JPS5921400A - L−アミノ酸の測定法 - Google Patents

L−アミノ酸の測定法

Info

Publication number
JPS5921400A
JPS5921400A JP57130622A JP13062282A JPS5921400A JP S5921400 A JPS5921400 A JP S5921400A JP 57130622 A JP57130622 A JP 57130622A JP 13062282 A JP13062282 A JP 13062282A JP S5921400 A JPS5921400 A JP S5921400A
Authority
JP
Japan
Prior art keywords
amino acid
measurement
probe
concentration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57130622A
Other languages
English (en)
Inventor
Tadashi Shirakawa
白川 忠
Motohiko Hikima
引馬 基彦
Haruo Obana
春夫 小花
Yuji Goto
祐二 後藤
Yasutsugu Morita
康嗣 森田
Tsuguo Suzuki
鈴木 紹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP57130622A priority Critical patent/JPS5921400A/ja
Publication of JPS5921400A publication Critical patent/JPS5921400A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 本発明は四重極型實り’i分析計を用いるし一アミノ酸
の定量法に関し、詳しくは、定を−一ぜんとするL−ア
ミノ酸脱炭酸酵素活性を有する微生物菌体叉は該菌体?
こ由来する酵素を、四重極實1i分析計りこ連なり先端
がガス透過性膜で険われたガス導入用プローブの隔膜−
1−、tこ取イjけた測定プローブを用いるL″−アミ
ノ1俊の定I、1法1こ関する3、L−アミノ酸の定置
法としては、従来がらがぽチャ、エンエリヒア拳フリ、
またはクロストリレラム・ウェル/ユ由来のし一グルタ
ミ/酸脱炭酸酵素(L’ −glutamate de
carboxylase )あるいは、エシェリヒア−
コリまたはバクテリ1ンム・キャダベリス由来のL−リ
ジン脱炭酸酵素(I、−1,ysinedecarbo
xylase )を用いて、次の弐(1)の反応:によ
って発生する炭酸ガスの畦を、マノメトリーで測定する
・ノールフルグ検圧法、あるいは発生する炭酸ガスな比
色定逼するオートアナライザ法が知られている。
これらは、正確ですぐれた方法であるが、酵素の連続的
使用が困難なため、高価な酵素を測定のたびtこ新たt
こ使用しなければならず、経済的でないl−1測定の手
間と時間を多く安する1、又オートアナライザー法の場
合には装置が複雑で高価な酵索なたれElk Lで便用
する為、必然的tこ測定コストが、かかり過ぎる。また
酵素を固定1にしで連続的に使用する力θ、もηえられ
るが、末だ実用化されるlこは15つでいないL/)が
現状である。1またいrれの力li、も、脱炭酸酵素反
L1−口ご−よって尾ノ1する炭酸/J’スJ)測定器
の応答1/1・や測定可能濃度範囲tこ制約があり、そ
れに(r+−って1−−アミノ酸の測定速度や測>ii
 I’i mpj則範囲も限られたものであ−〕だ、J 本発明とは1−記した実情に艦み11i1便、正σ6か
つ迅速で測定”’J’ fil―濃度範囲の広い17−
14 、を酸の定)−〇、T、:′つい−c 1lIl
究したー結果、例えばエノj−リヒャ(・4.7トロバ
クター4する、りL)、:X +・リジウム属、バチル
ス属、スルソト」ノカス属、ンクードモナスA’1m、
