JPS59213616A - Amorphous aluminosilicate and its manufacture - Google Patents

Amorphous aluminosilicate and its manufacture

Info

Publication number
JPS59213616A
JPS59213616A JP58086701A JP8670183A JPS59213616A JP S59213616 A JPS59213616 A JP S59213616A JP 58086701 A JP58086701 A JP 58086701A JP 8670183 A JP8670183 A JP 8670183A JP S59213616 A JPS59213616 A JP S59213616A
Authority
JP
Japan
Prior art keywords
zeolite
acid
amorphous aluminosilicate
particle size
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58086701A
Other languages
Japanese (ja)
Other versions
JPH0353252B2 (en
Inventor
Hiroyuki Kashiwase
弘之 柏瀬
Muneo Mita
三田 宗雄
Yutaka Konose
豊 木ノ瀬
Toshihiko Morishita
森下 敏彦
Shozo Takatsu
高津 章造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP58086701A priority Critical patent/JPS59213616A/en
Publication of JPS59213616A publication Critical patent/JPS59213616A/en
Publication of JPH0353252B2 publication Critical patent/JPH0353252B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the amorphous aluminosilicate preserving a granular state of the original zeolite by treating an aq. slurry of zeolite with acid or an acidic salt under specified conditions. CONSTITUTION:The objective amorphous aluminosilicate is obtained by reacting an aq. slurry of zeolite with acid or an acidic salt or acid and an acidic salt by keeping at >=4 pH. The zeolite to be used is a substance of which structure of zeolite is decomposed in the acidic treatment. In many cases, the zeolite having <=about 5mol ratio of SiO2/Al2O3 is applied. As the starting material for manufacturing the amorphous aluminosilicate, for example, a type zeolite, X type zeolite, P type zeolite, sodalite, and analcime are especially suitable. In addition, metal-substituted zeolite obtained by substituting a part or a greater part of an Na2O constituent in said zeolites with a cation other than Na<+> by an ion exchange reaction can also be used.

Description

【発明の詳細な説明】 法に関する。[Detailed description of the invention] Regarding the law.

従来、非晶質アルミノ珪酸塩は微粉珪酸(ホワイトカー
ボ/)や塩基性炭酸マグネシウムなどと同様に合成樹脂
やゴムの充填剤、塗料の粘度調整剤、紙の塗工用顔料等
に利用可能とされ、主として珪市アルカリの水溶液に硫
酸アルミニウム、アルミン酸ソーダ等のアルミニウム化
合物の水溶液を反応させ沈殿状に析出させることニヨっ
て造られている。
Conventionally, amorphous aluminosilicate can be used as a filler for synthetic resins and rubber, as a viscosity modifier for paints, and as a pigment for coating paper, similar to fine powder silicic acid (White Carb/) and basic magnesium carbonate. It is mainly produced by reacting an aqueous solution of an alkali with an aqueous solution of an aluminum compound such as aluminum sulfate or sodium aluminate to form a precipitate.

然し外から、このような従来法によって得られる非晶質
アルミノ珪酸塩は、一般にθ、0/ないしθ、os J
Im程度の極めて微細な一次粒子に基づ(形状不定の凝
集二次粒子から成る極めてかさ高の粉体であり、その粒
度分布はかなり不均質なものであった。
However, externally, the amorphous aluminosilicates obtained by such conventional methods generally have θ, 0/ to θ, os J
It was an extremely bulky powder consisting of agglomerated secondary particles of irregular shape, and its particle size distribution was quite inhomogeneous.

従って、その用途も超微粒子から成るかさ高の粉体であ
ることを特徴とするような分野に限られていた。
Therefore, its application has been limited to fields characterized by bulky powder made of ultrafine particles.

本発明者らは、このような従来の非晶質アルミノ珪酸塩
には見られない各種の特徴を備えた11規の非晶質アル
ミノ珪酸塩を開発するために各種の実験と検問を重ねた
結果、或種のゼオライトを適切な条件下に酸で処理する
ことによって元のゼオライトの粒子状態を実質的に具備
している非晶質アルミノ珪酸塩が得られるという驚(べ
き事実を見出し、それを応用することによる本発明を完
成した。
The present inventors conducted various experiments and tests in order to develop 11 amorphous aluminosilicates with various characteristics not found in conventional amorphous aluminosilicates. As a result, they discovered the surprising fact that by treating certain types of zeolite with acid under appropriate conditions, amorphous aluminosilicate containing substantially the particle state of the original zeolite can be obtained. The present invention was completed by applying the following.

すなわち、本発明の要旨はゼオライトの酸処理物であっ
て、平均粒径がθ、lないし/ 011mであり、かつ
平均粒径の//2から平均粒径の////2の粒径の範
囲内の粒度部分が全体の50チ以上であるような均一な
粒度分布を有することを特徴とする非晶質アルミノ珪酸
塩である。
That is, the gist of the present invention is an acid-treated product of zeolite, which has an average particle size of θ, 1 to /011 m, and has a particle size of ////2 of the average particle size. It is an amorphous aluminosilicate characterized by having a uniform particle size distribution such that the particle size portion within the range of 50 cm or more is the total particle size.

一般に、ゼオライトは一般式(/、0±θ、2)M20
*AJ20.−xsio2’l yH20(但し、Mは
Na  またはそれと当量の1価または多価金属、Xは
多(の場合/、!;−20,yは0〜10の値)で表わ
される化学組成とX線回折によって識別することのでき
る独特の結晶構造を有するアルミノ珪酸塩であり、天然
鉱物及び合成品を含めて各種のものが知られている(通
常、MはNaである)。
Generally, zeolites have the general formula (/, 0±θ, 2) M20
*AJ20. -xsio2'l yH20 (where M is Na or an equivalent monovalent or polyvalent metal, It is an aluminosilicate with a unique crystal structure that can be identified by line diffraction and is known in a variety of forms, including natural minerals and synthetics (usually M is Na).

また、ゼオライトは一般に独特な結晶構造に基づ(独特
な粒子形状や粒度を有するとともに独特な吸着性能やイ
オン交換性能を有することも知られており、それらの特
性を生かした各種の用途がひらかれている。
In addition, zeolites are generally known to have a unique crystal structure (having a unique particle shape and size, as well as unique adsorption performance and ion exchange performance), and a variety of applications that take advantage of these characteristics have been proposed. It's dark.

