JPH0416404B2 - - Google Patents

Info

Publication number
JPH0416404B2
JPH0416404B2 JP58029225A JP2922583A JPH0416404B2 JP H0416404 B2 JPH0416404 B2 JP H0416404B2 JP 58029225 A JP58029225 A JP 58029225A JP 2922583 A JP2922583 A JP 2922583A JP H0416404 B2 JPH0416404 B2 JP H0416404B2
Authority
JP
Japan
Prior art keywords
zeolite
acid
extender pigment
extender
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58029225A
Other languages
Japanese (ja)
Other versions
JPS59156913A (en
Inventor
Hiroyuki Kashiwase
Yutaka Konose
Genichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2922583A priority Critical patent/JPS59156913A/en
Publication of JPS59156913A publication Critical patent/JPS59156913A/en
Publication of JPH0416404B2 publication Critical patent/JPH0416404B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は非晶質アルミノ珪酸塩を主要成分とす
る体質顔料に関する。 一般に、体質顔料は非着色性の顔料であつて、
他の着色用顔料と共に塗料や印刷インキの配合物
あるいはレーキ顔料の基材として使用され、着色
顔料の展色を効果的にする。塗膜に補強効果を与
える、下地や塗膜の面を平滑にする、塗料や印刷
インキに適当な粘性と流動性を与える、等の作用
効果を発揮させるものであつてこのためには、体
質顔料が下記の諸要件を備えていることが必要で
ある。 亜麻仁油やワニスなどのビヒクル中で可及的
に透明であること; 顔料粒子のきめが細かく、ビヒクルや他の顔
料などの混合が容易で、分散性のよいこと; 吸油量の値が適切で、適度の配合量で所望の
流動特性が得られること; ビヒクルや溶剤に不溶性であり、またそれら
と反応性がないこと; 光・熱・薬品などに堅ろうであること; 印刷インキの乾燥性を阻害しないこと; 毒性のないこと; などである。 従来、体質顔料としては主に硫酸バリウム、炭
酸カルシウム、アルミナホワイト、ホワイトカー
ボンなどが使用されているが、これらの体質顔料
は一長・一短があり、総合的には何れも満足すべ
きものではなかつた。 すなわち、硫酸バリウムは古くから体質顔料と
して使われているが、亜麻仁油で練ると半透明の
ペーストになり、練り易いが一般用インキとして
の適性はあまり良くない。 炭酸カルシウムも練り易いが、亜麻仁油中では
半透明であり、高度の透明性を必要とする印刷イ
ンキには適さない。また、若干マツトな塗膜が生
じ易いという欠点がある。 アルミナホワイトは亜麻仁油と練るとほぼ透明
なペーストが得られるが、酸価の高いワニスと練
るとリバリングを起したりインキの乾燥を遅らせ
たりする欠点がある。また、塗膜の光沢が失なわ
れ易く、他の顔料を変色させることもある。 一方、ホワイトカーボンはビヒクル中でかなり
透明であるが、吸油量の値が著しく大(100〜200
ml/100g)で少量の添加で粘度が増大するため
添加量が少量に限られ、着色または白色顔料に対
する充分な展色効果や塗膜の補強効果などが得ら
れないという欠点がある。 また従来、或種の無定形アルミノ珪酸塩の微粉
末(ゼオレツクス)を塗料の充填剤として使用す
ることが知られているが、この種のアルミノ珪酸
塩はゼオライトと異なり、むしろホワイトカーボ
ンに近いものであつて一次粒子の径が0.02〜
0.04μmの超微粒子から成り、吸油量の値も約100
〜150ml/100gであり、物質の構造や性状、或い
は使用の目的、効果等も本発明の体質顔料とは著
しく相違するものである。 本発明者らは、このような従来の体質顔料の多
くの欠点を克服する新規の高性能体質顔料を開発
するために各種の実験と検討を重ねた結果、ゼオ
ライトを酸処理することによつて得られる非晶質
のアルミノ珪酸塩およびその表面改質物が体質顔
料として極めて好適であることを見出し本発明を
完成した。 すなわち、本発明はゼオライトの酸処理によつ
て得られる非晶質アルミノ珪酸塩を主要成分とし
た、吸油量の値が10ないし80ml/100gであり、
かつ屈折率の値が1.42ないし1.53であることを特
徴とする体質顔料である。 一般に、ゼオライトは一般式(1.0±0.2)
M2O・Al2O3・xSiO2・yH2O(但し、MはNaま
たはそれと当量の1価または多価金属、xは多く
の場合1.5〜20、yは0〜10の値)で表わされる
化学組成とX線回折によつて識別することのでき
る独特の結晶構造を有するアルミノ珪酸塩であ
り、天然鉱物及び合成品を含めて各種のものが知
られている(通常、MはNaである)。 また、ゼオライトは一般に独特な結晶構造に基
づく独特な吸着性能やイオン交換性能を有するこ
とも知られており、それらの特性を生かした各種
の用途がひらかれている。 しかして、本発明にかかる体質顔料は前記ゼオ
ライトのうち基本的粒子形態のスケルトンを実質
的に具備している酸処理物であつて、かつ体質顔
料として望ましい吸油量と屈折率とを有する非晶
質アルミノ珪酸塩である。従つて、以下にその製
法と共に本発明の体質顔料について詳述する。 本発明者らの検討結果によれば、驚くべきこと
にA型ゼオライト(Na2O・Al2O3・2SiO2
4.5H2O)やX型ゼオライト(Na2O・Al2O3
2.5SiO2・6.1H2O)等の成分モル比(SiO2
Al2O3)の値が比較的小さい種類のゼオライトは
酸で適度に処理することによつて、X線的には明
らかに非晶質となるにもかかわらず、その一次粒
子の形や大きさなどの粒子状態は酸処理によつて
殆んど変化せず、酸処理前の粒子状態が殆んどそ
のまゝ保持されることが判明した。 本発明はこのような事実の応用に基づくもので
あつて、ゼオライトの酸処理により非晶質のアル
ミノ珪酸塩と化学的特徴が全く別途になるにも拘
らず、原体ゼオライトの基本的粒子特性を維持し
たものであるから、体質顔料としては原体ゼオラ
イトの諸物性の依存性が大きく、ゼオライト自体
の粒子状態は勿論、吸油量、屈折率等の特性が適
切なものであることが必要である。 従つて、本発明において使用する原料としての
ゼオライトは、まず上記のように成分モル比
(SiO2/Al2O3)が比較的小さい種類のものであ
るとともに、その粒子状態が均一微細であること
が必要である。 この場合、均一微細な粒子状態とは10μm以上
の粒度部分が1%以下であり、かつ6μm以下の
粒度部分が85%以上であるような粒度分布を有す
るものを意味する。 また、本発明において使用する原料としてのゼ
オライトは、吸油量の値が10ないし80ml/100g
程度のものが望ましい。 このような観点から、本発明の体質顔料を製造
する際の原料として適するゼオライトの種類とし
ては各種のものが指摘されるが、A型ゼオライ
ト、X型ゼオライト、P型ゼオライト、ソーダラ
イト、アナルサイム等が特に好適であり、これら
の一種または2種以上を使用することができる。 また、上記の粒度や吸油量の値をもつた均一微
細なゼオライト粒子は各種の方法で調製すること
ができるが、例えば特開昭57−3713や特開昭57−
166311等の方法によつて得られるA型ゼオライト
やX型ゼオライトのような合成ゼオライトは特に
好適である。 さらに、これらのゼオライト中のNa2O成分の
一部または大部分をイオン交換反応によつてNa+
以外の陽イオンで置換した金属置換ゼオライトを
使用することもできる。 この場合、Na+以外の陽イオンの種類としては
NH4 +、Li+、K+等の1価の陽イオン、Mg2+
Ca2+、Br2+、Ba2+、Zn2+、Cd2+、Pb2+等の2価
の陽イオン等各種のものが挙げられるが、陽イオ
ンの種類及び置換の程度によつてゼオライト粒子
の屈折率を或程度調節することが可能である。 このようなゼオライトを酸処理する方法として
は各種の態様が可能であるが、通常、次のように
して行なうことができる。 すなわち、上記のゼオライト粒子を水中に分散
させて水性懸濁液とし、撹拌しつゝこれに酸また
は酸性塩類の溶液を徐々に添加し、最終的に懸濁
液のPHの値が低くとも4.5までとなるようにその
添加量を調節したのち、固−液分離および洗浄を
行ない、必要に応じて乾燥・粉砕等の工程を加え
る。 ここで使用する酸または酸性物質としては、例
えば硫酸、塩酸、硝酸、燐酸、炭酸、亜硫酸等の
鉱酸類、ギ酸、酢酸、シユウ酸、等の有機酸類、
あるいは重硫酸ソーダや酸性燐酸ソーダ等の酸性
塩類等各種のものが挙げられるがこれらに限定さ
れるものではない。 最終的なPHの値が4.5未満ではゼオライトの粒
子状態が著しく変化したり粒子全体が溶解・消失
したりして原体ゼオライトのスケルトンが破壊さ
れるので不適当であり、一方PHが9より高くなる
と非晶質化の程度が不充分となる。従つて特にPH
5〜8の範囲の弱酸性域が好ましい。非晶質の程
度はX線回折図の回折線の有無及び強弱によつて
評価されるものであつて、本発明の体質顔料にお
いては回折線の高さが原体ゼオライトの回折線の
約1/2以下であることを意味する。 一方、屈折率の値は体質顔料としての透明性を
支配する重要な特性であつて、使用する亜麻仁油
やワニスの屈折率の値に近いもの程良好な透明性
が得られるものであり、充分な透明性を得るため
には屈折率の値(nD)が1.42ないし1.53であるこ
とが必要である。 この点、上記のゼオライトの酸処理によつて得
られる成績物の屈折率は自らこの範囲の値となる
が、必要に応じて陽イオンによる置換の程度や下
記のシリカ被覆処理におけるシリカの量的割合な
どにより屈折率の値を或程度調節することができ
るので、特定のビヒクルに対してより一層高度の
透明性を発揮させることができる。 本発明に係る体質顔料は前記のような特定の非
晶質アルミノ珪酸塩であるが、このものを顔料特
性をより改善するために必要に応じて改質したも
のをも含む。 かかる改質物としては、例えば代表的なものと
しては、濃密でかつ微細な不定形シリカの連続的
皮膜を付与したもの、あるいは微細な白色金属含
水酸化物、例えばアルミニウム、チタン、ジルコ
ニウム、アンチモン等の含水酸化物の沈積による
もの、または表面活性剤、分散剤等による粒子表
面の改質などがあげられる。 従つて、例えばシリカ被覆処理を施す場合は、
ゼオライトの水性懸濁液に酸または酸性塩類を添
加して酸処理を行つたのち、60℃以上の温度で
徐々に活性シリカゾルを添加するかまたは珪酸ア
ルカリと酸を徐々に添加して活性シリカを生成さ
せるようにすることによつて粒子表面を緻密な無
定形シリカの皮膜で被うことができる。 この際に添加するまたは生成させるシリカの量
は、多くの場合、非晶質アルミノ珪酸塩に対し2
ないし30重量%で充分な被覆の効果が得られる
が、シリカ量の増大につれて粒子の屈折率の値は
多少増大する傾向となる。 このようなシリカ被覆処理を施した非晶質アル
ミノ珪酸塩の粒子は、原料として使用した元のゼ
オライトの種類如何に拘らず、表面が著しく不活
性で、光・熱・薬品などに対し一層堅ろうであ
り、酸価の高いビヒクルや各種の配合物と混練し
ても塗料や印刷インキとしての諸性能を劣化させ
ることがない。また同様に金属含水酸化物の被覆
処理においては相当する金属塩水溶液を添加して
加水分解により生じる水酸化物を沈積処理すれば
よい。 以上の記載から明らかなように、本発明の体質
顔料の特徴としては次の事項が指摘される。 従来の硫酸バリウムや炭酸カルシウム等の体
質顔料よりも遥かに透明性が大である。 特に、塗料や印刷インキに使用される亜麻仁
油やワニスの屈折率の値と同等の値となるよう
に屈折率を調節した本発明の体質顔料はこれら
のビヒクル中で殆ど完全に透明である。 顔料粒子のきめが細かく、吸油量の値が一般
の顔料と同等であつて、ビヒクルや他の顔料な
どとの混練が容易で粒子の分散性が良い。この
点は、大きな吸油量の値をもつたアルミナホワ
イトやホワイトカーボンとは著しく相違する。 比重値が約2で比較的小であるために、硫酸
バリウムに比して約1/2の使用量で同等の充填
効果が得られる。 ビヒクルや溶剤に不溶である。 光や熱に堅ろうである。特に緻密な無定形シ
リカで被覆したゼオライト粒子は表面が極めて
不活性で各種薬品にも侵されず、印刷インキの
乾燥性を阻害することもない。従つて酸価の高
い油と練つてもリバリングを起して表面を固化
したりゲル化を促進したりすることもない。 無毒性である。 このような多くの特徴を有する本発明の体質顔
料は、一般の塗料や印刷インキは勿論のこと、高
度の品質特性を必要とする特殊塗料や高級印刷イ
ンキ用として、或はレーキ顔料用の透明性基材と
しても広く使用することが出来る画期的な体質顔
料であるということができる。 以下、実施例を示すが、成績物の評価は次の試
験法によつて行つた。 吸油料:JISK5101−78の19 比 重: 〃 17 屈折率:アツベの屈折計を用い、Larsenの油浸
法により測定した。 粒度分布:コールターカウンター(コールターエ
レクトロニクス社製)を用いアパチヤーチユー
ブ径20μmで測定した。 色 差:デジタル測色色差計(スガ試験機(株)製)
を用い色差を測定した。 透明性:隠ぺい力測定用紙(注)の黒面を基準に
して、黒面上に塗布された各サンプル顔料の色
差を測定し、色差が小さいものを透明性が大き
いと定義した。 (注) 隠ぺい力測定用紙 白面と黒面をもつアート紙(約217×197mm)
で、その45度拡散反射率は白面で79.69%、黒
面で1.48%であつた。 実施例 1 500c.c.ビーカーにNa−Aゼオライト50gを秤量
し、水200gを加えてゼオライト濃度20%のスラ
リー250gを調製した。なおこのスラリーのPHは
11.7であつた。スラリーを撹拌しながら、ここに
4%硫酸250gを添加し、添加後1時間撹拌を継
続したのち、常法により過、水洗、乾燥、粉砕
を行ない、Na−A型ゼオライトの酸処理品を得
た。この酸処理品の電顕(SEM)写真を第1図
に示す。この酸処理品のX線回折(X.R.D)分析
を行なつたところ、回折ピークが全く認められ
ず、非晶質アルミノ珪酸塩であることが明らかで
ある。この酸処理品の比重、屈折率、吸油量、酸
処理条件、組成等を表−1に示す。
The present invention relates to an extender pigment whose main component is an amorphous aluminosilicate. Generally, extender pigments are non-coloring pigments,
