JPS59213179A - Light emitting element - Google Patents
Light emitting elementInfo
- Publication number
- JPS59213179A JPS59213179A JP58086560A JP8656083A JPS59213179A JP S59213179 A JPS59213179 A JP S59213179A JP 58086560 A JP58086560 A JP 58086560A JP 8656083 A JP8656083 A JP 8656083A JP S59213179 A JPS59213179 A JP S59213179A
- Authority
- JP
- Japan
- Prior art keywords
- type
- layer
- active layer
- light emitting
- gaalas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 8
- 238000005253 cladding Methods 0.000 claims description 14
- 230000000694 effects Effects 0.000 claims description 3
- 238000002347 injection Methods 0.000 abstract description 4
- 239000007924 injection Substances 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 abstract description 4
- 238000001816 cooling Methods 0.000 abstract description 3
- 238000010030 laminating Methods 0.000 abstract description 2
- 230000007704 transition Effects 0.000 abstract description 2
- 125000005842 heteroatom Chemical group 0.000 abstract 1
- 238000003475 lamination Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 239000012535 impurity Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 101150110330 CRAT gene Proteins 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/0004—Devices characterised by their operation
- H01L33/002—Devices characterised by their operation having heterojunctions or graded gap
- H01L33/0025—Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
この発明は発光素子に係り、特に光通信用の光源として
の半導体発光素子に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a light emitting device, and particularly to a semiconductor light emitting device as a light source for optical communication.
GaAlAs系でダブルへテロ接合型の発光デバイスは
、GaAsとAA’Asの格子定数の差が小さいことか
ら半導体レーザ或いは発光ダイオードとして種々の素子
構造が試作されている。Since the difference in lattice constant between GaAs and AA'As is small, various device structures of GaAlAs-based double heterojunction type light emitting devices have been prototyped as semiconductor lasers or light emitting diodes.
また、近時P型GaAs基板上にGaAlAsダブルへ
テロ接合を形成した発光素子が考案されている。Furthermore, recently, a light emitting element in which a GaAlAs double heterojunction is formed on a P-type GaAs substrate has been devised.
こAHP型G a A s基板上KGaAlAsダブル
へテロ接合を形成した場合、結晶成長最終層はN型層と
なり、例えばl1le等の偏析係数の小さいドナー不純
物を用いるとこのN型1−のドナー不純物一度がI X
10”ぼ−3程度の高濃度となりN型オーム性電極の
形成が非常に容易になる。従って、素子形成の量産性が
大幅に改善される。When a KGaAlAs double heterojunction is formed on this AHP type GaAs substrate, the final layer of crystal growth becomes an N-type layer, and if a donor impurity with a small segregation coefficient such as 11le is used, this N-type 1- donor impurity Once is I
The concentration is as high as about 10''-3, making it very easy to form an N-type ohmic electrode.Therefore, the mass productivity of device formation is greatly improved.
しかし彦からこのようなダブルヘテo m接合の活性層
の不純物としては、従来P型不純物のゲルマニウムが多
く用いられており、即ち活性層はP型層となっており、
低電流注入型の発光素子、例えば発光ダイオードの場合
には発光の量子効率が不才外であ、り大きな問題となっ
ていた。However, from Hiko, germanium, which is a P-type impurity, is often used as an impurity in the active layer of such a double hetero-m junction, that is, the active layer is a P-type layer.
In the case of low-current injection type light-emitting elements, such as light-emitting diodes, the quantum efficiency of light emission is extremely low, which has been a major problem.
本発明の目的は低電流注入型でも光通信用の光源として
発光効率が十分良好な発光素子を提供することである。An object of the present invention is to provide a light-emitting element having sufficiently good luminous efficiency as a light source for optical communications even if it is of a low current injection type.
本発明はP型(laAs基板上にP型(+ a 、A、
13A sクラッド層、N型Ga 1−xAexAs活
性層、N型GaAlAsクラッド層を順次8It層し、
てGaAA’Asダブルへテロ型接合が形成された発光
素子を得ることにある。The present invention is based on the P-type (+ a , A,
A 13As cladding layer, an N-type Ga 1-xAexAs active layer, and an 8It layer of N-type GaAlAs cladding layer were sequentially formed.
The object of the present invention is to obtain a light emitting element in which a GaAA'As double heterojunction is formed.