賓 しかして、本発明にかかる非晶斗アルミノ珪酸塩は上記
ゼオライトの基本的粒子形態のスケルトンを実質的に具
備している酸処理物であって物理化学的諸性能の点でも
ゼオライトと異なった著しい特徴を有するものである。
However, the amorphous aluminosilicate according to the present invention is an acid-treated product that substantially has the skeleton of the basic particle form of the above-mentioned zeolite, and is significantly different from zeolite in terms of physical and chemical performance. It has characteristics.

従って、以下にその製法と共に本発明の非晶質アルミノ
珪酸塩について詳述する。
Therefore, the amorphous aluminosilicate of the present invention will be described in detail below along with its manufacturing method.

本発明者らの検討結果によれば、蓼くべきことにA型ゼ
オライト(Na2O・A2,0. ・、:l 5in2
1Ita、5Ho)やX型ゼオライト(Na、、O・A
l2O,・コ、!r SiO・乙、/HO)等の成分モ
ル比(sto2/Az2o、)の値が比較的小さい種類
のゼオライトは酸で適度に処理することによって、X線
的には明らかに非晶質となるにもかかわらず、その−次
粒子の形や太ささなどの粒子状態は酸処理によって殆ん
ど変化ぜず、酸処理前の粒子状態が殆んどそのま一保持
されることが判明した。
According to the study results of the present inventors, A-type zeolite (Na2O・A2,0.・, :l 5in2
1Ita, 5Ho) and X-type zeolite (Na, , O, A
l2O,・ko,! Zeolite types with relatively small component molar ratios (sto2/Az2o,) such as rSiO・Otsu, /HO) become clearly amorphous from an X-ray perspective by being appropriately treated with acid. Nevertheless, it was found that the shape and size of the secondary particles were hardly changed by the acid treatment, and the particle state before the acid treatment was maintained almost unchanged.

本発明はこのような事実の応用に基づくものであって、
ゼオライトの酸処理によりゼオライト中の陽イオンの一
部が溶出するとともにゼオライト結晶としての原子配列
の規則性が完全に消失して非晶質化するにも拘らず、元
のゼメライトの基本的粒子状態を維持したものであるか
ら、この非晶質アルミノ珪酸塩の性状は元のゼオライト
の種類や粒子状態への依存性が大きく、製造に際しては
まず原料となるゼオライトが適切なのであることが必要
である。
The present invention is based on the application of such facts,
When zeolite is treated with acid, some of the cations in the zeolite are eluted and the regularity of the atomic arrangement as a zeolite crystal is completely lost, resulting in an amorphous state. However, the basic particle state of the original zemerite remains Therefore, the properties of this amorphous aluminosilicate are highly dependent on the type and particle state of the original zeolite, and during production, it is first necessary to ensure that the zeolite used as the raw material is suitable. .

すなわち、本発明の方法において使用する原料としての
ゼオライトは、A型ゼオライトやX型ゼオライトのよう
な成分モル比(S102/八220.)が比較的小さい
種類のものであるとともに、その粒子状態が均一微細で
あることが必要である。
That is, the zeolite used as a raw material in the method of the present invention is of a type having a relatively small component molar ratio (S102/8220.), such as A-type zeolite and It is necessary to have uniform fineness.

即ち、本発明の対象となるゼオライトは酸処理において
ゼオライト構造が分解するような物であり、多(の場合
、SiO2/AJ20.(モル比)が約S以下にあるゼ
オライトが適用される。
That is, the zeolite that is the subject of the present invention is one whose zeolite structure decomposes when treated with an acid, and in the case of zeolite, a zeolite whose SiO2/AJ20. (molar ratio) is about S or less is applied.

この場合、ゼオライトの均一微細な粒子状態とは、平均
粒径が0./ないし704mであり、かつ平均粒径の/
//2から平均粒径の///−の範囲の粒度部分が全体
の50%を超えるような粒度分布を有することを意味す
る。
In this case, the uniform fine particle state of zeolite means that the average particle size is 0. / to 704 m, and the average particle size is /
It means having a particle size distribution such that the particle size portion in the range of //2 to ///- of the average particle size exceeds 50% of the total.

このような観点から、本発明の非晶質アルミノ珪酸塩を
製造する際の原料として適するゼオライトの種類として
は上記の物性を有するものであれば各種のものが指摘さ
れるが、例えばA型ゼオライト、X型ゼオライト、P型
ゼオライト、ソーダライト、アナルサイム等が特に好適
であり、これらの一種または2種以上を使用することが
できる。
From this point of view, various types of zeolite suitable as raw materials for producing the amorphous aluminosilicate of the present invention are pointed out as long as they have the above-mentioned physical properties. For example, type A zeolite , X-type zeolite, P-type zeolite, sodalite, analcyme, etc. are particularly suitable, and one or more of these can be used.

また、上記の粒度の値をもった均一微細なゼオライト粒
子は各種の方法で調製することができるが、例えば特開
昭57−.37/3  や特開昭57−ItA3//等
の方法によって得られるA型ゼオライトやXm、ゼオラ
イトのような合成ゼオライトは特に好適である。
Further, uniform fine zeolite particles having the above-mentioned particle size can be prepared by various methods. Synthetic zeolites such as A-type zeolite and Xm zeolite obtained by methods such as No. 37/3 and JP-A-57-ItA3// are particularly suitable.

さらに、これらのゼオライト中のNa2O成分の一部ま
たは大部分をイオン交換反応によってNa+以外の陽イ
オンで置換した金属置換ゼオライトを使用することもで
きる。
Furthermore, it is also possible to use metal-substituted zeolites in which a part or most of the Na2O component in these zeolites is replaced with cations other than Na+ through an ion exchange reaction.

この場合、Na+以外の陽イオンの種類としてはH” 
、Li++ K+ 等の7価の陽イオン、Mg”+Ca
 ” + Sr ” r B a” r Zrr ” 
r Cd 2++ Pb 2+等のコ価の陽イオン等各
種のものが挙げられるが、陽イオンの種類及びM換の程
度によってゼオライト粒子の諸性能を成程度調節するこ
とが可能である。
In this case, the type of cation other than Na+ is H”
, heptavalent cations such as Li++ K+, Mg”+Ca
” + Sr ” r B a” r Zrr ”
Various types of cations such as covalent cations such as r Cd 2++ Pb 2+ can be used, and the various performances of the zeolite particles can be adjusted depending on the type of cations and the degree of M exchange.