It is used in conjunction with other coloring pigments in paint and printing ink formulations or as a base for lake pigments to provide effective spreading of color pigments. It exerts effects such as reinforcing the paint film, smoothing the surface of the base and paint film, and giving appropriate viscosity and fluidity to the paint and printing ink. It is necessary for the pigment to meet the following requirements. It should be as transparent as possible in a vehicle such as linseed oil or varnish; The pigment particles should be fine-grained, easy to mix with vehicles and other pigments, and have good dispersibility; The oil absorption value should be appropriate. , the desired flow characteristics can be obtained with an appropriate amount; it is insoluble in vehicles and solvents, and it has no reactivity with them; it is resistant to light, heat, chemicals, etc.; it improves the drying properties of printing inks. No inhibition; No toxicity; etc. Conventionally, barium sulfate, calcium carbonate, alumina white, white carbon, etc. have been mainly used as extender pigments, but these extender pigments have advantages and disadvantages, and none of them are overall satisfactory. Nakatsuta. That is, barium sulfate has been used as an extender pigment for a long time, but when kneaded with linseed oil, it becomes a translucent paste, which is easy to knead, but is not very suitable as a general-purpose ink. Calcium carbonate is also easy to mix, but it is translucent in linseed oil, making it unsuitable for printing inks that require a high degree of transparency. It also has the disadvantage that it tends to produce a slightly matte coating. When alumina white is kneaded with linseed oil, a nearly transparent paste is obtained, but when kneaded with a varnish with a high acid value, it has the disadvantage of causing reburring and slowing down the drying of the ink. Furthermore, the gloss of the coating film is likely to be lost, and other pigments may become discolored. White carbon, on the other hand, is quite transparent in the vehicle, but has significantly higher oil absorption values (100-200
Since the viscosity increases with the addition of a small amount (ml/100g), the amount added is limited to a small amount, which has the disadvantage that a sufficient color spreading effect on colored or white pigments and a reinforcing effect on the coating film cannot be obtained. In addition, it has been known that a certain type of amorphous aluminosilicate fine powder (zeolex) is used as a filler in paints, but this type of aluminosilicate is different from zeolite and is rather similar to white carbon. and the diameter of the primary particle is 0.02~
Made of ultrafine particles of 0.04 μm, the oil absorption value is approximately 100.
~150ml/100g, and the structure and properties of the substance, purpose of use, effects, etc. are also significantly different from the extender pigment of the present invention. The present inventors have conducted various experiments and studies to develop a new high-performance extender pigment that overcomes many of the drawbacks of conventional extender pigments. The present invention was completed based on the discovery that the resulting amorphous aluminosilicate and its surface-modified product are extremely suitable as extender pigments. That is, the present invention has an oil absorption value of 10 to 80 ml/100 g, which is mainly composed of amorphous aluminosilicate obtained by acid treatment of zeolite,
It is an extender pigment characterized by having a refractive index value of 1.42 to 1.53. Generally, zeolite has the general formula (1.0±0.2)
M 2 O・Al 2 O 3・xSiO 2・yH 2 O (where M is Na or an equivalent monovalent or polyvalent metal, x is often a value of 1.5 to 20, and y is a value of 0 to 10). It is an aluminosilicate with a unique crystal structure that can be identified by chemical composition and X-ray diffraction, and is known in a variety of forms, including natural minerals and synthetic products (usually M is Na ). Zeolites are also generally known to have unique adsorption and ion exchange properties based on their unique crystal structures, and a variety of uses have been developed that take advantage of these properties. Therefore, the extender pigment according to the present invention is an acid-treated product of the zeolite that substantially has a skeleton in the form of basic particles, and is an amorphous product having an oil absorption amount and a refractive index desirable as an extender pigment. It is a high quality aluminosilicate. Therefore, the extender pigment of the present invention will be described in detail below along with its manufacturing method. According to the study results of the present inventors, surprisingly, type A zeolite (Na 2 O・Al 2 O 3・2SiO 2
4.5H 2 O) and X-type zeolite (Na 2 O・Al 2 O 3
Component molar ratio (SiO 2 /
Although zeolites with a relatively small value of Al 2 O 3 ) become clearly amorphous in X-rays when treated appropriately with acid, the shape and size of their primary particles change. It was found that the state of the particles, such as grains, was hardly changed by the acid treatment, and the state of the particles before the acid treatment was maintained almost as it was. The present invention is based on the application of this fact, and although the acid treatment of zeolite makes the chemical characteristics completely different from that of amorphous aluminosilicate, the basic particle characteristics of the raw zeolite Therefore, as an extender pigment, it is highly dependent on the physical properties of the raw zeolite, and it is necessary to have appropriate properties such as oil absorption and refractive index, as well as the particle state of the zeolite itself. be. Therefore, the zeolite used as a raw material in the present invention must first have a relatively small component molar ratio (SiO 2 /Al 2 O 3 ) as described above, and must have a uniform and fine particle state. It is necessary. In this case, the term "uniform and fine particles" means a particle size distribution in which the particle size portion of 10 μm or more is 1% or less, and the particle size portion of 6 μm or less is 85% or more. In addition, the zeolite used as a raw material in the present invention has an oil absorption value of 10 to 80ml/100g.
It is desirable that the degree of From this point of view, various types of zeolite have been suggested as suitable as raw materials for producing the extender pigment of the present invention, including A-type zeolite, X-type zeolite, P-type zeolite, sodalite, analcyme, etc. are particularly preferred, and one or more of these can be used. Further, uniform fine zeolite particles having the above particle size and oil absorption values can be prepared by various methods, such as JP-A-57-3713 and JP-A-57-3713.
Synthetic zeolites such as A-type zeolite and X-type zeolite obtained by methods such as No. 166311 are particularly suitable. Furthermore, some or most of the Na 2 O components in these zeolites are converted to Na + by an ion exchange reaction.
Metal-substituted zeolites substituted with other cations can also be used. In this case, the types of cations other than Na + are
Monovalent cations such as NH 4 + , Li + , K + , Mg 2+ ,
Various divalent cations such as Ca 2+ , Br 2+ , Ba 2+ , Zn 2+ , Cd 2+ , Pb 2+ etc. can be mentioned, but it depends on the type of cation and the degree of substitution. It is possible to adjust the refractive index of the zeolite particles to some extent. Although various methods are possible for acid-treating such zeolite, it can usually be carried out as follows. That is, the above zeolite particles are dispersed in water to form an aqueous suspension, and an acid or acidic salt solution is gradually added to this while stirring, until the pH value of the suspension is at least 4.5. After adjusting the amount added so as to achieve the desired amount, solid-liquid separation and washing are performed, and steps such as drying and pulverization are added as necessary. Examples of acids or acidic substances used here include mineral acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, carbonic acid, and sulfurous acid; organic acids such as formic acid, acetic acid, and oxalic acid;
