JPS5921368B2 - Manufacturing method of high chromium steel by vacuum oxygen blowing method - Google Patents

Manufacturing method of high chromium steel by vacuum oxygen blowing method

Info

Publication number
JPS5921368B2
JPS5921368B2 JP54059269A JP5926979A JPS5921368B2 JP S5921368 B2 JPS5921368 B2 JP S5921368B2 JP 54059269 A JP54059269 A JP 54059269A JP 5926979 A JP5926979 A JP 5926979A JP S5921368 B2 JPS5921368 B2 JP S5921368B2
Authority
JP
Japan
Prior art keywords
decarburization
molten metal
amount
vacuum
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54059269A
Other languages
Japanese (ja)
Other versions
JPS55152118A (en
Inventor
基夫 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP54059269A priority Critical patent/JPS5921368B2/en
Publication of JPS55152118A publication Critical patent/JPS55152118A/en
Publication of JPS5921368B2 publication Critical patent/JPS5921368B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】 本発明は、高クロム鋼の製造方法に係り、さらに詳しく
は真空酸素吹精法(以下VOD法と称す)における精錬
において、全プロセスを通じてのCr、Mn等の酸化量
を抑制するために予備精錬での脱炭量を少なくしてVO
D法での脱炭量を大きくすることを特徴とする高クロム
鋼の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high chromium steel, and more specifically, in refining using a vacuum oxygen blowing method (hereinafter referred to as VOD method), the amount of oxidation of Cr, Mn, etc. throughout the entire process is determined. In order to suppress the amount of decarburization in preliminary refining, VO
The present invention relates to a method for manufacturing high chromium steel characterized by increasing the amount of decarburization in method D.

一般に、高クロム溶湯(溶銑、溶鋼を含む)中のクロム
酸化を抑制しつつ、優先的に脱炭反応を進行させるには
雰囲気中の00分圧を低くした状態で溶湯中に酸素を供
給することが必要であり、その一つの方法として減圧手
段を用いたVOD法が知られている。
Generally, in order to suppress chromium oxidation in high-chromium molten metal (including hot metal and molten steel) and preferentially advance the decarburization reaction, oxygen is supplied into the molten metal while keeping the 00 partial pressure in the atmosphere low. This is necessary, and one known method is the VOD method using a pressure reduction means.

しかし上記VOD法における脱炭では、特に炭素域(C
=0.30〜1.20%)において酸素の供給量と脱炭
速度がほぼ比例するために脱炭速度を大きくとろうとし
て酸素の供給量を増加した場合、排ガス量が増大し、ま
た真空系の排気能力が限定されることによって真空度が
悪化してクロムの酸化ロスを誘起するとともに、また脱
炭速度の増大に伴い溶湯中からのCOガスの発生量が増
加し、スプラッシュの増大、ボイリングの発注による設
備の損傷事故を生ずることが多い。
However, decarburization in the VOD method described above is particularly difficult in the carbon region (C
= 0.30 to 1.20%), the amount of oxygen supplied and the decarburization rate are almost proportional, so if the amount of oxygen supplied is increased in an attempt to increase the decarburization rate, the amount of exhaust gas will increase and the vacuum Due to the limited exhaust capacity of the system, the degree of vacuum deteriorates and induces chromium oxidation loss, and as the decarburization rate increases, the amount of CO gas generated from the molten metal increases, resulting in an increase in splash and Equipment damage accidents often occur due to boiling orders.