バーf゛ル、ノ、ki; 、ミグノコ2ノカス属、ラク
トバチルス属”、q、 1こ属(−るΔ111菌類、ア
スペルギルス属寺に属すイ)f−′ノD 1’+’4類
ある(・はL’ l’ l□ルラ属等の属する耐1iJ
唄?、−属し、かつ定+11せA2とするI、−アミノ
1俊の脱炭酸酵素をijする粘)l(1%11+を・四
jlV陽員111分t’i =目、一連なり光1’:l
aが、ガス、dj過1’L II!j!で覆わitたガ
ス導入用プローブの隔膜Ltc取り一′)目だ測定ゾ1
1−−7’を磁気的条件I・−で該当する1−記のし一
アミノ酸を・含有する被験液に浸i?t 、 または接
触すて)と、工1、′より生ずる炭酸ガスと対し1′、
、する四重極I%lJ″ei ij+−分析旧の出力電
流を測定することtごまって、迅速−(1F確、低コス
トで測定がii’f能で、1−かも測定可能cj0−範
囲な飛躍的tこ向−1し得ることな発itj i、本発
明を完成する1・ご1′つだ3、 本発明の特徴は水肥(1)式の反応を微生物菌体内の竹
Tの酵素系を利用して行い、生成されて)炭酸ガスを四
重枠型τム(↓(分析計′C測定すζ)ことtごあイ・
1、四市極へ9質!II分析計は、近年簡便かつ安価な
TllX1分析J1として実験用のはかりこ現場用のガ
ス導/すと1.でもi[1され、製鉄−■、業(炉のガ
ス壬ニーター)、医療(呼吸モニター)など種々の分野
で利用されている。四重吻型宣hiり)4’1ijlけ
、分子11(300程度(理論的rこは600’)fで
のh゛スの同時迅速測定tこ用いられる。
本発明では四重極型質品分析i1の持つカスの迅速測定
性と、測定可能濃度範囲が険めて広いこと1こイfIJ
 l−+、−アミノ酸の迅速、高感度測定を実現した。
本発明tこよイ〕効果としては (1)  選択1’lが良く、1・、も精度で、か′〕
安価tこ測定が−〔!きる。
(21従来υ、の測定所安時間jIVt分〜数を一分で
あるのtこス・jして本)′?4明1こよるそれは数F
抄以干と極め−〔迅速な測定ができるので、Q大な試料
数なii1時間の間1ζ−1,lL理することが用1j
ヒ1こなり、微生物ノスクl) −:= 7グ作朶など
の大幅な効率化が進められイ〕、。
(、()  測定11丁能(7ス度範囲が非″/:’l
 lこ広いので、被測定液の箱状()5率な震えること
なく、測定出来るので装置内に鴎めCf)i) I史に
なり、実用性が飛躍的rコ向L L、 /、: 、、I
llち、bY−*法のダイブミックレンジはl:1Oi
u十であるの1こえj 1.、−C本発明のダイブミッ
クし7′7′はl:lO,oflo  以l−である。
本発明で便用−する微生、物iよ、(伺えば■、−グル
タミンVを′定1.(する「こ−は、■、−グルタミン
酸脱IRN&rh素<、 gluta+oatc +I
ccarhoxylase ’>活性の強い菌株として
、例えば、J−ンJ−リヒf−コリATC(lo7s7
   、  り ト] ス ト  リ  ジ ウ ノ、
 ・  鳴ン  寡−ル 。
IFOO413等が用いら11、I2−リジ/な′メ↓
H11i、するtこは[、−リジノ脱炭酸酔素(’ l
 −+−yらinc+1ecarboxylase )
活)生の強い菌株としで、例々ば工・/エリヒf、コリ
(Eschcrich+acoli)ATCC2322
6、・くクテリウム・キャダベリス(B+ic+eri
um cadaveris ) A TCC976I1
、ストレブl−−+7カスーノアエカリス(巨【4(l
) t (l仁0(1口]5faecalis  ’)
ATCC12984、ツユ−ド2t ノ ス・す7カp
フイア(Pseudo+nor+as 5IIccha
rophia )ATCC15946,バチルス−ズブ
’J−IJ 7゜(Bacillus Suh目1is
 ) ATCCI 50 :づ7、ミクノコノ力ス曽ヴ
イレスセンス(−Myx、o智tccuqviresc
ens   ) ATCC25203、り ロ ス ト