Other examples include various acid salts such as sodium bisulfate and acidic sodium phosphate, but are not limited thereto. If the final pH value is less than 4.5, it is unsuitable because the zeolite particle state changes significantly or the entire particle dissolves or disappears, destroying the bulk zeolite skeleton.On the other hand, if the pH value is higher than 9 In this case, the degree of amorphization becomes insufficient. Therefore, especially PH
A weakly acidic range of 5 to 8 is preferred. The degree of amorphousness is evaluated by the presence or absence and strength of diffraction lines in an X-ray diffraction diagram, and in the extender pigment of the present invention, the height of the diffraction line is approximately 1 times higher than that of the original zeolite. means less than /2. On the other hand, the refractive index value is an important property that governs the transparency of extender pigments, and the closer the refractive index value of the linseed oil or varnish used, the better the transparency can be obtained. In order to obtain good transparency, it is necessary that the refractive index value (n D ) be between 1.42 and 1.53. In this regard, the refractive index of the product obtained by the above acid treatment of zeolite will be within this range, but if necessary, the degree of substitution by cations and the amount of silica in the silica coating treatment described below may be adjusted. Since the value of the refractive index can be adjusted to some extent by changing the ratio, etc., a higher degree of transparency can be exhibited for a specific vehicle. The extender pigment according to the present invention is the above-mentioned specific amorphous aluminosilicate, but it also includes those modified as necessary to further improve the pigment properties. Typical examples of such modified materials include those with a continuous film of dense and fine amorphous silica, or fine white metal hydrated oxides such as aluminum, titanium, zirconium, antimony, etc. Examples include precipitation of hydrous oxides, or modification of particle surfaces with surfactants, dispersants, etc. Therefore, for example, when applying silica coating treatment,
After acid treatment by adding acid or acidic salts to an aqueous suspension of zeolite, activated silica is gradually added at a temperature of 60°C or higher, or activated silica is gradually added to an alkali silicate and acid. By allowing this to occur, the particle surface can be covered with a dense amorphous silica film. The amount of silica added or generated at this time is often 2% for the amorphous aluminosilicate.
A sufficient coating effect can be obtained at silica of 30 to 30% by weight, but as the amount of silica increases, the refractive index value of the particles tends to increase somewhat. Amorphous aluminosilicate particles coated with silica have extremely inert surfaces and are more resistant to light, heat, and chemicals, regardless of the type of zeolite used as raw material. Therefore, even if it is kneaded with a vehicle with a high acid value or various formulations, its performance as a paint or printing ink will not deteriorate. Similarly, in the coating treatment of a metal hydrated oxide, a corresponding aqueous metal salt solution may be added to deposit the hydroxide produced by hydrolysis. As is clear from the above description, the following points are pointed out as characteristics of the extender pigment of the present invention. It is far more transparent than conventional extender pigments such as barium sulfate and calcium carbonate. In particular, the extender pigments of the present invention, whose refractive index is adjusted to a value similar to that of linseed oil and varnish used in paints and printing inks, are almost completely transparent in these vehicles. The pigment particles are fine-grained, have an oil absorption value equivalent to that of general pigments, are easy to knead with vehicles and other pigments, and have good particle dispersibility. This point is markedly different from alumina white and white carbon, which have large oil absorption values. Since the specific gravity value is relatively small at about 2, the same filling effect can be obtained with about 1/2 the amount used compared to barium sulfate. Insoluble in vehicles and solvents. It is resistant to light and heat. In particular, zeolite particles coated with dense amorphous silica have extremely inert surfaces, are not attacked by various chemicals, and do not inhibit the drying properties of printing inks. Therefore, even if it is kneaded with oil having a high acid value, it will not cause reburring, solidify the surface, or promote gelation. Non-toxic. The extender pigment of the present invention, which has many of these characteristics, can be used not only for general paints and printing inks, but also for special paints and high-grade printing inks that require high quality characteristics, or as transparent pigments for lake pigments. It can be said that it is an epoch-making extender pigment that can be widely used as a sexual base material. Examples will be shown below, and the results were evaluated using the following test method. Oil absorption: 19 of JISK5101-78 Specific gravity: 17 Refractive index: Measured by Larsen's oil immersion method using an Atsube refractometer. Particle size distribution: Measured using a Coulter Counter (manufactured by Coulter Electronics) with an aperture tube diameter of 20 μm. Color difference: Digital colorimeter (manufactured by Suga Test Instruments Co., Ltd.)
The color difference was measured using Transparency: Using the black side of the hiding power measurement paper (Note) as a reference, the color difference of each sample pigment applied on the black side was measured, and those with a small color difference were defined as having high transparency. (Note) Hiding power measurement paper Art paper with white and black sides (approx. 217 x 197 mm)
The 45 degree diffuse reflectance was 79.69% for the white surface and 1.48% for the black surface. Example 1 50 g of Na-A zeolite was weighed in a 500 c.c. beaker, and 200 g of water was added to prepare 250 g of slurry with a zeolite concentration of 20%. Furthermore, the pH of this slurry is
It was 11.7. While stirring the slurry, 250 g of 4% sulfuric acid was added thereto, and stirring was continued for 1 hour after the addition, followed by filtering, washing with water, drying, and pulverization in a conventional manner to obtain an acid-treated product of Na-A type zeolite. Ta. Figure 1 shows an electron microscopy (SEM) photograph of this acid-treated product. When this acid-treated product was subjected to X-ray diffraction (XRD) analysis, no diffraction peaks were observed, and it was clear that it was an amorphous aluminosilicate. Table 1 shows the specific gravity, refractive index, oil absorption, acid treatment conditions, composition, etc. of this acid-treated product.