このため、有限の時間サイクルの中で上述した問題を避
けて安定した操業を行う目的で、予備精錬段階で酸素吹
精を症し、ここでVOD処理前〔C〕レベルを0.30
〜0.50%程度に調整してVOD工程の負荷を軽減す
る方法が一般に行なわれているが、予備脱炭は大気圧下
で行なわれる結果、溶湯中クロムの酸化は避は難く、プ
ロセス全体から見た場合の歩留りロス、すなわち還元用
Si、AIおよびCr、Mnの回収ロスは大部分この予
備脱炭工程で生じているのが実状である。
For this reason, in order to avoid the above-mentioned problems and maintain stable operation within a finite time cycle, the pre-refining step is carried out with oxygen blowing, and the [C] level before VOD treatment is reduced to 0.30.
A commonly used method is to reduce the load on the VOD process by adjusting the amount to about 0.50%, but as preliminary decarburization is performed under atmospheric pressure, oxidation of chromium in the molten metal is unavoidable, and the entire process is affected. The reality is that most of the yield loss, ie, recovery loss of Si, AI, Cr, and Mn for reduction, occurs in this preliminary decarburization step.

本発明は上述問題点を解消せんとしてなされたものであ
り、予備脱炭時での脱炭量を可能な限り減少させ、VO
D工程での脱炭量を増大させることによってプロセス全
体での酸化量を軽減し、歩留りの向上を計るクロム10
%以上を含む高クロム鋼の製造方法を提供せんとするも
のであり、以下詳細に説明する。
The present invention was made to solve the above-mentioned problems, and it reduces the amount of decarburization during preliminary decarburization as much as possible, and reduces the amount of VO
Chromium 10 reduces the amount of oxidation in the entire process by increasing the amount of decarburization in the D process, improving yield.
% or more, and will be described in detail below.

まず、本発明方法を行なうにあたり、予備脱炭工程にお
いては、溶湯中〔C〕が低下するに従い、Cの脱酸力は
相対的に低下しついには溶湯中メタル成分、例えばCr
、Mn、Fe等の脱酸力よりも低いレベルとなって、溶
湯中メタル成分の酸化が加速度的に進行する。
First, in carrying out the method of the present invention, in the preliminary decarburization step, as the [C] in the molten metal decreases, the deoxidizing power of C decreases relatively, and finally the metal components in the molten metal, such as Cr.
, Mn, Fe, etc., and the oxidation of the metal components in the molten metal progresses at an accelerated pace.

したがって、吹止(C)しベルをこの限界点以上で吹止
めて溶湯中メタル成分の酸化を防止し、高クロム鋼を製
造するものである。
Therefore, high chromium steel is produced by blow-stopping (C) and blow-stopping the bell above this limit point to prevent oxidation of the metal components in the molten metal.

なお吹止〔C〕レベルの上昇に伴って酸素吹精量が減少
し、よって溶湯温度の上昇も抑制されるため、合材を使
用せずとも炉未荒れの虞れがなくなり、従来の操従法の
欠点であった、温度上昇→炉宋荒れ→金材投入→溶は残
り→歩留り低下という悪循環を防止し得る。
In addition, as the blow-off [C] level increases, the amount of oxygen blowing decreases, and the rise in molten metal temperature is also suppressed, so there is no risk of furnace roughness even without the use of composite material, and conventional operation is possible. It is possible to prevent the vicious cycle of temperature rise → furnace roughness → metal material input → melting remaining → yield drop, which was a drawback of the conventional method.

さらに上記溶湯中メタル成分の酸化量減少に伴う還元用
Siの原単位減少により、還元期に発生する5102量
が抑制されて還元期スラグ塩基度が上昇する。
Further, due to the decrease in the basic unit of reducing Si due to the decrease in the amount of oxidation of the metal component in the molten metal, the amount of 5102 generated during the reduction period is suppressed, and the basicity of the slag during the reduction period increases.

そして、還元反応が著しく促進されCr、Mn回収率の
向上が計れる。
Then, the reduction reaction is significantly promoted, and the recovery rate of Cr and Mn can be improved.

また、溶落〔C〕レベルの低いものについては予備脱炭
を省略する。
In addition, preliminary decarburization is omitted for those with a low burn-through [C] level.