  リ  J二 −シ+3124  、ラクトバチルス
・カゼイATCC6278等が用いられ、また、L−フ
ェニルy ラ= 7 ヲ定hi: するtこはI、−フ
ェニルアラニン脱炭酸酵素(L −Phenylala
旧ne decarboxylase)活性の強い菌株
として、例えばストンブトコツカス・フ7エカリス(5
treptococcus faecalis )へ1
’CG3043等が用いられる。
また、L−フルギニンを定積するために1jL−フルギ
ニ/脱炭酸酵素(L−Aygininedecarbo
xylase )活性の強い菌株として、例えばエノエ
リヒ7−コリ(Escherichia coli )
八TCCI 07 B 7等がそれぞれ月1いられ、さ
らtこ、ここrこ記載していないアミノ酸tこつぃても
該当する脱炭酸lS素の存rEする微生物を用いてそれ
ぞれ定i1することが川fibである。
本発明で使用する菌体の調製はそれぞれの菌株tこL1
゛5、じた通常の栄lI4培地で培養し、0.1 MK
CIテ2〜3回洸滌した後、低trl!tこて乾燥粉末
とする。
感興tこ応じてアセト/、トルエンなどの41機浴媒テ 又は/およびアセナルピリジュウムブロマイドなどの界
面活性剤で処理した菌体な用いても良い。
(特公開漸54−6357)この粉末状の菌C本はこれ
を冷凍庫内で保存すれば長期間(2年以ト)活性が維持
される。
本発明のflIQ定用プローブは第1図tこ示すようt
こステ/レスチューブの先端に細孔を有する膜の支持体
(5)(焼結金属、パンチフグ・メタルなど)を取付け
、テフロン、ノリコーンなどのガス透過性を有する隔膜
0)でおおったもので1−記微生拘の菌体粉末を水rこ
溶解してペースト状?こしたものイ2)を、ミリボア・
フィルター濾紙片、ナイロ/俸メシンユ等の担体(3)
rこ塗布し、これを例えkf、セaファ/膜等のような
微生物を透過しない微細孔を自する膜(4)で覆って第
1図の如く隔膜nil、jこ収りイ・1けることtこよ
って容易tこ作成することができる。また上記のように
粉末化した菌体な例えばコラーゲンまたはアクリルアミ
ド・ゲル等で固定化した固定化微生物を用いても同様t
こ作成することができる。
ここに微生物の菌体層(2ンを掩うための微細孔な11
する薄膜(41としては、本発明で用いる微生物の菌体
を通過せず、炭酸ガス等を自由tこ通過させる薄膜(4
1であれば(=Iでも良く、例えば41Jボアフイルタ
ー等の多孔1/1膜、セロファン、動物性半透膜等の透
析膜等の1−記の条件を満足するものであれはすべて使
用することができる。尚固定化微生物膜を用いた場合は
71−記の#膜(4)は小使である。
第1図tこ於て、(1)は′61す定プローブの隔膜(
シリコーン膜)、(2)ヲよ微生物又は酵素層、(3)
は担体、(41は透析膜(セロファン膜) 、(61は
細孔?:44する支持体、(6)は測定プ「コープ本体
(ステンレスチューブ)、(7)は四重極型實殖分析計
へガスを移送する導管(例えば、ステンレスチューブ)
を示ス。
第2図に71<す定1.i/ステ゛ムのセクトは本(6
[の実施態様の1つである、第2図の(7)は測定プロ
ーブ、(9)はフローセル、+81 、 f8’+はゴ
ムバノキ/グ、(IllはN2ガス吹込11.0υはパ
ンファー液注入口、03はサンプル注入11.03は四
重極型質址分析計、04はレコーダ、08は導管(ステ
ンレスチューブ)を夫々示す。この第2図のシステムI
こ従って本発明の測定法を1:J、 −F rこ説明す
る1、まず最初rこバッファー注入FTI Qllから
一定の流昂で、吹込1目ulからN2ガスを吹込みなが
ら70−セル+91内?こ流l1、四屯極型實ムト分析
、flの電流lft力をし:] −ター Q◆に記録す
る。す/プルを03かう注入時間5〜30秒間でlO〜
30秒間隔を置いて順次注入する。このサンプル液はバ
ッファー液で適当tこ希釈す矛しフ11−セル+91 
内tこ達1−る。フIJ−セル(9)内ではす/プル中
