JPS59213699A - Process for liquid phase epitaxial growth - Google Patents

Process for liquid phase epitaxial growth

Info

Publication number
JPS59213699A
JPS59213699A JP8663883A JP8663883A JPS59213699A JP S59213699 A JPS59213699 A JP S59213699A JP 8663883 A JP8663883 A JP 8663883A JP 8663883 A JP8663883 A JP 8663883A JP S59213699 A JPS59213699 A JP S59213699A
Authority
JP
Japan
Prior art keywords
epitaxial growth
cassette
wafer
liquid phase
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8663883A
Other languages
Japanese (ja)
Inventor
Kazuhisa Ikeda
池田 和央
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8663883A priority Critical patent/JPS59213699A/en
Publication of JPS59213699A publication Critical patent/JPS59213699A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • C30B19/062Vertical dipping system

Abstract

PURPOSE:To form a clean epitaxial layer by attaching a dish contg. a wafer of a substrate slightly slantly to a cassette and carrying out liquid phase epitaxial growth with restricted rate of pushing and pulling of the dish into and out of the soln. of starting materials. CONSTITUTION:A carbon dish 3 contg. a wafer 4 is attached to a carbon cassette 2; the cassette 2 is pushed down to intrude into starting materials 5 for the epitaxial growth at the bottom of a carbon crucible; soln. 5 is poured onto the wafer 4 to cause liquid phase epitaxial growth. In this vertical dipping process, the rate of pushing down of said cassette 2 into the starting material soln. 5 and the rate of pulling up the cassette out of the starting material soln. 5 are controlled to <=1mm./min, and the dish 3 is pref. tilted by an angle 6 deg.+ or -2 deg. (theta), and the thickness l of the layer of the soln. above the wafer 4 is regulated, pref. to max. 1mm.. By this arrangement, uniform draining of the wafer 4 is possible and a clean epitaxial layer having a uniform thickness is formed on the wafer 4.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は液相エピタキシャル成長法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a liquid phase epitaxial growth method.

(→ 背景技術 従来のエピタキシャル成長法としては横型スライド方式
やデくツピング法が知られている。
(→ Background Art The horizontal sliding method and the digging method are known as conventional epitaxial growth methods.

第1図は横型スライド方式に関するもので、(a)はエ
ピタキシャル成長時、(b)はエピタキシャル成長後の
様子を表している。第2図はディッピング法の中の傾斜
法に関するもので、(a)は成長前、(b)は成長時、
(Q)は成長後の様子を表しており、1はウェハーであ
る。
FIG. 1 relates to the horizontal slide method, with (a) showing the state during epitaxial growth and (b) showing the state after epitaxial growth. Figure 2 relates to the tilting method in the dipping method, (a) before growth, (b) during growth,
(Q) shows the state after growth, and 1 is a wafer.

しかしながら上記従来法では1. 平面状にウェハーを
配置するため大量処理をするには設備が大きくなシ経済
的でなく、量産性があまりない、2 ウェハー周辺に発
生する異常成長部分が上部治具の動きを不連続にするた
めエピタキシャル表面にGaが残シエピタキシャル成長
層の厚さむらが発生するという欠点があった。
However, in the above conventional method, 1. Because the wafers are arranged in a flat shape, large-scale equipment is required for mass processing, making it uneconomical and not suitable for mass production. 2. Abnormal growth areas that occur around the wafers cause discontinuous movement of the upper jig. Therefore, there is a drawback that Ga remains on the epitaxial surface, resulting in uneven thickness of the epitaxially grown layer.