次に、上述した方法により得られた高クロム銑にVOD
法による精錬を癩すものであるが、この真空中で脱炭す
る場合、活発なCOガスの発生によりスプラッシュの増
大、急激なボイリング等が起こって設備が損傷され、操
業続行が不可能となることがある。
Next, VOD was added to the high chromium pig iron obtained by the method described above.
However, when decarburizing in a vacuum, the active generation of CO gas causes increased splash and rapid boiling, which damages equipment and makes it impossible to continue operations. Sometimes.

しかし本発明方法においては、炭素域0.30〜1.2
0%で酸素供給量を過大(0,5Nm″/Tm1n以上
)とし発生ガス量を真空系の排気能力以上として真空度
を悪什させた状態で、脱炭中期迄に高温過酸化状態を作
り出す。
However, in the method of the present invention, the carbon range is 0.30 to 1.2
At 0%, the amount of oxygen supplied is excessive (more than 0.5Nm''/Tm1n), the amount of generated gas is greater than the exhaust capacity of the vacuum system, and the degree of vacuum is deteriorated, creating a high-temperature peroxidation state by the middle stage of decarburization. .

その後吹酸を停止し、除々に真空度を回復させなから溶
湯中に豊富に蓄わえられた酸素源と、溶湯中CC)によ
る自然脱炭を生せしめることで目的の〔C〕レベルまで
脱炭を行いつつ溶湯中メタル酸化物の還元を行なうもの
である。
After that, the blowing acid is stopped and the degree of vacuum is gradually restored, allowing natural decarburization to occur due to the oxygen source abundantly stored in the molten metal and CC) in the molten metal, until the target [C] level is reached. This method reduces metal oxides in the molten metal while decarburizing it.

炭素域0.30〜1.2%、02送酸速度0.5 Nm
3/ Tynin以上、真空自然脱炭を10分間以上に
限定した理由は数次に亘る試験に基づき限定したもので
あり、この範囲を外れた場合上記条件が得られず好まし
い結果が得られなか−った。
Carbon range 0.30-1.2%, 02 oxygen delivery rate 0.5 Nm
3/ The reason why the vacuum natural decarburization was limited to 10 minutes or more was based on several tests, and if it was outside this range, the above conditions could not be obtained and favorable results could not be obtained. It was.

以上述べた方法により製造した高クロム鋼の全工程を通
じてのCr回収率は従来方法(0,4%C1まで予備脱
炭)により製造した高クロム鋼と比較した場合約2%の
回収率の向上が得られた。
The Cr recovery rate of the high chromium steel manufactured by the method described above throughout the entire process is approximately 2% higher than that of the high chromium steel manufactured by the conventional method (preliminary decarburization to 0.4% C1). was gotten.

次に、本発明製造方法を5US304鋼における実験結
果に基づいてより詳細に説明する。
Next, the manufacturing method of the present invention will be explained in more detail based on experimental results on 5US304 steel.

まず、高クロム銑はスクラップ、高炭素Fe−Cr、高
炭素Fe−Niを通常の黒鉛電極アーク炉で溶解した。
First, high chromium pig iron was obtained by melting scrap, high carbon Fe-Cr, and high carbon Fe-Ni in a normal graphite electrode arc furnace.

この場合炉口からの大気の侵入によるある程度の溶湯中
メタル酸化は避けられなかったが、その絶対量は少なく
後工程の還元期で少量のSiを添加することではゾ10
0%回収可能であった。
In this case, some degree of metal oxidation in the molten metal was unavoidable due to the intrusion of the atmosphere from the furnace mouth, but the absolute amount was small and by adding a small amount of Si in the reduction stage of the post-process, it was possible to
0% recovery was possible.