の該当し一アミノ酸が微生物の酵素tこより(1)式の
反応tこより分解されco2ガスが発生する。このCO
,ガスは隔膜0)を通って四ダー04に記録される。
該゛IE流出力餡と基質l、−アミノ酸の濃度Cの間t
こけ良好な直線性が認められるのでこの関係を用いて被
験液の基質濃度を求めることができる。
測定時の条件については、測定のpHけ3.5〜6.5
、/l、A度は20〜40rの範囲が良く、サンブルと
6(す定プローブとの接触時間は5〜30秒間で充分で
あり、通常20秒でほぼ飽和値tこ達する。
入(T1の1llllllll聞良lO〜10  Mで
あり、非常tこ広い範囲の測定が可能で、該電流出力と
濃+a Cの直線性は非常tこ良11jである。
使用するバノソアー液としては、クエン酸、フマル酸、
コハク酸等の41機酸バッファー、又はビリンノー塩酸
バノ7アーが用いられる。特tこNaC1とKH,PO
,(それぞれo、sv/1te)及びピリドキIノール
−5゛−りん酸(o、1r/z)を含有したビリジ7−
塩酸バッファーは望ましいものである。
−52図では鎌気的条f4+こするためN、ガスを用い
一〇いるが、別にNJガXiこ限定されず、委は溶(f
酸素が共存しなければ良いのであって、他の不活性ガス
で11°【換しても良く、又溶存酸素を含まないキーS
−’Jアーを用いても良い。以−■−の条件で使用した
場合、連続使用で1力月以上活V1が持続される。
例えばL−アミノ酸としてl、−グルタミン酸を定置す
る場合、使用菌株としてエシェリヒア・コリATCC8
739のl束結乾燥菌体を用いてp H4,40で3O
rの温度で測定して見たところ、次の第1表tこ示すよ
うtこ、L−グルタミン酸を100%とした場合、5条
以りの起電勾な示すものは見当らない。
第1表 微生物電極の選択性 第1表tこ示されていない、定jlぜんとする■、−グ
ルタミン酸以外の他の■、−アミノ酸、すなわちL−メ
チAニノ、L−ヒスチジ/、■、−リジン、L−プロリ
ン、L−セリフ、L−インロイノン、L−)Jニルアラ
ニン、L−ロイ7ン、L−アスパラギン、I、−バリ/
、!、−スレオニン、L−オル= チア 、l、−7ト
ルリン及びりんご酸、ピルビン酸、グルコース、尿素等
は全く影響が見られなかf)た。
又、同じエシェリヒア・コリを用いるソールブルグ検t
+−法では1.−グルタミン酸100%tこ対してL−
チg/745%、L−フルギニン80%、■、−トリプ
トファ725 % 、りんご酸40チと、かなり彫りを
受ける。又かぼちや由来の酸素を用いた場合、尿素の影
響が著しいため窒素諒として尿素を用いるL−グルタミ
/Q文発階その他のし一アミノ酸発階ゾ11スのlll
lI足が不J 6t:であり、これtこメ4して本発明
の四屯極型′員hi分析計を用いる本法は1lI(択1
〆l+こおいても本・)6明のノJ法が非常に優れてい
ると見ることができる。
1−2述の如く、本発明の方法は従来法に比較して(1
)顆択1/1が良く、(21非常に迅速な測定ができ、
(8)広い良度レンジの試験液を希釈の手間なしに測定
Ijf能である等の点で優れた方法であり、従来法より
簡便でかつ正確rこ、目的とするし一アミノ酸を定駿す
る方法を提供するものである。
tO 実施鋼中組成を・iりすチは特記なき1IJ4す2/d
/をへ 示す。
実施例1 エシェリヒア−コリ(Escherichia col
i )ATCC8739を第2表の培地を用いて30 
t:でフラスコ振盪培養した。20時間J’;4養後、
培養液5(lsw/を遠心分離して、湿菌体を得た。こ
れを0.1 M、 KCI溶液溶液50モe回a滌し、
凍結乾燥して、0.62の菌体な得た。
第2表 培地組成(p +i 7.o ):L記の1〜
2りの凍結乾燥菌体を少腋の水に溶かしペースト状とし
、4’r I O*a+のナイロン・メツンユtこ塗す
つけ、これをセロファンlli (41を用いて、第1
図のように四+1極型貞1t!分析旧に連らなり、先端
がガス透過性膜(/リコーン膜)でおおわれたガス?!