このようなゼオライトを酸処理する方法としては各種の
態様が可能であるが、通常、次のようにして行なうこと
ができる。
Although various methods are possible for acid-treating such zeolite, it can usually be carried out as follows.

攪拌しっ\これに酸または酸性ノ窟類の溶液を徐々に添
加し、この間懸濁液のp[(が常に9以上に保たれるよ
うにするとともに、最終的にもpI+の値がりより低く
な、らないようにその添加量を調節したのち、固−液分
離および洗浄を行ない、必要に応じて乾燥・粉砕等の工
程を加える。
Stir and gradually add the acid or acidic solution to this, making sure that the p[() of the suspension is always maintained at 9 or higher, and the final value is lower than the pI+ value. After adjusting the amount added so that it does not become too low, solid-liquid separation and washing are performed, and steps such as drying and pulverization are added as necessary.

ここで使用するばまたは酸性物質としては、例えば硫酸
、塩酸、硝酸、燐酸、炭酸、ホウ酸、亜硫酸等の鉱酸類
、ギ酸、酢酸、シュウ酸、クエン酸等の有機酸類、ある
いは重硫酸ソーダや酸性燐酸ソーダ等の酸性塩類等各種
のものが挙げられるがこれらに限定されるものではない
Examples of acidic substances used here include mineral acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, carbonic acid, boric acid, and sulfurous acid; organic acids such as formic acid, acetic acid, oxalic acid, and citric acid; and sodium bisulfate, etc. Examples include various acid salts such as acidic sodium phosphate, but are not limited thereto.

ゼオライトの水性懸濁液に徐々に酸を添加する際の酸の
添加量と1躍濁液のpHとの関係は、多くの場合第1図
の曲線のようであり、酸の添加に連れて1ツHは初期に
急激に低下し、それに続(pHll  付近での平坦部
を経て、pHj付近で再び急激な低下を示す。
When an acid is gradually added to an aqueous suspension of zeolite, the relationship between the amount of acid added and the pH of the suspension is often like the curve in Figure 1, and as the acid is added, 1TSH decreases rapidly at the beginning, then shows a plateau near pHll, and then shows a sharp decrease again near pHj.

懸濁液のpHが最終的に9未満となるような量の酸また
は酸性物質を使用すると、原体ゼオライト粒子のスクル
トンが著しく破壊されて粒子の形状や粒度分布が著しく
変化したり粒子全体が溶解・消失したりして全く不適当
であるので過剰の菌類の使用は避けねばならないが、そ
れ以下のEtt O) (ilまたは酸性物質を使用す
る場合にもそれらの急激な添加は短時間あるいは局部的
に懸濁液のpHをグ未満に低下させる結果となり粒子の
形状や粒度分布を変化させることがあるので避けねばな
らない。
If an acid or an acidic substance is used in such an amount that the final pH of the suspension is less than 9, the skeleton of the raw zeolite particles will be significantly destroyed, resulting in a significant change in the shape and size distribution of the particles, or the entire particle may be destroyed. The use of excess fungi must be avoided, as it may dissolve or disappear, making it completely inappropriate.However, even when using less Ett O) (il or acidic substances, their rapid addition should be avoided for a short period of time or This should be avoided since it may result in locally lowering the pH of the suspension below 100 g, which may change the shape and size distribution of the particles.

この場合、非晶質化の程度は酸または酸性物質の添加量
によって支配され、多(の場合、懸濁液の最終的なpH
O値が約グ、5となるような添加量において完全に非晶
質化する。
In this case, the degree of amorphization is governed by the amount of acid or acidic substance added, and in the case of poly(), the final pH of the suspension
It becomes completely amorphous when the added amount makes the O value about 5.5.

一般に非晶化の程度はX線回折図の回折線の有無および
強弱によって評価されるものであって、本発明の非晶質
アルミノ珪酸塩というのは、回折線が全く認められない
ものから、回折線の高さが原体のゼオライトの//′2
以下に低下しているものをも含む事実上非晶質であると
見做す。
Generally, the degree of amorphization is evaluated by the presence or absence and strength of diffraction lines in an X-ray diffraction diagram. The height of the diffraction line is //'2 of the original zeolite
It is considered to be virtually amorphous, including those with a drop below.

なお、本発明において非晶質アルミノ珪酸塩一 の粒度およびその分布というはコールタ−カウンター法
によって測定して表わしたものとして扱う。
In the present invention, the particle size and distribution of the amorphous aluminosilicate are measured and expressed by the Coulter counter method.

ゼオライトの酸処理に伴って、ゼオライト中に存在した
カチオンの一部または大部分が溶出するため、本発明に
係る非晶質アルミノ珪酸塩の化学組成はA−’ 2 O
S成分1モルに対しNa、Oなとのカチオン成分が1モ
ルより著しく低い値となるが、多少のカチオン成層能力
を有すζ)ため改めて各種のカチオンを吸着させること
が可能である。
As part or most of the cations present in the zeolite are eluted with acid treatment of the zeolite, the chemical composition of the amorphous aluminosilicate according to the present invention is A-' 2 O.
Although the amount of cationic components such as Na and O is significantly lower than 1 mol per 1 mol of S component, it has some cation layering ability (ζ), so it is possible to adsorb various cations.

一方、ゼオライトの酸処理に伴って、ゼオライト中に存
在した水分は大部分そのまま残留するが1.330℃以
上に加熱するとその大部分が不可逆的に脱水されて元の
ゼオライトの水分吸着性は殆どなくなる。したがって乾
燥や焼成条件によって酸処′+Ji物の水分含有率を各
種の値に調整することが可能である。
On the other hand, when zeolite is treated with acid, most of the water present in the zeolite remains as it is, but when heated above 1.330°C, most of it is irreversibly dehydrated and the original zeolite's water adsorption ability is almost completely reduced. It disappears. Therefore, it is possible to adjust the moisture content of the acid-treated +Ji product to various values by changing the drying and firing conditions.