予備脱炭を行なう場合の溶湯温度は高温とした方がCr
酸化が少ないことは公知であるが、経験的には1620
〜1630℃以上であれば実操業上問題はなく、また予
備脱炭は溶湯中に耐火物をコーティングした酸素ランス
を浸漬吹精することによりなされるために〔C〕の吹下
げに伴ってMn、Cr等の酸化は加速的に進行する。
When performing preliminary decarburization, it is better to set the molten metal temperature to a higher temperature to reduce Cr.
It is known that oxidation is low, but empirically, 1620
There is no problem in actual operation if it is above ~1630℃, and since preliminary decarburization is done by dipping and blowing an oxygen lance coated with a refractory in the molten metal, Mn , Cr, etc., proceed at an accelerated pace.

ここで、高クロム銑の酸化反応における〔C〕とCrの
平衡関係は、D、 C,Hiltyの関係式により求め
られる。
Here, the equilibrium relationship between [C] and Cr in the oxidation reaction of high chromium pig iron is determined by the relational expression of D, C, and Hilty.

すなわち1 og(%Cr)−Pco/C’10C’:
1=−13800/T+8.76上記式において、Pc
o= 1 atm、 (%C’r’1−18.5%、T
=1973°にとした場合のCr酸化を生じない(C)
レベルは〔C″l:0.32%トするが、・脱炭反応が
生じている場合は溶湯がある程度の過酸化度を維持して
いることが必要であり、それに伴いこの平衡〔C〕値以
上のところにおいても(lcr)の酸化は生ずるもので
あり、本発明者はこの点に着目して溶湯中CC〕−(C
>(Cr)一温度の関係を調査した。
That is, 1 og (%Cr)-Pco/C'10C':
1=-13800/T+8.76 In the above formula, Pc
o=1 atm, (%C'r'1-18.5%, T
= 1973°, no Cr oxidation occurs (C)
The level is [C''l: 0.32%, but if a decarburization reaction is occurring, it is necessary that the molten metal maintains a certain degree of peroxidation, and accordingly this equilibrium [C] The oxidation of (lcr) occurs even when the temperature exceeds this value.
>(Cr) - The relationship between temperature was investigated.

その結果を第1図に示す。The results are shown in FIG.

第1図より明らかな如く脱炭中の溶湯中酸素レベルはス
テンレス鋼中におけるC−0平衡線より若干高目に推移
し、またCr−0平衡線と交わるA点以下の〔C〕レベ
ルまで吹下げた場合にはC−0平衡線より低目となるこ
とを見出した。
As is clear from Figure 1, the oxygen level in the molten metal during decarburization remains slightly higher than the C-0 equilibrium line in stainless steel, and reaches the [C] level below point A, which intersects with the Cr-0 equilibrium line. It has been found that when the air is blown down, it becomes lower than the C-0 equilibrium line.

ごのことはとりもなおさず、A点以下では(C’lの平
衡が〔C〕よりも(Cr)との間で成立し、さらに酸素
を供給した場合にはCrの酸化が進行することを示して
いる。
Anyway, below point A, the equilibrium of (C'l) is established with (Cr) rather than with [C], and if oxygen is further supplied, oxidation of Cr progresses. It shows.

また溶湯中〔C〕レベルと吹止時Cr酸化量との関係は
第2図より明らかな如く、予備脱炭における吹止〔C〕
レベルをC字0.80%以上にすることでCr酸化量の
増大が抑制されていることがわかる。
Furthermore, the relationship between the [C] level in the molten metal and the amount of Cr oxidation at the time of blow-off is clear from Figure 2.
It can be seen that the increase in the amount of Cr oxidation is suppressed by setting the level to C-shaped 0.80% or higher.

なお溶落〔C〕が1.2%以下の場合には、予備脱炭を
行なうことはCrの酸化ロスの増大を招来するため省略
することが望ましい。
Note that when burn-through [C] is 1.2% or less, it is desirable to omit preliminary decarburization because it increases the oxidation loss of Cr.