一方、底部にエピタキシャル用原料、ドーパント等を入
れてらるルツボ中に、ウェハーをのせた皿を複数枚重ね
て装填したカセットを侵入させ、上記溶融原料をウェハ
ー上に注いでエビタキシャル成長を行う縦型ディッピン
グ法も知られておシ、ウェハーが複数段重ねて入れられ
るため量産が可能である。第3図にその様子を示すが、
図中1がカーボンルツボ、2がカーボンカセット、3が
カーボン皿、4がGaAs 、 GaP等のウェハー、
5はGa 十多結晶+ドーパントのようなエピタキシャ
ル用原料である。第3図(a)がエピタキシャル成長前
の状態を表わし、ルツボ底に入れであるGa斗多結晶+
ドーパントを均一化させる。次いで(b)のエピタキシ
ャル成長時の状態に示すように、上部に待機していたカ
セットをルツボ中に浸入させる。このとき(C)のカー
ボン治具分解図に示すようにカセット2に設けられた細
いスリットSを通シ、Ga 十多結晶十ドーパント溶液
tは上昇してウエノ・−上に均一に注がれる。(d)エ
ピタキシャル終了時には上記と逆の操作でウエノ・−上
にあるGa十多結晶十ドーパントはカセットニ設けられ
た細いスリットを通りルツボへ回収される。
On the other hand, a cassette loaded with a stack of wafer plates is inserted into a crucible whose bottom contains epitaxial raw materials, dopants, etc., and the molten raw materials are poured onto the wafers to perform epitaxial growth. A mold dipping method is also known, and mass production is possible because wafers are stacked in multiple stages. The situation is shown in Figure 3.
In the figure, 1 is a carbon crucible, 2 is a carbon cassette, 3 is a carbon plate, 4 is a wafer of GaAs, GaP, etc.
5 is an epitaxial raw material such as Ga polycrystal + dopant. Figure 3(a) shows the state before epitaxial growth, showing the Ga doo polycrystal + placed in the bottom of the crucible.
Uniformize the dopant. Next, as shown in the state during epitaxial growth in (b), the cassette waiting at the top is inserted into the crucible. At this time, as shown in the exploded view of the carbon jig in (C), through the thin slit S provided in the cassette 2, the Ga polycrystalline dopant solution t rises and is uniformly poured onto the Ueno layer. . (d) At the end of the epitaxial process, the Ga polycrystalline dopant on the Ueno layer is collected into the crucible through a narrow slit provided in the cassette by the reverse operation to the above.

この方法では上記の如く量産が可能なものの、液厚が厚
く、例えば液厚が111111以上になるとGa表面(
ウエノ・−と反対側)にポリ結晶が晶出しエピタキシャ
ル成長層厚さにバラツキが生じる。また押下げ、引上げ
速度が速いため溶液がウェハー上に残シエピタキシャル
層の厚さにバラツキが生じる。
Although mass production is possible with this method as described above, the liquid is thick, for example, if the liquid thickness exceeds 111111, the Ga surface (
Polycrystals crystallize on the side opposite to the Ueno layer, resulting in variations in the thickness of the epitaxially grown layer. Furthermore, since the pressing down and pulling up speeds are fast, the solution remains on the wafer, causing variations in the thickness of the epitaxial layer.

C)発明の開示 本発明は上記縦型ディッピング法の改良に関するもので
、カセット内の皿を傾斜させ、特に該傾斜角度を6±2
°とすると共に、ルツボ内のカセットの上下速度を0嘔
/分以上、1−7分以下とすることによって、清浄なエ
ピタキシャルウェー・−を簡単に量産できる方法を提供
するものである。
C) Disclosure of the Invention The present invention relates to an improvement of the above-mentioned vertical dipping method, in which the dish in the cassette is tilted, and in particular, the tilt angle is set to 6±2.
The present invention provides a method for easily mass-producing clean epitaxial wafers by setting the vertical speed of the cassette in the crucible to 0°/min or more and 1-7 minutes or less.

すなわち本発明は縦型ディッピング法による液相エピタ
キシャル成長法において、基板ウェハーを収容したカセ
ットの原料溶液中への押し下げ速度および原料溶液中か
らの引上げ速度を毎分1覇以下にすると共に、カセット
内のウェハー載置用皿を傾斜させることを特徴とする液
相エピタキシャル成長方法に関するものである。。
That is, in the liquid phase epitaxial growth method using the vertical dipping method, the present invention reduces the pushing down speed of a cassette containing a substrate wafer into a raw material solution and the pulling up speed from the raw material solution to less than 1 mm per minute, and The present invention relates to a liquid phase epitaxial growth method characterized by tilting a wafer mounting plate. .

本発明方法の概略を第4図に示すが、(a)がエピタキ
シャル成長前、(1))が成長中、(C)が成長後の状
態で、番号は第3図の場合と同じ意味をもち、θけカー
ボン皿傾斜角度である。
An outline of the method of the present invention is shown in FIG. 4, where (a) shows the state before epitaxial growth, (1)) shows the state during growth, and (C) shows the state after growth, and the numbers have the same meanings as in FIG. 3. , θ is the inclination angle of the carbon plate.

本発明においてウエノ・−セット枚数は炉の均熱長の許
す範囲で積層でき、現在100枚(段)まで可能である
In the present invention, the number of ueno sheets can be stacked within the range allowed by the soaking length of the furnace, and currently up to 100 ueno sheets (stages) are possible.

本発明方法により次のような効果が奏せられる。The method of the present invention provides the following effects.

(1)  エピタキシャルするウエノ・−を積層状にセ
ットするためカーボン皿を薄くでき、小型かつ大量処理
が可能である。
(1) Since the Ueno material to be epitaxially deposited is set in a layered manner, the carbon plate can be made thinner, and small size and mass processing are possible.