本発明に係る非晶質アルミノ珪酸塩は、それ自体の内容
は」=記のようであるが、このものの品質特性をより改
善するために必要に応じて改質処理を施したものをも含
む。
The content of the amorphous aluminosilicate according to the present invention is as follows, but it also includes those subjected to modification treatment as necessary to further improve the quality characteristics of the amorphous aluminosilicate. .

かかる改善物としては、例えば代表的なものとしては、
濃密でかつ微細な不定形シリカの連続的皮膜を付与した
もの、あるいは微細な白色金属含水酸化物、例えばアル
ミニウム、チタン、ジルコニウム、アンチモン等の含水
酸化物の沈積によるもの、または表面活性剤、分散剤等
の粒子表面の改質などがあげられる。
Typical examples of such improvements include:
A continuous coating of dense and fine amorphous silica, or a deposit of fine white metal hydrated oxides, such as aluminum, titanium, zirconium, antimony, etc., or a surface active agent, or a dispersion. Examples include modifying the surface of particles such as agents.

従って、例えばンリカ被り処理を施す場合は、ゼオライ
トの水性懸濁液に酸または酸性塩類を添加して酸処理を
行ったのち、Aθ℃以上の温度で徐々に活性シリカゾル
を添加するかまたは珪酸アルカリと酸を徐々に添加して
活性シリカを生成さぜるようにすることによって粒子表
面を緻密な無定形シリカの皮膜で被うことができる。
Therefore, for example, when performing phosphor coating treatment, acid or acidic salts are added to an aqueous suspension of zeolite to perform the acid treatment, and then activated silica sol is gradually added at a temperature of Aθ°C or higher, or an alkali silicate solution is added. By gradually adding silica and acid to generate active silica, the particle surface can be covered with a dense amorphous silica film.

この際に添加するまたは生成させるシリカの量は、多(
の場合、非晶質アルミノ珪酸塩に対し、2ないし30重
量楚でヲこ分な被覆の効果が得られる。
The amount of silica added or generated at this time is
In the case of 2 to 30% by weight, a sufficient coating effect can be obtained for amorphous aluminosilicate.

このよ5なシリカ被覆処理を施した非晶質アルミノ珪酸
塩の粒子は、原料として使用した元のゼオライトの種類
如何に拘らず、表面が著しく不活性で、光・熱・薬品な
どに対し一層堅ろうである。
Regardless of the type of original zeolite used as a raw material, the surface of amorphous aluminosilicate particles coated with silica is extremely inert, making them more resistant to light, heat, chemicals, etc. It is solid.

また同様Gこ金属含水酸化物の被覆処理においては相当
する金属塩水溶液を添加して加水分解により生じる水酸
化物を沈積処理すればよい。
Similarly, in the coating treatment of G metal hydrated oxide, a corresponding metal salt aqueous solution may be added to deposit the hydroxide produced by hydrolysis.

以上の記載から明らかなように、本発明の非晶質アルミ
ノ珪酸塩の主な特徴としてはつぎの事項が挙げられる。
As is clear from the above description, the following are the main features of the amorphous aluminosilicate of the present invention.

(1)  平均粒径0゜/ないし/ Olim の均一
な粒子から成り、かさや吸油量が適度であるとともに、
個々の一次粒子に容易に分散する。
(1) Consists of uniform particles with an average particle size of 0°/Olim, moderate bulk and oil absorption, and
Easily disperses into individual primary particles.

+21  Na2O成分や他のカチオンの含有率が少な
く、中性に近17pHを示す。
+21 The content of Na2O components and other cations is low, and the pH is close to neutral at 17.

(3)  多少のカチオン交換能力を有し、任意のカチ
オンを吸Nさせることができる。
(3) It has some cation exchange ability and can absorb any cation and absorb N.

(4)  元のゼオライトと異なり、水分吸着性を殆ど
有しないので、水分含有率を目的に応じて大巾Gこ調節
することができる。
(4) Unlike the original zeolite, it has almost no water adsorption properties, so the water content can be adjusted over a wide range depending on the purpose.

(5) それ自体無毒性であり、環境を害することがな
い。
(5) It is itself non-toxic and does not harm the environment.

(6)  改質処理を施すことにより、粒子表面を著し
く不活性にすることができる、 このような多(の特徴を有する本発明の非晶質アルミノ
珪酸塩は Na−ゼア1フイトの欠点であるアルカリの
悪影響は実質旧しこ、1メめ′れないので合成樹脂やゴ
ムへの添加剤、塗料や印刷インキ用の体質顔料、紙用の
加工剤等として好適であるばかりでなく、その他ゼオラ
イトと異なった各種の新しい用途もひらかれる可能性が
あり、極めて興味ある新規材料ということができる。例
えは、合成樹脂フィルムのブロンキング防止剤としては
極めて有効である。
(6) The amorphous aluminosilicate of the present invention, which has such characteristics that the particle surface can be made significantly inert by undergoing a modification treatment, has the disadvantages of Na-zea 1 phyto. Since the harmful effects of certain alkalis are virtually negligible, they are not only suitable as additives for synthetic resins and rubber, extender pigments for paints and printing inks, and processing agents for paper, but also for other purposes. It is possible that various new uses other than zeolite will be developed, and it can be said to be an extremely interesting new material.For example, it is extremely effective as an anti-bronching agent for synthetic resin films.

以下、実施例を示すが、成績物の評(+lIiは次の試
験法によって行った。
Examples will be shown below, and evaluation of the results (+lIi) was performed using the following test method.

吸油量: JISK s / o/−7gの79粒度分
s:コールターカウンター(コールクーエレクトロニク
ス社製)を用いアパチャ ーチューブ径コθμm で測定した。
Oil absorption: JISK s/o/-7g, 79 particle size s: Measured using a Coulter Counter (manufactured by Cole Coo Electronics Co., Ltd.) with an aperture tube diameter of θ μm.