このようにして得られた高クロム銑は、VOD法による
精錬で真空脱炭が殉されるものであり、ここで一般に高
炭素溶銑を真空脱炭する場合には前述の様な問題点があ
り、本発明はこのような問題点を解消せんとして以下に
述べる方法によって行なう。
The high chromium pig iron obtained in this way cannot be decarburized in vacuum by refining using the VOD method, and in general, when high carbon hot metal is decarburized in vacuum, there are the problems mentioned above. In order to solve these problems, the present invention is carried out by the method described below.

すなわち、溶湯のボイリング状況はCOガスの発生量が
同じ場合でも雰囲気圧力が低い程激しくなる。
That is, even if the amount of CO gas generated is the same, the lower the atmospheric pressure, the more intense the boiling of the molten metal becomes.

これは同一温度では 圧力X気体々積=一定という物理
側により該圧力が低くなるに従って体積膨張が大きくな
るためであり、また圧力が高くなるに従い脱炭効率が低
下する結果COガスの発生量も抑制される。
This is because at the same temperature, the volume expansion increases as the pressure decreases due to the physics that pressure x gas volume = constant, and as the pressure increases, the decarburization efficiency decreases, resulting in the amount of CO gas generated. suppressed.

従って高炭素域においては、酸素の供給速度をCOガス
換算値でエゼクタ−の排気能力を超えるように設定する
ことで、発生ガスにより真空度は悪化してCOガスの発
生は抑制される。
Therefore, in a high carbon region, by setting the oxygen supply rate so as to exceed the evacuation capacity of the ejector in terms of CO gas, the generated gas deteriorates the degree of vacuum and the generation of CO gas is suppressed.

例えば0字0.30〜0.40%から脱炭するよう設計
された通常のエゼククーでは排気能力は1〜1.2 k
g/ Tm1nであり、該排気能力に相当する送酸量は
約0.4〜0.5 Nm / Tm1nとなって、第3
図に示す如くこれ以上の送酸量を維持することで前記し
た目的は達成される。
For example, a normal Ezekku designed to decarburize from 0.30 to 0.40% has an exhaust capacity of 1 to 1.2 k
g/Tm1n, and the oxygen supply amount corresponding to the exhaust capacity is approximately 0.4 to 0.5 Nm/Tm1n.
As shown in the figure, the above-mentioned objective can be achieved by maintaining the amount of oxygen supplied above this level.

しかし本発明方法においては、高炭素域で脱炭効率を人
為的に悪化させることになる為、Crft什は当然伴う
ことになり、従ってこの過剰に生成したCr酸化物等を
ボイリングの発生の虞れがなくなった中〜低炭素域で溶
湯中の残存〔C〕で還元せしめる必要がある。
However, in the method of the present invention, since the decarburization efficiency is artificially deteriorated in the high carbon region, Crft is naturally accompanied. It is necessary to carry out reduction using the residual [C] in the molten metal in the medium to low carbon range where there is no more carbon.

この場合、前記の強吹精を終える〔C〕レベルが低すぎ
る場合には、後半で十分な還元が完了しない前に脱炭が
完了してメタルロスを招来する。
In this case, if the [C] level at which the above-mentioned strong blowing is completed is too low, decarburization will be completed before sufficient reduction is completed in the latter half, resulting in metal loss.

また上記〔C〕レベルが高すぎる場合にはボイリングを
伴うこととなる。
Moreover, if the above [C] level is too high, boiling will occur.

以上述べたことにより、この(C,ルベルとしてはC=
:〜0.30%付近が最適である。
As stated above, this (C, as a rubel, C=
: ~0.30% is optimal.

なお、C脱酸は強吹精後、直ちに行なってもよいが、真
空度の急激な低下に伴い突沸の虞れがある為、移行期を
設けて中間的な酸素吹精を行ないつつ真空度を低下させ
てC脱酸に移行することが望ましい。
Note that C deoxidation may be performed immediately after strong ejaculation, but since there is a risk of bumping due to a sudden decrease in the degree of vacuum, a transition period is provided and intermediate oxygen ejaculation is performed while the vacuum level is increased. It is desirable to move to C deoxidation by lowering the

またC脱酸が短かすぎる場合は、酸化物の還元効果が不
十分となる為不活性ガスで攪拌をしながら10分間以上
行なうことが不可欠である。
If the C deoxidation is too short, the oxide reduction effect will be insufficient, so it is essential to carry out the deoxidation for 10 minutes or more while stirring with an inert gas.