(2)  カーボン皿の傾斜角度が全つエノ・−一定で
あり、重力によJGa が均一にエピタキシャルウェー
・−から離れ、全つエノ・−が均一に液切シできる。
(2) The inclination angle of the carbon plate is constant throughout, and the JGa is evenly separated from the epitaxial wafer by gravity, allowing all the Eno to drain uniformly.

(3)  ルツボ、カセット間のクリアランスがQ、 
1篩と狭いためフィルター効果がある。せまいスリット
をGaが通過してウェー・−上へ注入されるため、原料
Ga上に発生した薄い膜や析出物等はGa  がスリッ
トを通過するとき除かれ、スカムのない清浄なGa が
ウエノ・−上へ注入される。このクリアランスが大きい
とルツボ、カセット間にもGaAsが飽和したGaが入
り込み、エピタキシャル成長のための徐冷時にルツボカ
セット間に侵入したGa からもGaAs多結晶が晶出
し引上げがスムースに行なわれなくなってしまう。
(3) The clearance between the crucible and the cassette is Q,
It has a filter effect because it is narrow with only one sieve. Since Ga passes through the narrow slit and is injected onto the wafer, thin films and precipitates generated on the raw material Ga are removed when the Ga passes through the slit, and clean Ga without scum is injected into the wafer. - Injected upwards. If this clearance is large, Ga saturated with GaAs will enter between the crucible and the cassette, and GaAs polycrystals will crystallize from the Ga that entered between the crucible cassette during slow cooling for epitaxial growth, making it difficult to pull smoothly. .

に)発明を実施するための最良の形態 実施例 50笥φのSl  ドープn型GaAsの(1oo)面
のウェハー55枚を、皿の間隔2W+で投入しく皿厚1
聾、ウエノ・−厚600μ、上部空間700μ)、カセ
ットの押し下げ速度1WmZ分以下、成長開始温度95
0〜900℃、冷却速度1〜b ℃(ここでカセットを引上げて溶液抜きを行う)、引上
げ速度11m/分以下の条件下で、上記ウェハー上に厚
さ80〜100μm±10μmのGaAsエピタキシャ
ル成長層が得られた。
B) Best Mode for Carrying Out the Invention Embodiment 55 55 (1oo)-plane wafers of Sl doped n-type GaAs of φ 50 are loaded with a plate spacing of 2W+.
Deaf, Ueno - thickness 600μ, upper space 700μ), cassette push-down speed 1WmZ or less, growth start temperature 95
A GaAs epitaxial growth layer with a thickness of 80 to 100 μm ± 10 μm was formed on the above wafer under conditions of 0 to 900°C, cooling rate of 1 to b°C (the cassette is pulled up to remove the solution), and a pulling rate of 11 m/min or less. was gotten.

(ホ)発明の利用分野 本発明方法はGaP 、  GaAs 、  工nP 
 等の単層又は多層液相エピタキシャル成長、特に、s
1ドープGaAs赤外発光用エピタキシャル成長に有効
に利用できる。
(e) Field of application of the invention The method of the present invention applies to GaP, GaAs, engineering nP.
Single layer or multilayer liquid phase epitaxial growth such as s
It can be effectively used for epitaxial growth of 1-doped GaAs for infrared light emission.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は従来のエピタキシャル成長法
を示す図であシ、第1図は横型スライド法に関し、(a
)はエピタキシャル成長時、(b)はエピタキシャル成
長時の状態を示し、第2図は傾斜式ディッピング法に関
し、(a)はエピタキシャル成長前、(b)は成長時、
(C)は成長後の状態を示し、第3スId′縦型ディッ
ピング法に関し、(a)はエピタキシャル成長前、(b
)は成長時、(d)は成長後の状態を示し、(C)はカ
ーボン治具分解図に関する。第4図は本発明のエピタキ
シャル成長法を示す図であシ、(a)はエピタキシャル
成長前、(b)は成長時、(C)は成長後の状態を示す
。 第1図 (a)(b) 第2図 (CI−)    (b)     (b)3.、  
      第3− (ω)     第4 (CL)
Figures 1, 2, and 3 are diagrams showing the conventional epitaxial growth method, and Figure 1 relates to the horizontal slide method (a
) shows the state during epitaxial growth, (b) shows the state during epitaxial growth, and Figure 2 relates to the inclined dipping method, (a) shows the state before epitaxial growth, (b) shows the state during growth,
(C) shows the state after growth, regarding the third step Id' vertical dipping method, (a) before epitaxial growth, (b)
) shows the state during growth, (d) shows the state after growth, and (C) shows an exploded view of the carbon jig. FIG. 4 is a diagram showing the epitaxial growth method of the present invention, in which (a) shows the state before epitaxial growth, (b) shows the state during growth, and (C) shows the state after growth. Figure 1 (a) (b) Figure 2 (CI-) (b) (b)3. ,
3rd - (ω) 4th (CL)