[Caイオン交交換能 塩化カルシウム溶液(CaOとして3o o rn;j
A・/lにゼオライト試料1g(無水物換算)を添加し
、−3℃で攪拌して反応させ、75分経過後ゼオライト
を速やかに瀘過分離し、溶液中のカルシウム(Cab)
の濃度を分析し、反f15にょる溶存カルシウムの減少
はを算出してこれをCaイオン交換能とする。
[Ca ion exchange capacity Calcium chloride solution (3o o rn as CaO; j
Add 1 g of zeolite sample (calculated as anhydride) to A/l, stir and react at -3°C, and after 75 minutes, quickly filter and separate the zeolite to remove calcium (Cab) in the solution.
The concentration of dissolved calcium is analyzed, and the decrease in dissolved calcium due to anti-f15 is calculated, and this is taken as the Ca ion exchange capacity.

〔組成分析〕[Composition analysis]

原子吸光光度法による。 By atomic absorption spectrophotometry.

実施例−/ !1oOccビーカーにトフa −Aゼオライト509
を秤Hし、水、20θgを加7...てゼオライト濃度
2θ係のスラリー、2!i0Jを調製した。なおこのス
ラリーのpE(は//、7であった。スラリーを(姪拌
し、なから、ここにり%硫酸、2sogを約S分間かけ
て徐々に添加し2、添加後7時間攪拌を継続した(この
間スラリーのpHは常にり以上に保持きれていた)のち
、常法により濾過、水洗、乾燥、粉砕を行ない、Na−
A 型ゼオライトの酸処理品を得た。この酸処理品の電
顕(SEiり写真を第2図に示す。この酸処理品のX線
回折(X、 R,D、 )分析を行なったところ、回折
ピータが全く認められず、非晶質アルミノ珪酸塩である
ことが明らかである。この噌処理品の粒度分布、平均粒
径、Ca  イオン交換能、酸処理条件、組成等を表−
/に示す。
Example-/! Tofu a-A zeolite 509 in a 1oOcc beaker
7. Weigh and add water and 20θg. .. .. Slurry with zeolite concentration 2θ, 2! i0J was prepared. The pE of this slurry was 7.The slurry was stirred and 2sog of sulfuric acid was gradually added thereto over about S minutes, and stirred for 7 hours after the addition. After continuing (during this time, the pH of the slurry was always maintained at a higher level), the Na-
An acid-treated product of type A zeolite was obtained. An electron micrograph (SEi) of this acid-treated product is shown in Figure 2. When this acid-treated product was analyzed by X-ray diffraction (X, R, D, ), no diffraction patterns were observed, indicating that it was amorphous. It is clear that it is a quality aluminosilicate.The particle size distribution, average particle diameter, Ca ion exchange capacity, acid treatment conditions, composition, etc. of this processed product are shown in the table.
/ Shown in /.

なお、原料のN a −Aゼオライトは珪酸ツーダン屑
液とアルミン酸ソーダ溶液とをバックミキシングのない
状態で反応させてゲルを生成させ、加熱熟成することに
より得られる(特開昭!i7−/乙乙3//号)。得ら
れたr* a −A 型ゼオライトの粒度分布、平均粒
径、Ca  イオン交換能、組成等を表−/に併せて示
す。また、このNa −、A型ゼオライトの電顕(SE
M)写真を第、?図に示す。
The raw material Na-A zeolite can be obtained by reacting a silicic acid waste liquid and a sodium aluminate solution without back mixing to form a gel, and then heating and aging it (JP-A-Sho! i7-/ Otsu Otsu 3// issue). The particle size distribution, average particle diameter, Ca ion exchange capacity, composition, etc. of the obtained r* a -A type zeolite are also shown in Table 1. In addition, this Na-, A-type zeolite was analyzed by electron microscopy (SE).
M) First photo? As shown in the figure.

これらの写真や粒度分布より、ゼオライトの粒チ状爬は
酸処理前後においてほとんど変化のないことは明らかで
ある。
From these photographs and particle size distribution, it is clear that there is almost no change in the zeolite grains before and after acid treatment.

実施例−7! 実施例−/と同様のNa−A型ゼオライトを使用し、グ
チ硫酸の代わりに、2%硫酸を使用する以外は実施例−
7と全く同様の方法で酸処理を行なった。得られた酸処
理品はX、R,D、分析ではN a−A型ゼオライトの
各回折ピークが約//3〜//弘の強度に低下しており
非晶質アルミノ珪酸塩の成分を多く含むことが明らかで
ある。この酸処理品の粒度分イU、半均粒径、Ca  
イオン交換能、組成41′J−を表−/に併せて示す。
Example-7! Example-/The same Na-A zeolite as in Example-/ was used, except that 2% sulfuric acid was used instead of glutinous sulfuric acid.
Acid treatment was carried out in exactly the same manner as in 7. In the acid-treated product obtained, the X, R, D, and Na-A type zeolite diffraction peaks were analyzed to have decreased in intensity to approximately It is clear that there are many. The particle size of this acid-treated product is U, semi-average particle diameter, Ca
The ion exchange capacity and composition 41'J- are also shown in Table-/.

また、電顕(S l=:M)写真を第7図に示す。Further, an electron microscope (Sl=:M) photograph is shown in FIG.

実施例−J 実施例−/と同様のNa−A型ゼオライトを使用し、グ
%硫酸の代わりに70%リン酸を使用する以外は実施例
−/と全(同様の方法で酸処理を行なった。得られた酸
処理品はX、R,D、分析で゛ べは回折ピークか全(認められず、非晶質アルミノ珪酸
塩で、)口ことが明らかである。この酸処理品の粒度分
布、半均粒径、Caイオン交換能、組成等を表−7に併
せて示す。
Example-J The same Na-A zeolite as in Example-/ was used, and the acid treatment was carried out in the same manner as in Example-/, except that 70% phosphoric acid was used instead of 70% sulfuric acid. The obtained acid-treated product was analyzed by X, R, and D, and it was clear that it was a diffraction peak (no peak was observed, it was an amorphous aluminosilicate). Particle size distribution, semi-average particle diameter, Ca ion exchange capacity, composition, etc. are also shown in Table 7.