)入用プローブ41)(E6036型、 ラジオメータ
ー?L 、デフマーク)のシリコーンIIQ fi+−
)−に取りつけた。
この測定プ1スープを用いて、第2図1こ示すフローセ
ル(9)(容1i10.5 ml )にゴム・パツキ/
グ(8゜8°)を介して挿入I1、第2図のような測定
システムを組)γてた0、1 バッファー液としては、pH4,40,0,1Mピリジ
ン−塩酸バッファー(0,5y /diのNaC1及び
Ktl、PO4を8む)を、第2図の00から5 me
 / minの流litで流入させ、IllからN、ガ
スを0.2 L / minの流品で吹込んでフローセ
ル+91内を通し、測定プローブ(7)は、そこでの発
生Cog 、jitを測定するためステンレスチューブ
09を介して四重極型質娼分析j103、さら1こは記
録Mt 04 tこ接続した。測定中、70−セル(9
)内の温度は30rtこ保′〕た。ナノプルは、600
0ppmのし一グルタミ/酸水溶液及びその吊釈液をI
II次1ml/minの速度で、注入時間3分で03か
ら注入した。このリーフプルは、バッファーにより希釈
され、フト−セルtill lこ流入すると同時tこ、
四11L極型質h4゜分析5103は指示をしはじめ、
30秒後には指示が飽和レベルに達し、第3図のような
ピークが記録された。第3図中、畿軸は、四重極型’L
’1鼠分析計の出力電流(mA)、横軸は時間を示す。
第3図中の6ピークの高さと712−セル中のグルタミ
ン酸濃度の間には第4図の関係が見られ、t+’:l!
 I(t’ ! −10ppmの間で非常に良好な直線
性を「Vた3、 一方、ルビバクテリウム・ラクトフェルノアタムATC
C13869を第3表の培地を用いて30Cで通気纜?
