JPS6225607B2 - - Google Patents

Info

Publication number
JPS6225607B2
JPS6225607B2 JP56195606A JP19560681A JPS6225607B2 JP S6225607 B2 JPS6225607 B2 JP S6225607B2 JP 56195606 A JP56195606 A JP 56195606A JP 19560681 A JP19560681 A JP 19560681A JP S6225607 B2 JPS6225607 B2 JP S6225607B2
Authority
JP
Japan
Prior art keywords
zeolite
calcium carbonate
slurry
particles
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56195606A
Other languages
Japanese (ja)
Other versions
JPS5899117A (en
Inventor
Hiroyuki Kashiwase
Toshihiko Morishita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP19560681A priority Critical patent/JPS5899117A/en
Publication of JPS5899117A publication Critical patent/JPS5899117A/en
Publication of JPS6225607B2 publication Critical patent/JPS6225607B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はゼオライト粒子表面に微細な炭酸カル
シウム粒子を実質的に沈着被覆させたゼオライト
−炭酸カルシウム複合体の製造方法に関する。更
に言えば炭酸カルシウムをゼオライト表面に被覆
することによつて分散性の良好な粒度調整が可能
でゼオライト特有の粉体特性を有するゼオライト
−炭酸カルシウム複合体の製造方法に関する。 本発明者等は先にゼオライト類懸濁液中で難溶
性アルカリ土類金属塩を形成し沈積させることに
よつてゼオライト−難溶性アルカリ土類金属塩複
合体を得て、これを樹脂添加物として利用する提
案を行なつた。(特願昭55−142012号)これは主
にステアリン酸等高級脂肪酸が樹脂からブルーミ
ングすることを防止する目的であり、又、本来、
分散性が良好でない難溶性アルカリ土類金属塩を
ゼオライトに複合させることによつて適度の塩基
性を保持したまま分散性良好な粉体とすることの
提供にあつた。 本発明は従来より主として樹脂類、紙類等の充
填剤等に利用されている炭酸カルシウムをゼオラ
イトに複合させることによつて、従来一次粒子と
して0.5μm以下の微粉末である炭酸カルシウム
粒子を通常0.1〜10μmのゼオライト粒子に沈着
被覆して所望の粒度の調整が可能な分散性の良好
なゼオライト−炭酸カルシウム複合体を提供する
ことにある。すなわち本発明は、ゼオライト粒子
表面に微細な炭酸カルシウムを沈積被覆させてな
るゼオライト−炭酸カルシウム複合体に関する。 本発明に用いられるゼオライトは、X線回折に
よつて容易に識別される結晶質の三次元構造を有
するアルミノ珪酸塩であつて、例えばA型、X
型、Y型、P型の合成ゼオライト、モルデナイ
ト、クリノプチロライト、エリオナイトなど天然
ゼオライト及びソーダライト族アルミノ珪酸塩で
ある。これらは多くの場合カチオンがナトリウム
であるが、そのナトリウムを他の金属たとえばカ
ルシウム、マグネシウム等のアルカリ土類金属の
イオンに置換した金属置換型ゼオライトも含まれ
る。これらゼオライトのうち特に好適なゼオライ
トはA型又はX型ゼオライト及びそれらの金属置
換ゼオライトである。 この理由は、例えばA型ゼオライト又はX型ゼ
オライトの如き合成ゼオライトは水性スラリー中
にあつて殆んど一次粒子に分散し易く、またこれ
らのゼオライトは合成条件によつて一次粒子の粒
径のコントロールが容易であり、工業的な用途の
面から、芯材として好適であるからである。 他方、ゼオライトの粒度は、用途や使用目的あ
るいはそれ自体の性状等によつて、一様でない
が、充填剤あるいは樹脂添加剤などに適用する場
合、多くの場合、平均粒子径が10μm以下が適当
で、好ましくは0.1〜5μmの範囲にあるもので
ある。また、ゼオライトは合成条件、結晶型、粉
砕等によつて種々の形状があるが、本発明におい
てはその形状は特に限定なく適用できる。本発明
に係る複合体は、ゼオライトとその一次粒子より
も微細な炭酸カルシウムとの混合物であるが、微
細な炭酸カルシウムがゼオライト粒子表面に沈積
して実質的に被覆状態で存在する関係にある。こ
こに実質的にというのは、両者の量的関係、製造
条件等によつて差異はあるが、走査型又は透過型
の電子顕微鏡写真によつて粒子をみた場合、ゼオ
ライト粒子表面に殆んど遊離の炭酸カルシウムが
認められないで微細な炭酸カルシウムがゼオライ
ト粒子に沈積被覆したものから、多少炭酸カルシ
ウムと思われる微細粒子がゼオライト粒子から遊
離して認められる程度をいい、換言すれば炭酸カ
ルシウムの大半がゼオライト粒子に被覆状態で存
在していることを意味する。 かかる複合体の粒子径は芯材となるゼオライト
粒子径に依存するが、各種の樹脂の改質剤として
使用する場合には、平均粒子径が0.3〜10μmの
範囲好ましくは0.5〜5μmの範囲にある。ゼオ
ライトと炭酸カルシウムの量的関係は両者の粒子
径、複合体の用途等に応じて任意に調整されうる
が、多くの場合、ゼオライト100重量部に対して
炭酸カルシウムが5〜100重量部が好適な範囲で
ある。 本発明にかかるゼオライト−炭酸カルシウム複
合体は樹脂添加剤、充填剤あるいは無機発泡体と
して各種の用途が認められる。かかる複合体はア
ルカリ性ゼオライトスラリー中で可溶性カルシウ
ム塩又は/及び石灰乳と炭酸化剤とを接触して反
応させてゼオライト粒子表面上に微細な炭酸カル
シウムを沈積させることにより製造することがで
きる。可溶性カルシウム塩としては塩化カルシウ
ムが好適であるが、その他、硝酸カルシウムのよ
うなものであつてもよい。炭酸化剤としては、
CO2ガス、炭酸水が好適であるが、必要に応じて
炭酸アルカリ又は重炭酸アルカリなどを用いても
よい。 かかる製法の具体的態様として次の3つの方法
を代表的にあげるが、特にこれらの方法に限定さ
れるものでない。 (1) 適度の粒度に調整されたゼオライト水性スラ