実施例−り 実施例−/と同様のN a−A型ゼオライトを使用し、
グ襲硫歯を約3θ分かげてゆつ(つと添加する以外は実
施例−/と全く同様の方法で酸処理を行なった。得られ
た酸処理品はX、 R,D、分析ではN a、−A型ゼ
オライトの回折ピークが全く認められず、非晶質アルミ
ノ珪酸塩であることが明らかである。この酸処理品の粒
度分布、平均粒径、Ca  イオン交換能、組成等を第
1表に併せて示す。また、電顕(SJΣM)写真を第S
図に示す。第1表の組成より、酸の添加をゆっくりと打
なった実施例−夕の非晶質アルミノ珪耐塩は実施例1〜
3のものと比較してNa2O分が少ないのが特徴であり
、酸の添加時間を調節することにより、生成する非晶質
アルミノ珪酸塩のNa2O分をある程度コントロールす
ることが可能である。
Example - Using the same Na-A zeolite as Example -/,
The acid treatment was carried out in exactly the same manner as in Example 1, except that the sulfurized tooth was separated by about 3θ and added. The acid-treated products obtained were No diffraction peaks of a, -A type zeolite are observed, and it is clear that it is an amorphous aluminosilicate.The particle size distribution, average particle diameter, Ca ion exchange capacity, composition, etc. of this acid-treated product were It is also shown in Table 1. In addition, the electron microscopy (SJΣM) photograph is shown in Table S.
As shown in the figure. Based on the composition in Table 1, examples in which acid addition was added slowly - Example 1 - Example 1 - Amorphous aluminosilicon salt resistant
It is characterized by a lower Na2O content compared to No. 3, and by adjusting the acid addition time, it is possible to control the Na2O content of the amorphous aluminosilicate produced to some extent.

実施例−5 Na−Xゼオライト(平均粒径λ、Sμで、かつその粒
径の〆/2から平均粒径のl−の粒径の範Ω 凹円の粒度部分が全体のSO%以上のもの)を実施例/
と同様にしてスラリーをN製した。次いで、j % I
Jン酸を5分間かけてスラリーのpHがq以下にならな
いように徐々に添加し、pl→グ、7で添加を終了させ
た。次いで常法により濾過、水洗、乾燥および粉砕を行
ないNa−Xゼオライトの酸処理品を得た。この酸処理
品を電子顕微鐘でIi(したところ原体ゼオライトと全
く同じ粒子状部が残って、Idす、また、粒度測定を行
っても原体粒子とほぼ一致しており、外観上は何らゼオ
ライト粒子と異るところは認められなかったが、X報回
JJT (X、R,D)分析では非晶質であった。
Example-5 Na-X zeolite (average particle size λ, Sμ, and particle size range Ω from ↑/2 of the particle size to l− of the average particle size) The particle size part of the concave circle is more than % of the total SO example)
A slurry was prepared in the same manner as above. Then j % I
Hydrochloric acid was gradually added over 5 minutes so that the pH of the slurry did not fall below q, and the addition was terminated at 7. Next, filtration, washing with water, drying and pulverization were performed in a conventional manner to obtain an acid-treated product of Na-X zeolite. When this acid-treated product was subjected to electron microscopy (II), particulates exactly the same as the original zeolite remained, and the particle size was also measured, and the appearance was almost the same as the original zeolite. Although no difference from zeolite particles was observed, it was found to be amorphous by X-Report JJT (X, R, D) analysis.

実施例−6 実施例/の酪処理品の粉体を実施例1と同じ(スラ1,
1− 調95した。分散剤としてSiO□ として5%
けい酸ソーダ水溶液(JIS、7号〕を少量添加してp
Hq、g  にした後、温度90℃に保持してII係硫
r段と前記と同じ珪酸ソーダ水溶液をスラリー中へ81
0.として全量当りlθ重ht%となるように徐々に同
時添加して生成する微細な不定形シリカの沈積処理を行
った。次いで、硫酸にてp[4A、5+こした後、濾過
分離し、常法により、水洗、乾録および粉砕してシリカ
被覆非晶質アルミノ珪酸塩を得た。
Example-6 The powder of the dairy processed product of Example/ was the same as Example 1 (Slur 1,
1- key 95. 5% as SiO□ as a dispersant
Add a small amount of sodium silicate aqueous solution (JIS, No. 7)
Hq, g, the temperature was maintained at 90°C, and the same sodium silicate aqueous solution as above was added to the slurry at 81°C.
0. As a result, fine amorphous silica was deposited by gradually adding the silica at the same time so as to give lθ weight ht% based on the total amount. Next, after straining with sulfuric acid, the mixture was filtered and separated, washed with water, dried and ground in a conventional manner to obtain a silica-coated amorphous aluminosilicate.

比較例−/ 比較のために、市販の非晶質アルミノ珪酸塩(Zeol
ex)  の電顕(SEM)写真を第A図に、また粒度
分布、平均粒径、Ca  イオン交換能、組成等を表−
7に併せて示す。
Comparative Example-/For comparison, a commercially available amorphous aluminosilicate (Zeol
Fig. A shows the electron microscopy (SEM) photograph of ex), and the table shows the particle size distribution, average particle diameter, Ca ion exchange capacity, composition, etc.
It is also shown in 7.

表−lに示したゼオライトの酸処理品はいずれも粒径O
,S〜Sμm の球形に近い粒子形状を保っており、吸
油量はs o ml/loo l以下であるので、市販
の非晶質アルミノ珪酸塩(粒径o、o 2〜o、o y
 、#m 、 %油fjik / 00 mlJ// 
00I1以上)とは明確に区別される。なおこのことは
第2図〜第弘図でわかるように、本発明のゼオライト酸
処理品はその粒子形状が元のゼオライトの形状を保った
ままであるのに対して、市販の非晶質アルミノ珪酸塩は
0.0!;l1m以下の微細粒子の不規則な凝集体であ
ることが明白である。
All of the acid-treated zeolites shown in Table 1 have a particle size of O.
, S~S μm, and the oil absorption is less than so ml/loo l.
, #m, % oil fjik / 00 mlJ//
00I1 or higher). As can be seen from Figure 2 to Figure 2, the particle shape of the zeolite acid-treated product of the present invention maintains the original zeolite shape, whereas the commercially available amorphous aluminosilicate Salt is 0.0! It is clear that the particles are irregular aggregates of fine particles of 11 m or less in size.

このことは粒度分布の測定結果でも比較例−/でO,グ
μ以上が約30%も出現しており、微細1次粒子が凝集
していることを示している。
This shows that approximately 30% of the particle size distribution measurements of Comparative Example -/ are O, Gμ or more, indicating that the fine primary particles are agglomerated.