ト培養を行なった。
第3表 培地組成(pH7,0) 得られた培& 11kを20倍希釈しサンプル八とし、
これに試薬のI、−グルタミン酸を既知量だけ添加し、
す/プルB、C,I)を調製した。
これらのす/プルを第2図のシステムtこ従い、ピーク
値を読み取り標準濃度液で作った校正直線からし一グル
タミン酸のへ度を求めtこ。その結果は、第4表1こ示
す如くであり、各サンプルについて従来のオートアブラ
イザー法(カポチャ醇素を使用)で測定lまたil(+
と良く一致していた。
第4表 1.−グルタミン酸プロスの分析結果l実施例
2 クロストリジウム・ウェル7ユ((lost口diun
twelchii ) ATCCI 3124を3%カ
ゼイ/のトリプシン分解物、2チグルコースに肉片を加
えた培養液で、水素ガスを通して30C,20時間フラ
スコ振盪培養した。培養#&50 ytlを実施例1と
同様の操作で、0.3tの菌体を得た後、61!I定プ
ローブを構成し、実施例1と同様tこして得た■5−グ
ルタミン酸発酵液の経時的なサンプルA18%C1Dt
こりいてグルタミン酸の濃度を求めた。その結里lj1
第5人に示す如くで、各→ノンプルtこついて、tμT
Vのカポチャ酵素夕用いた4−トアブライザー法で41
11定しj、H(1tyと良く一致1−ていた。
冑′区5表 L−グルタミノ酸プpスの分析結果2実施
例3 /IIJバクタド・70イ/ナイ(C1trobact
erfreundii ) ArC(10787を、実
施例1と同条件で第2人tこ小すI?; Il!組成を
用いて培養し、t、:。
J7X3’j液50a+/!を遠心・分離して6]lI
菌体を′得、(1,1M、KC1ffI液で2回6.滌
俊、5 mlの水に懸濁、トルエ/を室R+Aで5 V
/渦ト、10〜20分攪拌し、冷却遠沈した。これを真
空デシケータ−中で乾燥して0.5 tのトルエフ処理
菌体を得、測定プローブな構成した。実施例2と同じサ
ンプルのI、−グルタミン酸発酵液についてI7−グル
タ5)酸濃度を求め、第6 kなイ47 tこ。
第6 J  1.−グルタミノ酸ブロスの勺IJi結宋
;う実施例4 0ドトルラ・グルチニス(Rhodo+orula g
lutinis)IFOO413を第7表1こ示す培地
を用いて30C148時間フラスコ振盪培養lまた。
第7表 培地組成(pH6,3) 」;い・↓液50+nl+を遠心分離しC化た湿菌体を
()、1M、KCI  1B>t<−c2回洗滌後、凍
結乾燥シテ06yの菌体を得た。これな用いて測定プロ
ーブ゛を構成し、実施例2と同じサンプルσ)L−グ、
!レタミ/+t々発階1+に+こりいてグ/トタミンr
杖濃IWを求めたところ、従来のカボザヤ酔素シ用いt
こ)r−)アークライザー法で測定したflI′Iと良
く一致し、て(・た。
実施例5 ラクトバチルス・カゼイ(1,aclobacillu
scase+ ’) ATCC7469(試験AI)を
脱指粉1L10%、1.−リジン塩0.5≠、ピリドキ
サ−/し1001tV/′tからなる培養液で、ストレ
プトコンカス・ノ二カリス(5treptococcu
s faccalis )ATCC+2984 (A2
 ”)、ンー+ −ド七J−ス・@)’ノカロフイ7 
(Pseudomonas 5acc旧1roph i
 a )A′rCC15946(43)、バ’) ルス
−ズ−)”Jリス(Bacillus 5ubtili
5) ATCC+5037 (A4)、ミクソコツカス
・ヴイレスセンス(Myxococcus vires
cens )  A TCC25203(廂5)を肉エ
キス1%、ポリくプl−71%、NaCl  O,5%
、し−リジン塩酸塩0.5%、ビリ1゛キサ−+p l
 00 py/lからなる”iX 418に−Ck、さ
ら1こアスペルギルス−ニゲル(Aspergillu
s niger )ATCC627B(扁6)?グルー
ノース2%、K)I、 Po、  0.1%、炭酸イ4
灰添加こうじ11の111地でそれぞれ振盪培養し、2
4時間後、各培j蓬液50 nlを遠心分離1−テ+i
u!菌体f 11+1 そ#1ぞ扛0.1M%KCI 
 溶液で2回洗滌後それぞれ0.5へ−C)、6Vの凍
結乾燥菌体を得た。この菌体な用いて実施例1の方法で
測定プローブを構成11、実%、i例2と同様のす/プ
ルの■、−リジン発酵液A% 8% C1こついてL−
、、−IJレジン度を定置1−たところ、第8表のごと
〈従来法の酸性ニノヒドリ7法の値とよく一致した。
第8 表1、−リン/・プロスの分Ur結果実施例6 ストレゾ1コツカス・ソアエ力リス (5rreptococcus faecalis )
ΔTCC+2984をlrピイノのトリ1フフ分解物3
≠、グルコース1襲、酊1り自己分解物0.1%の培食
液で37C115時間」11養1−1l中結乾燥して0
.52の菌体を得、これを用いて測′jvブ11−ブな
溝成し、実施例2と同様の試料の1、−グルタミン酸発
酵液tこv4なる欧のL−フェニルアラニ/を添D11
 L 、それソ)L 試料A、B、Cとし液体りpマド
グラフィー法の測定値と比較し、次の第9表を得た。た
だしバッファー液は実施例1と同様としpHを5.0I
