered stainless steel
JP2004524974A (en) High-temperature isostatic compression molding of castings
CN115401216B (en) Method for preparing high-nitrogen stainless steel by alloy powder passing through selective laser melting
JPH0551662A (en) Manufacture of cu-ni alloy sintered body
EP0409646B1 (en) Compound for an injection molding
JP2004525264A (en) Manufacture of structural members by metal injection molding
JPH07166273A (en) Powder metallurgical product of injection molded copper
US20050163646A1 (en) Method of forming articles from alloys of tin and/or titanium
JPH02107703A (en) Composition for injection molding
JP2005350710A (en) Heat-resistant alloy for metallic powder to be injection-molded
JPH10102159A (en) Production of cu-ni-fe alloy sintered body
JPH11158567A (en) Manufacture of sintered body of copper-nickel-iron -chromium alloy
JPH10317009A (en) Production of stainless sintered body
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JPH0225501A (en) Stainless steel powder for injection forming and production of compound for injection forming and stainless steel sintered body
JP2786303B2 (en) Method for producing sintered alloy with excellent corrosion resistance and machinability
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH11181541A (en) Production of stainless steel sintered body
JPH0257613A (en) Production of sintered metallic material and its raw powder