【表】 なお、原料のNa−Aゼオライトは珪酸ソーダ
溶液とアルミン酸ソーダ溶液とをバツクミキシン
グのない状態で反応させてゲルを生成させ、加熱
熟成することにより得られる(特開昭57−3713
号)。得られたNa−A型ゼオライトの電顕
(SEM)写真を第2図に示す。これらの写真から
ゼオライトの粒子状態は酸処理前後においてほと
んど変化のないことは明らかである。 実施例 2 実施例1と同様のNa−A型ゼオライトを使用
し、4%硫酸の代わりに2%硫酸を使用する以外
は実施例1と全く同様の方法で酸処理を行なつ
た。得らた酸処理品はX.R.D.分析ではNa−A型
ゼオライトの各回折ピークが約1/2〜1/3の強度に
低下しており非晶質アルミノ珪酸塩の成分を多く
含むことが明らかである。この酸処理品の比重、
屈折率、吸油量、酸処理条件、組成等を表−1に
併せて示す。 実施例 3 実施例1と同様のNa−A型ゼオライトを使用
し、4%硫酸の代わりに10%リン酸を使用する以
外は実施例1と全く同様の方法で酸処理を行なつ
た。得られた酸処理品はX.R.D.分析では回折ピ
ークが全く認められず、非晶質アルミノ珪酸艶で
あることが明らかである。この酸処理品の比重、
屈折率、吸油量、酸処理条件、組成等を表−1に
併せて示す。 実施例 4 実施例1と同様のNa−A型ゼオライトを使用
し、4%硫酸の代わりに4%リン酸を使用する以
外は実施例1と全く同様の方法で酸処理を行なつ
た。得られた酸処理品はX.R.D.分析ではNa−A
型ゼオライトの各回折ピークが約2/3の強度に低
下しており、非晶質アルミノ珪酸塩を主要成分と
することが明らかである。この酸処理品の比重、
屈折率、吸油量、酸処理条件、組成等を表−1に
併せて示す。 実施例 5 実施例1と同様に500c.c.のビーカーにNa−X型
ゼオライト50gを秤量し、水200gを加えてゼオ
ライト濃度20%のスラリー250gを調製した。な
おこのスラリーのPHは11.8であつた。スラリーを
撹拌しながら、ここに4%硫酸250gを添加し、
添加後1時間撹拌を継続したのち、常法により
過、水洗、乾燥、粉砕を行ない、Na−X型ゼオ
ライトの酸処理品を得た。この酸処理品の電顕
(SEM)写真を第3図に示す。この酸処理品のX.
R.D.分析を行なつたところ、Na−X型ゼオライ
トの回折ピークが僅かに認められるものの、その
強度は最強ピーク(2θ=6°)の場合1/10以下にな
つており、非晶質アルミノ珪酸塩を主要成分とす
ることが明らかである。この酸処理品の比重、屈
折率、吸油量、酸処理条件、組成等を表−1に併
せて示す。 なお原料のNa−X型ゼオライトは珪酸ソーダ
溶液とアルミン酸ソーダ溶液とをバツクミキシン
グのない状態で反応させてゲルを生成させ、加熱
熟成することにより調整した(特開昭57−166311
号)。このNa−X型ゼオライトの電顕(SEM)
写真を第4図に示す。 比較例 1 比較のために、市販の非晶質アルミノ珪酸塩
(Zeolex)の電顕(SEM)写真を第5図に、また
比重、屈折率、吸油量、組成等を表−1に併せて
示す。更に市販の体質顔料としてホワイトカーボ
ン、沈降性硫酸バリウム、炭酸カルシウムの物性
も表−1に併せて示す。 表−1より、ゼオライトの酸処理品は比重値が
約2であり、比較例の体質顔料よりも小さいのが
特徴である。また屈折率は亜麻仁油の屈折率に近
く、亜麻仁油と練りあわせた場合、ほとんど透明
な塗膜が得られることが明らかである。また表−
1に示したゼオライトの酸処理品はいずれも粒径
0.5〜5μmの球形に近い粒子形状を保つており、
吸油量は80ml/100g以下であるので、市販の非
晶質アルミノ珪酸塩(粒径0.02〜0.04μm、吸油
量100ml/100g以上)とは明確に区別される。な
おこのことは第1図〜第5図でわかるように、本
発明のゼオライト酸処理品はその粒子形状が元の
ゼオライトの形状を保つたままであるのに対し
て、市販の非晶質アルミノ珪酸塩は0.05μm以下
の微細粒子の不規則な凝集体であることが明白で
ある。 比較例 2 実施例1と同様のNa−A型ゼオライトを使用
し、実施例1と同様にして、酸処理のため4%硫
酸を加え、更に硫酸を添加して混合スラリーのPH
を3.0に調製したのち、1時間撹拌を継続した。
その後常法により過、水洗、乾燥、粉砕して酸
処理品を得た。得られた酸処理品の電顕(SEM)
写真を第6図に示す。第6図では酸処理時のPH低
下により粒子の溶解と凝集に基ずく不規則な形状
が認められ、原体ゼオライトのスケルトンは消失
していた。この比較例では酸処理物の収率が低い
ばかりでなく、顔料としての分散性も不良であつ
た。
[Table] The raw material Na-A zeolite can be obtained by reacting a sodium silicate solution and a sodium aluminate solution without back-mixing to form a gel, and then heating and aging it (Japanese Patent Laid-Open No. 57-3713
issue). An electron microscopy (SEM) photograph of the obtained Na-A type zeolite is shown in FIG. It is clear from these photographs that the state of the zeolite particles remains almost unchanged before and after acid treatment. Example 2 Using the same Na-A zeolite as in Example 1, acid treatment was carried out in exactly the same manner as in Example 1, except that 2% sulfuric acid was used instead of 4% sulfuric acid. XRD analysis of the acid-treated product revealed that the intensity of each diffraction peak of Na-A zeolite was reduced to about 1/2 to 1/3, indicating that it contains a large amount of amorphous aluminosilicate. be. Specific gravity of this acid-treated product,
The refractive index, oil absorption, acid treatment conditions, composition, etc. are also shown in Table 1. Example 3 The same Na-A zeolite as in Example 1 was used, and acid treatment was carried out in exactly the same manner as in Example 1, except that 10% phosphoric acid was used instead of 4% sulfuric acid. The obtained acid-treated product showed no diffraction peaks at all in XRD analysis, and it is clear that it is an amorphous aluminosilicate gloss. Specific gravity of this acid-treated product,
The refractive index, oil absorption, acid treatment conditions, composition, etc. are also shown in Table 1. Example 4 Using the same Na-A zeolite as in Example 1, acid treatment was carried out in exactly the same manner as in Example 1, except that 4% phosphoric acid was used instead of 4% sulfuric acid. The obtained acid-treated product was found to be Na-A in XRD analysis.
The intensity of each diffraction peak of the zeolite type zeolite has decreased to about 2/3, and it is clear that the main component is amorphous aluminosilicate. Specific gravity of this acid-treated product,
The refractive index, oil absorption, acid treatment conditions, composition, etc. are also shown in Table 1. Example 5 In the same manner as in Example 1, 50 g of Na-X type zeolite was weighed into a 500 c.c. beaker, and 200 g of water was added to prepare 250 g of slurry with a zeolite concentration of 20%. Note that the pH of this slurry was 11.8. While stirring the slurry, add 250g of 4% sulfuric acid,
After the addition, stirring was continued for 1 hour, followed by filtering, washing with water, drying, and pulverization in a conventional manner to obtain an acid-treated product of Na-X type zeolite. Figure 3 shows an electron microscopy (SEM) photograph of this acid-treated product. X of this acid-treated product.
When RD analysis was performed, a slight diffraction peak of Na-X type zeolite was observed, but its intensity was less than 1/10 in the case of the strongest peak (2θ = 6°), indicating that it was amorphous aluminosilicate. It is clear that salt is the main ingredient. The specific gravity, refractive index, oil absorption, acid treatment conditions, composition, etc. of this acid-treated product are also shown in Table 1. The Na-X type zeolite used as a raw material was prepared by reacting a sodium silicate solution and a sodium aluminate solution without back-mixing to form a gel, and then heating and aging the gel (Japanese Patent Application Laid-Open No. 166311-1982).
issue). Electron microscopy (SEM) of this Na-X type zeolite
A photograph is shown in Figure 4. Comparative Example 1 For comparison, an electron microscopy (SEM) photograph of a commercially available amorphous aluminosilicate (Zeolex) is shown in Figure 5, and its specific gravity, refractive index, oil absorption, composition, etc. are shown in Table 1. show. Table 1 also shows the physical properties of commercially available extender pigments such as white carbon, precipitated barium sulfate, and calcium carbonate. Table 1 shows that the acid-treated zeolite has a specific gravity of about 2, which is smaller than the extender pigment of the comparative example. Furthermore, the refractive index is close to that of linseed oil, and it is clear that when mixed with linseed oil, an almost transparent coating film can be obtained. Also table-
The acid-treated zeolite shown in 1 has a particle size of
It maintains a nearly spherical particle shape of 0.5 to 5 μm,
Since the oil absorption amount is 80 ml/100 g or less, it is clearly distinguished from commercially available amorphous aluminosilicate (particle size 0.02 to 0.04 μm, oil absorption amount 100 ml/100 g or more). As can be seen from Figures 1 to 5, the particle shape of the zeolite acid-treated product of the present invention maintains the original zeolite shape, whereas the commercially available amorphous aluminosilicate It is clear that the salt is an irregular agglomeration of fine particles of less than 0.05 μm. Comparative Example 2 Using the same Na-A zeolite as in Example 1, 4% sulfuric acid was added for acid treatment in the same manner as in Example 1, and sulfuric acid was further added to adjust the pH of the mixed slurry.
After adjusting the temperature to 3.0, stirring was continued for 1 hour.
Thereafter, the acid-treated product was obtained by filtering, washing with water, drying, and pulverizing in a conventional manner. Electron microscopy (SEM) of the acid-treated product obtained
A photograph is shown in Figure 6. In Figure 6, an irregular shape due to dissolution and aggregation of particles was observed due to the pH drop during acid treatment, and the skeleton of the bulk zeolite had disappeared. In this comparative example, not only the yield of the acid-treated product was low, but also the dispersibility as a pigment was poor.