リーに水溶性カルシウム塩水溶液を添加したの
ちアルカリを添加し水酸化カルシウム−ゼオラ
イトスラリーを調製し、これに炭酸ガス又は炭
酸水を添加する。なお、この場合、アルカリを
添加しないで直接炭酸ガス等を導入してもよ
い。 (2) 適度の粒度に調整されたゼオライト水性スラ
リーに水溶性カルシウム塩水溶液を添加したの
ち、水溶性炭酸カルシウム又は重炭酸アルカリ
を添加するか、又は水溶性カルシウム塩水溶液
と水溶性炭酸アルカリと水溶性重炭酸アルカリ
を同時に添加する。 (3) 予め石灰乳スラリーを調製しこれをゼオライ
ト水性スラリーに添加したのち炭酸ガス又は炭
酸水を添加する。 これらいずれの方法によつてもゼオライト粒子
表面は炭酸カルシウム粒子によつて沈着被覆され
るが、その反応条件としては反応温度は40℃以上
が必要であり、望ましくは60℃以上とし、反応終
了時のスラリーのPHは8ないし10とすることが重
要である。温度設定が40℃以下であると乾燥時に
凝集傾向が大となり分散不良を起す原因となり、
反応終了時のスラリーのPHが8以下となるゼオラ
イト表面に沈着被覆された炭酸カルシウム層が脱
離し易くなる。 このようにして得られたゼオライト−炭酸カル
シウム水性スラリーは常法により過及び水によ
る洗浄を行なつたのち、温風乾燥、真空乾燥によ
り脱水し、必要に応じて粉砕して製品とする。 以下に本発明を実施例を挙げて説明する。 実施例 1 表1に示す粒度分布のCa置換A型ゼオライト
200gを水800gに分散したのち、塩化カルシウム
水溶液(CaCl2100g/l)456mlを添加して60℃
に加温したのち、5重量%水酸化ナトリウム水溶
液640mlを加えた。このスラリーを撹拌しながら
炭酸ガスを毎分50mlで導入しスラリーのPHが9.5
となるまでつづけた。約30分、60℃で撹拌を継続
したのち過し、過ケーキを水洗、120℃の温
風乾燥を施し粉砕してゼオライト−炭酸カルシウ
ム複合体を得た。性状を表−1に示す。
The present invention relates to a method for producing a zeolite-calcium carbonate composite in which the surfaces of zeolite particles are substantially deposited and coated with fine calcium carbonate particles. More specifically, the present invention relates to a method for producing a zeolite-calcium carbonate composite having powder characteristics unique to zeolite, in which particle size can be adjusted with good dispersibility by coating the surface of the zeolite with calcium carbonate. The present inventors first formed and precipitated a sparingly soluble alkaline earth metal salt in a zeolite suspension to obtain a zeolite-poorly soluble alkaline earth metal salt complex, which was then added to a resin additive. We made a proposal for its use as a (Patent Application No. 55-142012) This is mainly for the purpose of preventing higher fatty acids such as stearic acid from blooming from the resin, and originally,
The present invention aims to provide a powder with good dispersibility while maintaining appropriate basicity by compounding a poorly soluble alkaline earth metal salt with poor dispersibility into zeolite. The present invention has been developed by combining calcium carbonate, which has conventionally been mainly used as a filler for resins, papers, etc., with zeolite, thereby converting calcium carbonate particles, which are normally fine powders of 0.5 μm or less in size, as primary particles. The object of the present invention is to provide a zeolite-calcium carbonate composite with good dispersibility, which can be deposited and coated on zeolite particles of 0.1 to 10 μm to adjust the desired particle size. That is, the present invention relates to a zeolite-calcium carbonate composite formed by depositing and coating the surface of zeolite particles with fine calcium carbonate. The zeolite used in the present invention is an aluminosilicate having a crystalline three-dimensional structure that can be easily identified by X-ray diffraction, such as type A, type