比較例−一 実M例−/と同様のNa−A型ゼオライトを使用し、実
施例−7と同様にして、酸処理のためにl1%硫酸を加
え、更に硫酸を添加して混合スラリーのpHを3.0に
調製したのち、1時間攪拌を継続した。その後常法によ
り濾過、水洗、乾燥、粉砕して酸処理品を得た。得られ
た酸処理品の電顕(S掛A〕写真を第7図に示す。第7
図では酸処理時のpH低下により粒子の溶解と凝集に基
ず(不規則な形状が認められコールタ−カウンターで粒
度分布を測定しようとする場合は、測定時にアパチャー
チューブ(径ユ0〃)の閉そくが生じ、、70μ以上の
凝集粗大粒子が多くイj在しており原体ゼ討ライトのス
ケルトンは消失していた。この比咬例では酸処理物の収
率が低いばかりでなく、水に分散させた場合の懸濁液の
分散性も極めて悪いものであった。
Using the same Na-A zeolite as in Comparative Example-Example M-/, 11% sulfuric acid was added for acid treatment in the same manner as in Example-7, and further sulfuric acid was added to prepare a mixed slurry. After adjusting the pH to 3.0, stirring was continued for 1 hour. Thereafter, the acid-treated product was obtained by filtration, washing with water, drying, and pulverization using conventional methods. An electron micrograph (S/A) of the acid-treated product obtained is shown in Figure 7.
The figure shows that particles dissolve and agglomerate due to pH drop during acid treatment. Blockage occurred, and many aggregated coarse particles of 70μ or more were present, and the skeleton of the bulk zeolite had disappeared.In this case, not only was the yield of the acid-treated product low, but the water The dispersibility of the suspension was also extremely poor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はA型ゼオライトの水性懸濁液に徐々に項部を添
加する際の塩酸の添加量と懸濁液のpHとの関係を示す
図、第2図は本発明の実施例/の成績物、第3図は本発
明の実施例1で使用した原料のA型ゼオライト、第弘図
は実施例−の成績物、第S図は実施例グの成績物のそれ
ぞれ電子顕微鏡(SEM)写真を示す図、@A図および
第7図はそれぞれ比較例1および比較例コの成績物の電
子顕微鏡(SEM)  写真を示す図である。 ”IOHCI (cc ) 第2図 第3図 第4図 第5図 〜
Fig. 1 is a diagram showing the relationship between the amount of hydrochloric acid added and the pH of the suspension when the nuclide is gradually added to an aqueous suspension of A-type zeolite, and Fig. 2 is a diagram showing the relationship between the amount of hydrochloric acid added and the pH of the suspension. Figure 3 shows the A-type zeolite used as the raw material in Example 1 of the present invention, Figure 3 shows the result of Example 1, and Figure S shows the result of Example G using an electron microscope (SEM). Figures showing photographs, Figure @A, and Figure 7 are diagrams showing electron microscope (SEM) photographs of the results of Comparative Example 1 and Comparative Example 2, respectively. ”IOHCI (cc) Figure 2 Figure 3 Figure 4 Figure 5~

Claims (1)

【特許請求の範囲】 (1)ゼオライトの酸処理物であって、平均粒径が0.
/ないし70μm であり、かつ平均粒径の′/、2か
ら平均粒径の77口の粒径の範囲内の粒度部分が全体の
50%以上であるような均一な粒度分布を有することを
特徴とする非晶質アルミノ珪酸塩。 i2+  ゼオライトがA型ゼオライト、X型ゼオライ
ト、p J、F1セオライト、ソーダライトまたはアナ
ルサイムから選ばれた7種または2種以」二である特許
請求の範囲第1項記載の非晶質アルミノ珪酸塩。 (3)  ゼオライ)・がNa2O成分の一部または大
部分がNa+以外の陽イオンで置換されたゼオライトで
ある!Iイ許ml求の範囲第1項記載の非晶質アルミノ
珪酸塩。 (4)  ゼオライトの1清処理物が濃密な不定形シリ
カの膜で被覆されたものである特許fl’f求の範囲i
/項記載の非晶質アルミノ珪酸塩。 (5)  ゼオライトの水性スラリーに、pl−]  
をq以上に保ちながら酸または酸性塩または酸と酸性塩
とを作用させることを特徴とする非晶質アルミノ珪酸塩
の製法。 (6)  ゼオライトがA型ゼオライト、XSゼオライ
ト、P型ゼオライト、ソーダライトまたはアナルサイム
から選ばれた1種寸たは、2種以上である特許請求の範
囲第S項記載の非晶質アルミノ珪酸塩の製法。 (7)  ゼオライトがNa2O成分の一部または大部
分がNa+以外の陽イオンで置換されたゼオライトであ
る特許請求の範囲漬法頭七未菊徘藉”   −!   
 −444母第S項記載の非晶質アルミノ珪酸塩の製法
[Scope of Claims] (1) An acid-treated product of zeolite, which has an average particle size of 0.
/ to 70 μm, and has a uniform particle size distribution such that the particle size portion within the particle size range of 2 to 77 μm of the average particle size accounts for 50% or more of the total particle size. Amorphous aluminosilicate. The amorphous aluminosilicate according to claim 1, wherein the i2+ zeolite is seven or more types selected from A-type zeolite, X-type zeolite, pJ, F1 theolite, sodalite, and analcyme. . (3) Zeolite) is a zeolite in which part or most of the Na2O component is substituted with cations other than Na+! The amorphous aluminosilicate according to item 1. (4) The scope of the patent fl'f, in which a zeolite treated product is coated with a film of dense amorphous silica
Amorphous aluminosilicate described in /. (5) Into the aqueous slurry of zeolite, pl-]
A method for producing an amorphous aluminosilicate, which comprises reacting an acid or an acidic salt, or an acid and an acidic salt while maintaining q or more. (6) The amorphous aluminosilicate according to claim S, wherein the zeolite is one or more types selected from A-type zeolite, XS zeolite, P-type zeolite, sodalite, and analcyme. manufacturing method. (7) The zeolite is a zeolite in which a part or most of the Na2O component is substituted with cations other than Na+.
-444 A method for producing the amorphous aluminosilicate described in item S.
JP58086701A 1983-05-19 1983-05-19 Amorphous aluminosilicate and its manufacture Granted JPS59213616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58086701A JPS59213616A (en) 1983-05-19 1983-05-19 Amorphous aluminosilicate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58086701A JPS59213616A (en) 1983-05-19 1983-05-19 Amorphous aluminosilicate and its manufacture