第3図は真空脱炭における操業パターンの一例を示した
ものであり、同図イは従来法による操業パターン、同図
口は本発明法による操業パターンである。
FIG. 3 shows an example of an operation pattern in vacuum decarburization, where A is an operation pattern according to the conventional method, and FIG. 3A is an operation pattern according to the method of the present invention.

第3図により明らかな如く本発明法は高炭素域において
は送酸量をエゼクタ−の排気能力に相当する送酸量以上
に維持せしめて従来法より真空度を悪化させてCOガス
の発生を抑制せしめる為に、激しいボイリングを防止で
きる。
As is clear from Fig. 3, the method of the present invention maintains the amount of oxygen supplied in a high carbon range above the amount corresponding to the evacuation capacity of the ejector, worsens the degree of vacuum compared to the conventional method, and prevents the generation of CO gas. Because it is suppressed, intense boiling can be prevented.

。第4図は第3図口に示す操業パターンで行なった
場合のCr酸化状況を示したものであり、同図より明ら
かな如く本発明法による酸化ははゾゼロに抑制されてお
り、従って表1に示すように全工程通算での歩留り、C
r回収率、還元用Si原単位等、従来法と比較した場合
著しい効果を有しているのがわかる。
. Figure 4 shows the oxidation status of Cr when the operation pattern shown in Figure 3 is used.As is clear from the figure, oxidation by the method of the present invention is suppressed to zero, and therefore Table 1. As shown in the total yield of all processes, C
It can be seen that this method has remarkable effects when compared with the conventional method in terms of r recovery rate, Si consumption rate for reduction, etc.

表2はSUS 304鋼における本発明方法使用時の各
工程ごとの成分元素の含有量等の変化を表わしたもので
あり同表(イ)は高〔C〕配合の場合、同表(ロ)は中
〔C〕配合の場合である。
Table 2 shows the changes in the content of component elements for each process when using the method of the present invention in SUS 304 steel. is for medium [C] formulation.

なお、本発明方法は5US316.321 。In addition, the method of the present invention is 5 US 316.321.

310等のオーステナイト系あるいは400シリーズの
フェライト、マルテンサイト系、その他のステンレス鋼
についても適用可能であることはいうまでもない。
It goes without saying that it is also applicable to austenitic steels such as 310, 400 series ferrites, martensitic steels, and other stainless steels.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶湯中CC)−(0〕−(Cr’)一温度の関
係図、第2図は溶湯中〔C〕と吹止時のCr酸化量との
関係図、第3図は真空脱炭における操業パターンの1例
であり、同図イは従来法による操業パターン、同図用ま
本発明法による操業パターン、第4図は従来方法と本発
明方法により操業した場合の〔C)%とCrm化量との
関係図である。
Figure 1 is a relationship between CC)-(0]-(Cr') in the molten metal and temperature, Figure 2 is a relationship between [C] in the molten metal and the amount of Cr oxidation at the time of blow-off, and Figure 3 is in vacuum. This figure shows an example of an operation pattern in decarburization. Figure A shows an operation pattern according to the conventional method, Figure 4 shows an operation pattern according to the method of the present invention, and Figure 4 shows [C] the operation pattern when the conventional method and the method of the present invention are used. % and the amount of Cr conversion.