Synthetic zeolites of type, Y type, P type, natural zeolites such as mordenite, clinoptilolite, erionite, and sodalite group aluminosilicates. In many cases, the cation of these zeolites is sodium, but metal-substituted zeolites are also included in which sodium is replaced with ions of other metals, such as alkaline earth metals such as calcium and magnesium. Among these zeolites, particularly preferred zeolites are A-type or X-type zeolites and metal-substituted zeolites thereof. The reason for this is that synthetic zeolites, such as A-type zeolite or This is because it is easy to use and is suitable as a core material from the viewpoint of industrial use. On the other hand, the particle size of zeolite varies depending on its use, intended use, or its own properties, but in most cases, when it is used as a filler or resin additive, an average particle size of 10 μm or less is appropriate. The thickness is preferably in the range of 0.1 to 5 μm. Moreover, zeolite has various shapes depending on synthesis conditions, crystal type, pulverization, etc., but in the present invention, the shape can be applied without particular limitation. The composite according to the present invention is a mixture of zeolite and calcium carbonate which is finer than its primary particles, and the fine calcium carbonate is deposited on the surface of the zeolite particles and exists in a substantially coated state. Here, "substantially" means that there are differences depending on the quantitative relationship between the two, manufacturing conditions, etc., but when looking at the particles with a scanning or transmission electron microscope, there is almost nothing on the surface of the zeolite particles. This refers to the extent to which fine particles of calcium carbonate, which are thought to be calcium carbonate, are observed as being free from the zeolite particles, ranging from cases in which no free calcium carbonate is observed and fine particles of calcium carbonate are deposited and coated on the zeolite particles. This means that most of the zeolite particles are coated with the zeolite particles. The particle size of such a composite depends on the particle size of the zeolite core material, but when used as a modifier for various resins, the average particle size is in the range of 0.3 to 10 μm, preferably in the range of 0.5 to 5 μm. be. The quantitative relationship between zeolite and calcium carbonate can be arbitrarily adjusted depending on the particle size of both, the use of the composite, etc., but in most cases, it is preferable that calcium carbonate is 5 to 100 parts by weight per 100 parts by weight of zeolite. This is a range. The zeolite-calcium carbonate composite according to the present invention can be used in various ways as a resin additive, filler, or inorganic foam. Such a composite can be produced by contacting and reacting a soluble calcium salt or/and milk of lime with a carbonating agent in an alkaline zeolite slurry to deposit fine calcium carbonate on the surface of the zeolite particles. Calcium chloride is suitable as the soluble calcium salt, but other salts such as calcium nitrate may also be used. As a carbonating agent,