【表】 試験例 1 JISK5101(顔料試験方法)の6に記載されてい
る方法でクリプトメーターを用いて実施例1〜
5、比較例のうち沈降性硫酸バリウムと炭酸カル
シウムの隠ぺい力を測定した。ビヒクルには4号
亜麻仁油を使用し、JISK5115沈降性硫酸バリウ
ムの試験法に準じて行ない、ゼオライトの酸処理
品や炭酸カルシウムの隠ぺい力を測定する場合は
沈降性硫酸バリウムの練り合わせペーストに顔料
容積濃度を合わせてペーストを作成し試験に供し
た。結果を表−2に示す。表−2よりゼオライト
の酸処理によつて得られる非晶質アルミノ珪酸塩
は隠ぺい力1mm以上であり、沈降性硫酸バリウム
や炭酸カルシウムと比較して極めて透明性に優れ
ていることが明らかである。
[Table] Test Example 1 Examples 1-
5. Of the comparative examples, the hiding power of precipitated barium sulfate and calcium carbonate was measured. No. 4 linseed oil is used as the vehicle, and the test is carried out according to JISK5115 precipitated barium sulfate test method. When measuring the hiding power of acid-treated zeolite or calcium carbonate, the volume of pigment is added to the mixed paste of precipitated barium sulfate. A paste was prepared by adjusting the concentrations and used for testing. The results are shown in Table-2. From Table 2, it is clear that the amorphous aluminosilicate obtained by acid treatment of zeolite has a hiding power of 1 mm or more, and has extremely superior transparency compared to precipitated barium sulfate and calcium carbonate. .