Claims (1)

【特許請求の範囲】 1 イ、溶湯の配合〔C〕が、0.80%未満の場合は
、予備脱炭を省略し、 口、溶湯の配合(C,lが、1.20%をこえる場合は
、予備脱炭を行ない吹止〔C〕を0.80〜1.20%
とし、 ハ、溶湯の配合〔C〕が、0.80〜1.20%の場合
は、予備脱炭を省略するか又は予備脱炭を行なう場合は
、吹止〔C〕を0.80%以上とし上記イ、口、ハの溶
湯を真空酸素吹精法により、炭素域0.30〜1.20
%で02供給量を0.5Nyl/ Tmln以上で吹精
を行なった後、少なくとも10分間以上の真空自然脱炭
を行なうことを特徴とする高クロム鋼の製造方法。
[Claims] 1. If the molten metal composition [C] is less than 0.80%, preliminary decarburization is omitted; If the
C. If the molten metal composition [C] is 0.80 to 1.20%, the preliminary decarburization is omitted, or if the preliminary decarburization is performed, the blow-off [C] is 0.80%. With the above, the molten metal of A, C and C was heated to a carbon range of 0.30 to 1.20 by vacuum oxygen blowing method.
A method for producing high chromium steel, which comprises blowing the 02 supply amount at 0.5Nyl/Tmln or more in terms of %, and then performing vacuum natural decarburization for at least 10 minutes.
JP54059269A 1979-05-14 1979-05-14 Manufacturing method of high chromium steel by vacuum oxygen blowing method Expired JPS5921368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54059269A JPS5921368B2 (en) 1979-05-14 1979-05-14 Manufacturing method of high chromium steel by vacuum oxygen blowing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54059269A JPS5921368B2 (en) 1979-05-14 1979-05-14 Manufacturing method of high chromium steel by vacuum oxygen blowing method

Publications (2)

Publication Number Publication Date
JPS55152118A JPS55152118A (en) 1980-11-27
JPS5921368B2 true JPS5921368B2 (en) 1984-05-19

Family

ID=13108474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54059269A Expired JPS5921368B2 (en) 1979-05-14 1979-05-14 Manufacturing method of high chromium steel by vacuum oxygen blowing method

Country Status (1)

Country Link
JP (1) JPS5921368B2 (en)

Also Published As

Publication number Publication date
JPS55152118A (en) 1980-11-27

Similar Documents

Publication Publication Date Title
JPH02221336A (en) Smelting reduction method of ni ore
US5190577A (en) Replacement of argon with carbon dioxide in a reactor containing molten metal for the purpose of refining molten metal
JP3606170B2 (en) Method for producing low nitrogen-containing chromium steel
JP3531218B2 (en) Method for producing low carbon chromium-containing steel
JP3752801B2 (en) Method for melting ultra-low carbon and ultra-low nitrogen stainless steel
JPS5921368B2 (en) Manufacturing method of high chromium steel by vacuum oxygen blowing method
JP4022266B2 (en) Stainless steel melting method
JPS6213405B2 (en)
JP3548273B2 (en) Melting method of ultra low carbon steel
JP3728922B2 (en) Method for melting molybdenum-containing molten steel
JPS6358203B2 (en)
JP7447878B2 (en) Method for decarburizing molten Cr and method for producing Cr-containing steel
JP3411220B2 (en) Refining method of high nitrogen low oxygen chromium-containing molten steel
JP7269485B2 (en) Melting method of high nitrogen stainless molten steel
JP3577365B2 (en) Hot metal pretreatment method
KR100491007B1 (en) A method for refining a molten steel in use for the manufacture of a stainles steel having low carbon
JP2795513B2 (en) Decarburization refining method of chromium-containing molten steel
JPS59222518A (en) Production of cr steel containing low phosphorus
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
JPH06256836A (en) Production of high cleanliness and ultra-low carbon steel
JP2864961B2 (en) Decarburization refining method for high Mn steel
JPS5856005B2 (en) High chromium steel melting method
JP3757435B2 (en) Method for decarburizing and refining chromium-containing molten steel
JPH0941028A (en) Production of high purity ultra-low carbon steel
JPH03153814A (en) Smelting method for dead soft, extra-low nitrogen high chromium steel