Publications (2)

Publication Number Publication Date
JPS59213616A true JPS59213616A (en) 1984-12-03
JPH0353252B2 JPH0353252B2 (en) 1991-08-14

Family

ID=13894239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58086701A Granted JPS59213616A (en) 1983-05-19 1983-05-19 Amorphous aluminosilicate and its manufacture

Country Status (1)

Country Link
JP (1) JPS59213616A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227168A2 (en) * 1985-12-09 1987-07-01 Mizusawa Industrial Chemicals Ltd. Alumina-silica resin additive
FR2612910A1 (en) * 1987-03-31 1988-09-30 Mizusawa Industrial Chem PROCESS FOR THE PREPARATION OF SILICEOUS PARTICLES, ACTIVE ANALYZE AND AMORPHOUS SILICA OBTAINED BY THIS PROCESS, AND ELECTROVISCULAR LOADS AND FLUID CONTAINING THE SAME
JPH02225314A (en) * 1989-02-28 1990-09-07 Mizusawa Ind Chem Ltd Amorphous silica-alumina spherical particle and production thereof
JPH0333162A (en) * 1989-06-30 1991-02-13 Mizusawa Ind Chem Ltd Resin compounding ingredient composition
JP2004008518A (en) * 2002-06-07 2004-01-15 Kao Corp Deodorant
JP2013147408A (en) * 2012-01-23 2013-08-01 Masanao Kato Proton conductor, and electrochemical element using the same
JP2016017179A (en) * 2014-07-08 2016-02-01 豐陽▲産▼業科技股▲ふん▼有限公司 Composition comprising sodalite and polyester composite material
WO2016167272A1 (en) * 2015-04-17 2016-10-20 東亞合成株式会社 Deodorizer, deodorizer composition, and deodorizing processed article
JPWO2017047056A1 (en) * 2015-09-15 2018-03-29 日本板硝子株式会社 Light diffusion transmission sheet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227168A2 (en) * 1985-12-09 1987-07-01 Mizusawa Industrial Chemicals Ltd. Alumina-silica resin additive
FR2612910A1 (en) * 1987-03-31 1988-09-30 Mizusawa Industrial Chem PROCESS FOR THE PREPARATION OF SILICEOUS PARTICLES, ACTIVE ANALYZE AND AMORPHOUS SILICA OBTAINED BY THIS PROCESS, AND ELECTROVISCULAR LOADS AND FLUID CONTAINING THE SAME
JPH02225314A (en) * 1989-02-28 1990-09-07 Mizusawa Ind Chem Ltd Amorphous silica-alumina spherical particle and production thereof
JPH0617217B2 (en) * 1989-02-28 1994-03-09 水澤化学工業株式会社 Amorphous silica / alumina spherical particles and method for producing the same
JPH0333162A (en) * 1989-06-30 1991-02-13 Mizusawa Ind Chem Ltd Resin compounding ingredient composition
JPH0569865B2 (en) * 1989-06-30 1993-10-01 Mizusawa Industrial Chem
JP2004008518A (en) * 2002-06-07 2004-01-15 Kao Corp Deodorant
JP2013147408A (en) * 2012-01-23 2013-08-01 Masanao Kato Proton conductor, and electrochemical element using the same
JP2016017179A (en) * 2014-07-08 2016-02-01 豐陽▲産▼業科技股▲ふん▼有限公司 Composition comprising sodalite and polyester composite material
WO2016167272A1 (en) * 2015-04-17 2016-10-20 東亞合成株式会社 Deodorizer, deodorizer composition, and deodorizing processed article
JPWO2016167272A1 (en) * 2015-04-17 2018-02-08 東亞合成株式会社 Deodorant, deodorant composition and deodorized processed product
JPWO2017047056A1 (en) * 2015-09-15 2018-03-29 日本板硝子株式会社 Light diffusion transmission sheet

Also Published As

Publication number Publication date
JPH0353252B2 (en) 1991-08-14

Similar Documents

Publication Publication Date Title
JPS59213616A (en) Amorphous aluminosilicate and its manufacture
JPS63190705A (en) Synthetic stevensite and its production
EP0159822B1 (en) Inorganic filler and process for production thereof
US5997626A (en) Low abrasion calcined kaolin pigments and enhanced filtration method
CA1229331A (en) Method of treating zeolite ores to remove discoloring impurities and improve its brightness and resulting finely ground zeolitic product and coating materials, paper and coated paper containing same
DE3806187C2 (en) Compound phyllosilicate and process for its manufacture
JP3084125B2 (en) Filler for paper and paper using it
CN110139829A (en) Poly-aluminium salt and its purposes and zeolite in preparation high-purity colloidal aluminum-silica composite granules
US4416805A (en) Synthesis of zeolites of small and uniform size having a high magnesium exchange capacity
US5151124A (en) Method for forming aggregated kaolin pigment
JPH0665892A (en) Pitch adsorbent
EP3887310B1 (en) Mineral composition
JPH0416404B2 (en)
DE1134974B (en) Process for the production of finely divided calcium carbonate
JPH0647459B2 (en) Silica-based filler and method for producing the same
US2972594A (en) Process for the manufacture of finely divided metal silicates
JPH04238806A (en) Silica-based pigment excellent in dispersibility into aqueous binder and use thereof
JPH05301707A (en) Water-containing silicic acid and its production
JP2709083B2 (en) Papermaking additives
US4666693A (en) Process for the preparation of high-level ion-exchanged zeolites
JPH04202009A (en) Metal substituted body of crystalline laminar silicic acid and its production
JP6621291B2 (en) Method for producing water-swellable layered silicate
JPH05178608A (en) Synthetic kaolinite uniform in particle diameter, high in crystallinity and purity, and its production
JPH0662289B2 (en) Amorphous aluminosilicate filler and method for producing the same
JPS6225607B2 (en)