こ設定したものを用いた。その結果両者はよく一致して
いた。
第9表 ブロス酸中のし一フェニルアラニ/の分析結束
実施例7 エンエリヒア・コリ(Escherichia col
i )ATCC10787を実施例6と同様tこ培養し
、実施例1の方法で0.32の菌体を得、これを用いて
微生物電極を構成し、実施例2と同様のL−グルタミン
酸発酵液tこ異なる量のし一フルギニノを添加17て、
それぞれ試料A113、Cと17、本発明の方法で′7
jl Inlし、−・力液体クロマlグラフィーで疋1
、Xシて七の結果なス・j比して第10表に71りずが
、表tこ小すようtこ両名は」、く一致した。尚、使用
した・二ノソアー液は実施例6と同様であ−9だ。
第10ノ〈 ゾルA液中の1.−アルギニンの分析結果
【図面の簡単な説明】
第1図は本発明の方法に用いる四屯極型簀h1分析6し
こ連らなり、先端がカス透過性膜でおおわl+たガス導
入用プローブの隔膜」二に菌体又は酵素を11′y、す
(=Iけた測定プ1」−ブの構造説明図、図中(1)7
リコー7膜、(2)微生物又は酵素層、(3)担体、(
4)透析)模、(5)細孔なイjする膜の支持体、16
1111す’+I’ゾ1J −プ本体(ステンレス)、
(7)四屯極型4(:5 p、l、分4)iiilにガ
スを移送するzX4管を7」<す。。 第2図は本発明の方法1こ使用する定lit、 、7ス
テj、セットの −態様を示す。図中、m 1llll
定用ソ1」−ゾ、+81 、 (偵ゴムパソギ7グ、(
9)フlコーセル、(111N、!ガノ、吹込1−1、
at+バッファー液汁人1]、(13す7プル?1人目
、(1、憬四屯極型゛員h11分析1:1.0・9レ−
3−グー。 第3図は実施例1の17−グルタミンjシ゛水m液及び
その属釈液の法人時間108、洗滌時間20 J:!;
とした11.5の四jlj極型′C↓IJ: ’t)析
。10′屯lAL出力を小(−フッソ、縦1lIIII
はI(Ii流出力(A)、横軸は時間を小才、。 第4図は第3図中のピークの高さくA)と、ノーーーセ
ル中のL−グルタミン酸液濃度との閃1糸を示すグラフ
。 特許出願人 味の素株式会社 1粉補i+’、 i!: (7’Jj’l: )L I
l’lの入車 11i((It h 714:+ 11片Cl0i 1
  、’3 (1(122!3?、イ亡II月qB’1
f+・ ) −ノ′ ミ 7v型の測定?人 3、 111i+l  kCl る石 ・li flどの関(糸  1’+ n’l 1llf
イ1人11所   中3ij ?it!中央ト巾オ庇 
Jll!1ll用!+1+1i11 を二J、 l l
 l!’++1ト1 り)什11月の数    イ、:
(2[定M7人、l ’E: fillす定ン人1にK
11−IJ: !J’。 599−

Claims (1)

    【特許請求の範囲】
  1. 四屯極型τム4;分析謹しこ連なり、先端がガス透過性
    膜で覆われたガス導入用プローブの隔膜」−しこ、定&
    、1せんとするし一アミノ酸の脱炭酸酵素活性を有する
    微生物菌体又は該菌体に由来する酵素な取りつけた測定
    プローブを鎌気的条件下で当該■、−アミノ酸を含有す
    る被験液と接触せしめ、基′貞a度と該6111定プロ
    ーブ近傍で生じる炭酸ガスと幻応する四重極型’I’1
     fit: Mlの出力゛iヒ流との間の比例関係を利
    用して、!IS、質濃度を求めることからなるし一アミ
    ノ酸の定駄法。
JP57130622A 1982-07-27 1982-07-27 L−アミノ酸の測定法 Pending JPS5921400A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57130622A JPS5921400A (ja) 1982-07-27 1982-07-27 L−アミノ酸の測定法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57130622A JPS5921400A (ja) 1982-07-27 1982-07-27 L−アミノ酸の測定法

Publications (1)

Publication Number Publication Date
JPS5921400A true JPS5921400A (ja) 1984-02-03

Family

ID=15038629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57130622A Pending JPS5921400A (ja) 1982-07-27 1982-07-27 L−アミノ酸の測定法

Country Status (1)

Country Link