【表】 実施例 6 平均粒子径が1.02μmのNa−A型ゼオライトを
実施例1と同様に酸処理した後、スラリー濃度20
重量%のスラリーを温度90℃に保つて撹拌状態に
おいてSiO2として6重量%の珪酸ソーダ水溶液
と4%硫酸とを同時に徐々に添加してシリカ沈積
処理をした。 次いで上記の沈積処理物を常法により水洗、乾
燥および粉砕して体質顔料を得た。 この顔料中のシリカ量はSiO2として18.05重量
%であり耐酸性は著しく向上したものであつた。 また、上記試験例1と同様に、その特性をみた
ところ、クリプトメータ目盛は50mm以上、隠ぺい
力は1以上であつた。 なお原料のNa−A型ゼオライトは下記のよう
にして調製した: 珪酸ソーダ水溶液とアルミン酸ソーダ水溶液と
をモル比SiO2/Al2O32.0に保持してバツクミキシ
ングのない状態でゲルを生成せしめ、次いでNa
−A型ゼオライトを合成した。このゼオライトの
平均粒子径は1.02μmであつた。 試験例 2 実施例1〜5のゼオライト酸処理品と比較例の
体質顔料について各3.0gを4号亜麻仁油1.8gと
フーバーマーラーで練りあわせてペーストを作成
し、隠ぺい力測定用紙上にフイルムアプリケータ
ーで0.075mm(3ミル)の厚さに塗布した。常温
で乾燥後、色差計を用いて隠ぺい力測定用紙の黒
面の色の3刺激値X、Y、Zを測定し、これより
L、a、b値、色差△Eを求めた。結果を表−3
に示す。表−3ではブランク(隠ぺい力測定用紙
の黒面)に対する色差(△E)が小さいものが透
明性に優れており、ゼオライトの酸処理品を塗布
した黒面が約10以下であるのに対して沈降性硫酸
バリウムや炭酸カルシウムは20以上であり、ゼオ
ライトの酸処理によつて得られる非晶質アルミノ
珪酸塩が透明性に優れていることが明白である。
[Table] Example 6 After treating Na-A type zeolite with an average particle size of 1.02 μm with acid in the same manner as in Example 1, a slurry concentration of 20
% by weight of the slurry was maintained at a temperature of 90° C. while stirring, 6% by weight of sodium silicate aqueous solution as SiO 2 and 4% sulfuric acid were simultaneously gradually added to carry out silica deposition treatment. Next, the above deposited product was washed with water, dried and pulverized in a conventional manner to obtain an extender pigment. The amount of silica in this pigment was 18.05% by weight as SiO 2 and the acid resistance was significantly improved. Further, in the same manner as in Test Example 1 above, when its characteristics were examined, the cryptometer scale was 50 mm or more, and the hiding power was 1 or more. The raw material Na-A zeolite was prepared as follows: A sodium silicate aqueous solution and a sodium aluminate aqueous solution were maintained at a molar ratio of SiO 2 /Al 2 O 3 of 2.0 to form a gel without back mixing. Seshime, then Na
-A type zeolite was synthesized. The average particle diameter of this zeolite was 1.02 μm. Test Example 2 A paste was prepared by kneading 3.0 g of each of the zeolite acid-treated products of Examples 1 to 5 and the extender pigment of the comparative example with 1.8 g of No. 4 linseed oil using a Huber muller, and the paste was placed on the hiding power measurement paper using a film applicator. It was applied to a thickness of 0.075 mm (3 mils). After drying at room temperature, tristimulus values X, Y, and Z of the color of the black side of the hiding power measurement paper were measured using a color difference meter, and L, a, b values, and color difference ΔE were determined from these. Table 3 shows the results.
Shown below. In Table 3, those with a small color difference (△E) compared to the blank (black side of the hiding power measurement paper) have excellent transparency, whereas the black side coated with acid-treated zeolite has a color difference of about 10 or less. The precipitated barium sulfate and calcium carbonate values were 20 or more, which clearly shows that the amorphous aluminosilicate obtained by acid treatment of zeolite has excellent transparency.