Claims (3)

【特許請求の範囲】[Claims] (1)縦型ディッピング法による液相エピタキシャル成
長法において5基板ウニ・・−を収容したカセットの原
料溶液中への押し下げ速度および原料溶液中からの引上
げ速度を毎分11EIl以下にす−ると共に、カセット
内のフェノ1−載置用皿を傾斜させることを特徴とする
液相エピタキシャル成長方法。
(1) In the liquid phase epitaxial growth method using the vertical dipping method, the pushing down speed of the cassette containing 5 substrates into the raw material solution and the pulling up speed from the raw material solution are set to 11 EIl per minute or less, and A liquid phase epitaxial growth method characterized by tilting a phenol-mounting plate in a cassette.
(2)各皿上の溶液厚を最大1w+とする、特許請求の
範囲第1項記載の液相エピタキシャル成長方法。
(2) The liquid phase epitaxial growth method according to claim 1, wherein the maximum solution thickness on each dish is 1w+.
(3)  カセット内のウエノ・−載置用器を6±2゜
の角度に傾斜させる特許請求の範囲第1項記載の液相エ
ピタキシャル成長方法。
(3) The liquid phase epitaxial growth method according to claim 1, wherein the ueno-mounting device in the cassette is tilted at an angle of 6±2°.
JP8663883A 1983-05-19 1983-05-19 Process for liquid phase epitaxial growth Pending JPS59213699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8663883A JPS59213699A (en) 1983-05-19 1983-05-19 Process for liquid phase epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8663883A JPS59213699A (en) 1983-05-19 1983-05-19 Process for liquid phase epitaxial growth

Publications (1)

Publication Number Publication Date
JPS59213699A true JPS59213699A (en) 1984-12-03

Family

ID=13892559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8663883A Pending JPS59213699A (en) 1983-05-19 1983-05-19 Process for liquid phase epitaxial growth

Country Status (1)

Country Link
JP (1) JPS59213699A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1242198A1 (en) * 1999-10-08 2002-09-25 Semitool, Inc. Single semiconductor wafer processor
CN114481304A (en) * 2020-10-26 2022-05-13 昆明物理研究所 Graphite boat for vertical liquid phase epitaxy tellurium cadmium mercury film for reducing surface defects and application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1242198A1 (en) * 1999-10-08 2002-09-25 Semitool, Inc. Single semiconductor wafer processor
EP1242198A4 (en) * 1999-10-08 2009-06-03 Semitool Inc Single semiconductor wafer processor
CN114481304A (en) * 2020-10-26 2022-05-13 昆明物理研究所 Graphite boat for vertical liquid phase epitaxy tellurium cadmium mercury film for reducing surface defects and application

Similar Documents

Publication Publication Date Title
US3809584A (en) Method for continuously growing epitaxial layers of semiconductors from liquid phase
JP4465481B2 (en) Single crystal material manufacturing method, seed substrate, die, and single crystal material manufacturing apparatus
US7615115B2 (en) Liquid-phase growth apparatus and method
JP4060106B2 (en) Unidirectionally solidified silicon ingot, manufacturing method thereof, silicon plate, solar cell substrate and sputtering target material
JPS59213699A (en) Process for liquid phase epitaxial growth
US4461671A (en) Process for the manufacture of semiconductor wafers
US4052252A (en) Liquid phase epitaxial growth with interfacial temperature difference
CA1116312A (en) Method for depositing epitaxial monocrystalline semiconductive layers via sliding liquid phase epitaxy
US11319646B2 (en) Gallium arsenide single crystal substrate
US6951585B2 (en) Liquid-phase growth method and liquid-phase growth apparatus
US4997628A (en) Web growth configuration for higher productivity and 100% feed rate capability at wide widths
JPS5930797A (en) Liquid phase epitaxial growth method
JPS56149399A (en) Liquid phase epitaxial growing method
Maeda et al. Large-grain silicon sheets by the improved spinning method
JP3477292B2 (en) Semiconductor liquid phase epitaxy equipment
JPH02196085A (en) Method for liquid phase epitaxy
JPH0527500Y2 (en)
JPS5935589Y2 (en) Liquid phase crystal growth equipment
JP2773339B2 (en) Liquid phase epitaxial growth method
JPH058154B2 (en)
TW201940757A (en) Die for EFG-based single crystal growth, EFG-based single crystal growth method, and efg single crystal
JPH04265293A (en) Method for growing liquid phase epitaxy and production device therefor
JPH0571558B2 (en)
JPH0483789A (en) Production of lamellar single crystal
JPS589794B2 (en) Semiconductor liquid phase multilayer thin film growth method and growth equipment