Although CO 2 gas and carbonated water are preferable, alkali carbonate or alkali bicarbonate may be used as necessary. The following three methods are typically cited as specific embodiments of such a manufacturing method, but the method is not particularly limited to these methods. (1) Add a water-soluble calcium salt aqueous solution to a zeolite aqueous slurry adjusted to an appropriate particle size, then add an alkali to prepare a calcium hydroxide-zeolite slurry, and add carbon dioxide gas or carbonated water to this. In this case, carbon dioxide gas or the like may be directly introduced without adding an alkali. (2) After adding a water-soluble calcium salt aqueous solution to a zeolite aqueous slurry adjusted to an appropriate particle size, water-soluble calcium carbonate or alkali bicarbonate is added, or a water-soluble calcium salt aqueous solution and a water-soluble alkali carbonate are added. Add alkaline bicarbonate at the same time. (3) Prepare a lime milk slurry in advance, add it to the zeolite aqueous slurry, and then add carbon dioxide gas or carbonated water. In any of these methods, the surface of the zeolite particles is deposited and coated with calcium carbonate particles, but the reaction conditions require a reaction temperature of 40°C or higher, preferably 60°C or higher, and at the end of the reaction. It is important that the pH of the slurry is between 8 and 10. If the temperature setting is below 40℃, there will be a strong tendency to agglomerate during drying, causing poor dispersion.
When the pH of the slurry at the end of the reaction is 8 or less, the calcium carbonate layer deposited and coated on the zeolite surface becomes easily detached. The zeolite-calcium carbonate aqueous slurry thus obtained is washed with filtration and water in a conventional manner, dehydrated by hot air drying and vacuum drying, and crushed as necessary to obtain a product. The present invention will be explained below by giving examples. Example 1 Ca-substituted type A zeolite with the particle size distribution shown in Table 1
After dispersing 200g in 800g of water, 456ml of calcium chloride aqueous solution (CaCl 2 100g/l) was added and heated at 60°C.
After heating to , 640 ml of 5% by weight aqueous sodium hydroxide solution was added. While stirring this slurry, carbon dioxide gas was introduced at a rate of 50ml per minute until the pH of the slurry was 9.5.
I continued until. Stirring was continued at 60°C for about 30 minutes, and then filtered, and the filter cake was washed with water, dried with hot air at 120°C, and pulverized to obtain a zeolite-calcium carbonate composite. The properties are shown in Table-1.