【表】 試験例 3 実施例1〜6のゼオライト酸処理品及び比較例
1の沈降性硫酸バリウムと沈降性炭酸カルシウム
を用いて、それぞれの試料について4号亜麻仁油
で均一に練り合わせたものをサンプルビン(φ15
mm×35H)中に入れ密閉して80℃の恒温槽でリバ
リングの試験を行なつた。その結果、いずれの試
料についても、80℃×72時間経過後もリバリング
は認められず、実施例1〜6の各ゼオライト酸処
理品(無定形アルミノ珪酸塩)は沈降性硫酸バリ
ウムや炭酸カルシウムと同程度の安定性を有する
ことが判明した。
[Table] Test Example 3 Using the zeolite acid-treated products of Examples 1 to 6 and the precipitated barium sulfate and precipitated calcium carbonate of Comparative Example 1, each sample was uniformly kneaded with No. 4 linseed oil. Bottle (φ15
The specimen was placed in a sealed container (mm×35H) and a reviving test was performed in a constant temperature bath at 80°C. As a result, no reviving was observed in any of the samples even after 72 hours at 80°C, and the zeolite acid-treated products (amorphous aluminosilicate) of Examples 1 to 6 did not react with precipitated barium sulfate or calcium carbonate. It was found that they had similar stability.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、いずれも電子顕微鏡(SEM)写真で
あり、第6図2000倍以外は全て5000倍の写真であ
る。第1図及び第3図は本発明にかかる体質顔
料、第2図及び第4図は酸処理前の原体ゼオライ
ト、第5図は市販の非晶質アルミノ珪酸塩、第6
図はゼオライトのスケルトンが破壊された酸処理
品の顕微鏡写真による図である。
All of the drawings are electron microscopy (SEM) photographs, with the exception of Figure 6, which is magnified at 5000x. Figures 1 and 3 show extender pigments according to the present invention, Figures 2 and 4 show raw zeolite before acid treatment, Figure 5 shows commercially available amorphous aluminosilicate, and Figure 6 shows extender pigments according to the present invention.
The figure is a micrograph of an acid-treated product in which the zeolite skeleton has been destroyed.