JP (1) JPS5921400A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052765A (ja) * 1983-08-31 1985-03-26 Ajinomoto Co Inc L−アミノ酸の定量法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598348A (en) * 1979-01-22 1980-07-26 Ajinomoto Co Inc Determining method of l-amino acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598348A (en) * 1979-01-22 1980-07-26 Ajinomoto Co Inc Determining method of l-amino acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052765A (ja) * 1983-08-31 1985-03-26 Ajinomoto Co Inc L−アミノ酸の定量法

Similar Documents

Publication Publication Date Title
Hikuma et al. A potentiometric microbial sensor based on immobilized Escherichia coli for glutamic acid
Brooks et al. A simple artificial urine for the growth of urinary pathogens
Lippi et al. A new colorimetric ultramicromethod for serum glutamicoxalacetic and glutamic-pyruvic transaminase determination
Sirotnak et al. Amino acid metabolism of bovine rumen bacteria
Wollenberger et al. A specific enzyme electrode for L-glutamate-development and application
Di Paolantonio et al. Serine-selective membrane probe based on immobilized anaerobic bacteria and a potentiometric ammonia gas sensor
US4384936A (en) System for determining the concentration of an L-amino acid in fermentation
Vrbova et al. Biosensor for the determination of L-lysine
Kobos Microbe-based electrochemical sensing systems
JPS5921400A (ja) L−アミノ酸の測定法
Dorozhko et al. Electrochemical determination of L-glutamate on a carbon-containing electrode modified with gold by voltammetry
Simonian et al. A flow-through enzyme analyzer for determination of L-lysine concentration
CN113030217A (zh) 一种检测肌苷酸的酶生物传感器、其制备方法和应用
Liu et al. Differential pulse voltammetric determination of lactic acid in yogurts based on reduction of 1, 4-benzoquinone
Smith et al. CARBAMINO CARBOXYLIC ACIDS IN PHOTOSYNTHESIS 1
Grobler et al. Bacterial electrode for L-arginine
CN110186858A (zh) 一种检测半胱氨酸的方法
Hasebe et al. Determinations of citric acid by differential pulse polarography with immobilized enzymes
Liu et al. Studies on microbial biosensor for DL-phenylalanine and its dynamic response process
JPS6052765A (ja) L−アミノ酸の定量法
CN106771172A (zh) 一种微囊藻毒素-lr定量快速检测传感器的制备及应用
JPS6042910B2 (ja) L−アミノ酸の定量法
Hikuma et al. [10] Microbial sensors for estimation of biochemical oxygen demand and determination of glutamate
JPS6042911B2 (ja) L−リジンの定量法
CN110672686B (zh) 一种制备具有宽检测线性范围谷氨酸传感电极的方法