【表】 実施例 2 表−2に示す粒度分布のNaA型ゼオライト200
gを水800gに分散して撹拌しながら75℃に加温
した。75℃に加温した炭酸ナトリウム水溶液
(106g Na2CO3/−1M)及び75℃に加温した
塩化カルシウム水溶液(111g CaCl2/−
1M)を各々、10ml/分で滴加し、各々500ml消費
した。こののち引きつづいて炭酸ガスを用いスラ
リーのPHを10.0となるまで加え過、水洗、乾
燥、粉砕し表−2に示すNaA型ゼオライト−炭酸
カルシウム複合体を得た。
[Table] Example 2 NaA type zeolite 200 with particle size distribution shown in Table-2
g was dispersed in 800 g of water and heated to 75° C. with stirring. Sodium carbonate aqueous solution (106g Na 2 CO 3 /-1M) heated to 75°C and calcium chloride aqueous solution (111g CaCl 2 /-1M) heated to 75°C
1M) were added dropwise at 10 ml/min, consuming 500 ml each. Thereafter, carbon dioxide gas was added until the pH of the slurry reached 10.0, followed by filtration, washing with water, drying, and pulverization to obtain the NaA type zeolite-calcium carbonate composite shown in Table 2.

【表】 実施例 3 1級試薬の炭酸カルシウム80gを1100℃で2時
間焼成し、冷後水500mlに分散、消化させた石灰
乳スラリーを325メツシユの篩を通したのち、表
−3に示す性状のNaX型ゼオライトを80℃の水に
分散させたNaX型ゼオライト水性スラリー(NaX
型ゼオライト100g/含有)1を撹拌しなが
らこれに毎分10mlで添加したのち、炭酸ガスを毎
分50ml/分で添加しスラリーのPHを9.0とした。
この後80℃で撹拌しながら30分熟成した。このス
ラリーを過、水洗、乾燥、粉砕し表−3に示す
NaX型ゼオライト−炭酸カルシウム複合体を得
た。
[Table] Example 3 80g of calcium carbonate, a first-class reagent, was calcined at 1100°C for 2 hours, cooled, dispersed in 500ml of water, and the digested lime milk slurry was passed through a 325-mesh sieve, as shown in Table 3. NaX type zeolite aqueous slurry (NaX
Type zeolite (100 g/containing) 1 was added thereto at a rate of 10 ml/min with stirring, and then carbon dioxide gas was added at a rate of 50 ml/min to adjust the pH of the slurry to 9.0.
Thereafter, the mixture was aged at 80°C for 30 minutes while stirring. This slurry was filtered, washed with water, dried, and pulverized as shown in Table 3.
A NaX type zeolite-calcium carbonate composite was obtained.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 アルカリ性ゼオライトスラリー中で可溶性カ
ルシウム塩又は石灰乳と、炭酸化剤とを反応させ
て、ゼオライト粒子表面に微細な炭酸カルシウム
を沈積させることを特徴とするゼオライト−炭酸
カルシウム複合体の製造方法。 2 ゼオライトがA型又はX型のゼオライトであ
る特許請求の範囲第1項記載のゼオライト−炭酸
カルシウム複合体の製造方法。 3 ゼオライトがナトリウムゼオライトのナトリ
ウムをアルカリ土類金属で置換してなるゼオライ
トである特許請求の範囲第1項又は第2項記載の
ゼオライト−炭酸カルシウム複合体の製造方法。 4 反応はスラリーの温度が40℃以上であり、か
つ少なくともPHが8以上において行う特許請求の
範囲第1項記載のゼオライト−炭酸カルシウム複
合体の製造方法。
[Claims] 1. A zeolite-calcium carbonate composite characterized in that fine calcium carbonate is deposited on the surface of zeolite particles by reacting a soluble calcium salt or milk of lime with a carbonating agent in an alkaline zeolite slurry. How the body is manufactured. 2. The method for producing a zeolite-calcium carbonate composite according to claim 1, wherein the zeolite is an A-type or an X-type zeolite. 3. The method for producing a zeolite-calcium carbonate composite according to claim 1 or 2, wherein the zeolite is a zeolite obtained by replacing sodium in sodium zeolite with an alkaline earth metal. 4. The method for producing a zeolite-calcium carbonate composite according to claim 1, wherein the reaction is carried out at a temperature of the slurry of 40° C. or higher and a pH of at least 8 or higher.
JP19560681A 1981-12-07 1981-12-07 Zeolite-calcium carbide composite body and its manufacture Granted JPS5899117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19560681A JPS5899117A (en) 1981-12-07 1981-12-07 Zeolite-calcium carbide composite body and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19560681A JPS5899117A (en) 1981-12-07 1981-12-07 Zeolite-calcium carbide composite body and its manufacture