Claims (1)

【特許請求の範囲】 1 ゼオライトの粒子状態を実質的に具備してい
るゼオライト酸処理物の非晶質アルミノ珪酸塩で
あつて、吸油量の値が10ないし80ml/100gであ
り、且つ屈折率の値が1.42〜1.53であることを特
徴とする体質顔料。 2 ゼオライトがA型ゼオライト、X型ゼオライ
ト、p型ゼオライト、ソーダライトまたはアナル
サイムから選ばれた1種または2種以上である特
許請求の範囲第1項記載の体質顔料。 3 ゼオライトのNa2O成分の一部または大部分
がNa+以外の陽イオンで置換されたゼオライトで
ある特許請求の範囲第2項記載の体質顔料。 4 ゼオライトが10μm以上の粒度部分が1%以
下であり、かつ6μm以下の粒度部分が85%以上
である粒度分布をもつものである特許請求の範囲
第1項ないし第3項のいずれかに記載の体質顔
料。 5 ゼオライトの酸処理物が濃密かつ微細で不定
形のシリカまたは白色金属含水酸化物で被覆され
たものである特許請求の範囲第1項ないし第4項
のいずれかに記載の体質顔料。 6 ゼオライトの水性スラリーをPHが低くても
4.5までの弱酸性域で酸処理することを特徴とす
る体質顔料の製造法。
[Scope of Claims] 1. An amorphous aluminosilicate of a zeolite acid-treated product having substantially the particle state of zeolite, which has an oil absorption value of 10 to 80 ml/100 g, and has a refractive index An extender pigment characterized by having a value of 1.42 to 1.53. 2. The extender pigment according to claim 1, wherein the zeolite is one or more selected from A-type zeolite, X-type zeolite, p-type zeolite, sodalite, and analcyme. 3. The extender pigment according to claim 2, which is a zeolite in which a part or most of the Na 2 O component of the zeolite is substituted with a cation other than Na + . 4. The zeolite according to any one of claims 1 to 3, wherein the zeolite has a particle size distribution in which the particle size portion of 10 μm or more is 1% or less, and the particle size portion of 6 μm or less is 85% or more. extender pigment. 5. The extender pigment according to any one of claims 1 to 4, wherein the acid-treated zeolite is coated with dense, fine, amorphous silica or white metal hydrated oxide. 6 Aqueous slurry of zeolite can be made even if the pH is low.
A method for producing extender pigments characterized by acid treatment in a weakly acidic range up to 4.5.
JP2922583A 1983-02-25 1983-02-25 Extender pigment and its manufacture Granted JPS59156913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2922583A JPS59156913A (en) 1983-02-25 1983-02-25 Extender pigment and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2922583A JPS59156913A (en) 1983-02-25 1983-02-25 Extender pigment and its manufacture

Publications (2)

Publication Number Publication Date
JPS59156913A JPS59156913A (en) 1984-09-06
JPH0416404B2 true JPH0416404B2 (en) 1992-03-24

Family

ID=12270273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2922583A Granted JPS59156913A (en) 1983-02-25 1983-02-25 Extender pigment and its manufacture

Country Status (1)

Country Link
JP (1) JPS59156913A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123674A (en) * 1984-11-21 1986-06-11 Sankin Tokushu Toryo Kk Flaky zinc powder composition
JPS61254672A (en) * 1985-05-07 1986-11-12 Tanabe Nitto Kako Kk Colored aggregate and its treatment
US4741779A (en) * 1985-07-19 1988-05-03 Nippon Chemical Industrial Co. Ltd. Additives for resins and their composition
KR900001379B1 (en) * 1985-09-13 1990-03-09 이데미쯔세끼유가가꾸 가부시기가이샤 Polyethylene resin composition
US4762537A (en) * 1985-11-07 1988-08-09 Aluminum Company Of America Adsorbent for HCl comprising alumina and acid-treated Y zeolite

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213031A (en) * 1982-06-07 1983-12-10 Mizusawa Ind Chem Ltd Alumina/silica compounding ingredient for resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213031A (en) * 1982-06-07 1983-12-10 Mizusawa Ind Chem Ltd Alumina/silica compounding ingredient for resin

Also Published As

Publication number Publication date
JPS59156913A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
US2739073A (en) Silicate pigments
CA2067376A1 (en) Process for making structural aggregated pigments
JPH032914B2 (en)
JPH06228455A (en) Coated tio2 pigment containing alkali cerium fluoride compound
DE3806187C2 (en) Compound phyllosilicate and process for its manufacture
US5219660A (en) Precipitated encapsulated paper pigments and methods
US4510254A (en) Method of treating zeolite ores to remove discoloring impurities and improve its brightness and resulting finely ground zeolite
JPH0416404B2 (en)
CN110366537B (en) Silicate coating and method for producing same
KR950007159B1 (en) Tetra cosahedral siliceous particles and process for preparation thereof
FI100659B (en) Paper pigment composite products and process for their manufacture
JPH03139537A (en) New filler and its production
JPH0353252B2 (en)
US5312485A (en) Precipitated encapsulated paper pigments and methods
WO1997024406A1 (en) A novel way to synthesize structured composite premium pigments
JPH01500424A (en) Synthetic alkali metal aluminosilicates, methods and uses, compositions and methods for their production
US3956005A (en) Coated pigment composition having improved abrasion resistance and process for preparation thereof
JPH028912B2 (en)
JPH0335349B2 (en)
JPH041270A (en) Aging-resistant iron pigment for resin
US2786777A (en) Silica composition and production thereof
JPH0624731A (en) Dodecasil 1h structure-type clathsil having small average crystal size
US5262239A (en) Precipitated encapsulated paper pigments and methods
JPH0647459B2 (en) Silica-based filler and method for producing the same
JP2004331417A (en) Basic magnesium carbonate-covered composite particle, its production method, and composition containing the same