Publications (2)

Publication Number Publication Date
JPS5899117A JPS5899117A (en) 1983-06-13
JPS6225607B2 true JPS6225607B2 (en) 1987-06-04

Family

ID=16343949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19560681A Granted JPS5899117A (en) 1981-12-07 1981-12-07 Zeolite-calcium carbide composite body and its manufacture

Country Status (1)

Country Link
JP (1) JPS5899117A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149421A (en) * 1988-06-16 1990-06-08 Komeshiyou Sekkai Kogyo Kk Deformed calcium carbonate
JP5083748B2 (en) * 2006-05-23 2012-11-28 独立行政法人物質・材料研究機構 Method for producing calcium carbonate / zeolite compound composite
JP5578376B2 (en) * 2012-01-16 2014-08-27 独立行政法人物質・材料研究機構 Calcium carbonate / zeolite compound composite and article using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767021A (en) * 1980-10-13 1982-04-23 Nippon Chem Ind Co Ltd:The Composite body of zeolite and alkaline earth metallic salt, its manufacture and additive for high molecular compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767021A (en) * 1980-10-13 1982-04-23 Nippon Chem Ind Co Ltd:The Composite body of zeolite and alkaline earth metallic salt, its manufacture and additive for high molecular compound

Also Published As

Publication number Publication date
JPS5899117A (en) 1983-06-13

Similar Documents

Publication Publication Date Title
US5340393A (en) Process for preparing silica coated inorganic particles
US6132773A (en) Method for preparing particles comprising a core and a silica shell
DE1203238B (en) Process for the production of molecular sieve moldings
US20220033269A1 (en) Zeolite and preparation method therefor
KR970703279A (en) NOVEL METHOD FOR PREPARING PRECIPITATED SILICA, NOVEL ZINC-CONTAINING PRECIPITATED SILICAS, AND USE THEREOF FOR REINFORCING ELASTOMERS
US4213874A (en) Synthetic amorphous sodium aluminosilicate base exchange materials
US3886094A (en) Preparation of hydrocarbon conversion catalysts
KR100775602B1 (en) Manufacturing method of hydrotalcite
US4842772A (en) Fire retardant pigment
US5085705A (en) Alumina-silica-sulfates, method of preparation and compositions
US3837877A (en) Production of rod-shaped micro-crystallites from clay
US4311609A (en) Method of producing inorganic water-softening beads
US4230593A (en) Inorganic water-softening bead
JPS6225607B2 (en)
CZ294411B6 (en) Synthetic compound having chalcoalumite structure and process for preparing thereof
US4443422A (en) Synthesis of zeolites of small and uniform size having a high magnesium exchange capacity
US5766564A (en) Process for making aluminosilicate for record material
JPH0353252B2 (en)
US4556550A (en) Process for the preparation of high-level ion-exchanged forms of Zeolites F and Zeolite W
US4226636A (en) Production of calcium silicate having high specific bulk volume and calcium silicate-gypsum composite
US4144194A (en) Zeolite promoted hydrocarbon conversion catalysts
JP2883114B2 (en) Modified layered crystalline sodium silicate and method for producing the same
KR100446038B1 (en) Synthetic chalcoalumite-type compounds and processes for producing the same
US5030284A (en) Alumina-silica-sulfate compositions
US4098714A (en) Water softening materials