P型C+ a A s基板上に形成するG a A I
A sダプルヘテo 型接合の(Jal−xAlXΔS
春酬璽暮に);畔活性層をN型とすることによシ、この
活性層がP型の場合に比し、発光効率が大幅に良好な発
光素子を得ることができる。G a A I formed on a P-type C+ a A s substrate
A s double heterozygous (Jal-xAlXΔS
By making the active layer N-type, it is possible to obtain a light-emitting element with significantly better luminous efficiency than when the active layer is P-type.
本発明の第1の実施例を第1図を参照して説明する。即
ち、P型Oa A s基板(1)上に、lずP型Oa
A lA sクラッド層(2)が積層して形成されてお
り、さらにこのP型層aAlAsクラッド層(211に
fdN型Ga 1−xAlxAs活性層(3)を介して
N型Oa A lA sクラッド層(4)が積層して形
成されている。A first embodiment of the present invention will be described with reference to FIG. That is, on the P-type Oa As substrate (1), the P-type Oa
A AlAs cladding layer (2) is laminated, and an N-type OaAlAs cladding layer (211) is formed via a fdN-type Ga1-xAlxAs active layer (3). (4) are formed by laminating them.
尚、このN型Ga1−xAlxAs活性層(3)が直接
遷移となるためにはXは、0≦X≦0.3程度でよい。Note that in order for this N-type Ga1-xAlxAs active layer (3) to have a direct transition, X may be approximately 0≦X≦0.3.
この例えば発光ダイオードからなる発光素子の特徴とす
るところは、上述の(3a+−xA、gxAs (0≦
X≦0,3)活性層(3)がN型であるところ((ある
。The characteristics of this light-emitting element, such as a light-emitting diode, are as described above (3a+-xA, gxAs (0≦
X≦0,3) Where the active layer (3) is of N type ((there is).
次に、この第1の実施例のP m(TaA、s基板(1
)上にj胆次積層するP型Oa AIJ A Sクラッ
ド層(2)、N型Ga1−xklxks (0≦X≦0
.3)活性層(3)、N型Oa AI A、sクランド
層(4)の各液相成長条件を説明する。まず、P型Oa
A I A、sクラッド層(2)の成長温度は833
°C乃至830°0、冷却速度はo、t0a/eでGe
を添加している。Next, P m (TaA, s substrate (1
) P-type Oa AIJ A S cladding layer (2), N-type Ga1-xklxks (0≦X≦0
.. 3) The liquid phase growth conditions for the active layer (3), N-type Oa AI A, and s ground layer (4) will be explained. First, P-type Oa
A I A, s cladding layer (2) growth temperature is 833
Ge
is added.
また、この第1実施例の特徴とするN型層a+−xAl
xAs (0≦X≦0.3)活性層(3)の成長温度は
83000乃至829.9°C1冷却速度は0.100
/f+で、Siを添加し−Cいる。In addition, the N-type layer a+-xAl, which is a feature of this first embodiment,
xAs (0≦X≦0.3) Growth temperature of active layer (3) is 83000 to 829.9°C1 Cooling rate is 0.100
/f+, Si is added and -C is added.
次に、N型GaAlAsクラッド層(4)の成長温度は
、829.9°0乃至826°01冷却速度はo、z0
0/eで′1゛eを添加している。Next, the growth temperature of the N-type GaAlAs cladding layer (4) is 829.9°0 to 826°01, and the cooling rate is o, z0
'1'e is added at 0/e.
このように活性層にSiを添加した場合、この活性層は
一般にP型成長となることが知られているが、本発明者
らは成長温度、Si添加量の条件によりこの活性層がN
型層になることを明らかVこした。It is known that when Si is added to the active layer in this way, the active layer generally grows as a P-type.
It is clear that it will become a type layer.
これは活性層の81添加量と発光効率との相関を調査す
るなかで、発光効率に大きなばらつきが発生することに
着目し、この相関を詳細に検討した結果、Siを添加し
た活性層は必ずしも常KP型層となっていないことから
明らかになった。しかも、このように活性層をN型化し
た発光素子は、活性層をP型化した発光素子の場合に比
し、その発効効率は約2倍向上していることが判明した
。This is because while investigating the correlation between the amount of 81 added in the active layer and the luminous efficiency, we noticed that there was a large variation in luminous efficiency, and after examining this correlation in detail, we found that the active layer doped with Si is not necessarily This became clear from the fact that it was not always a KP type layer. Furthermore, it has been found that the light-emitting element in which the active layer is made into an N-type in this way has an effective efficiency approximately twice as high as that of a light-emitting element in which the active layer is made into a P-type.
これ目1、第1表に示すように、活性l@のSt添加、
喰、成長温度等に応じたN型或いはP型の各活性層電気
伝導型と、この2種の活性層の相対的光出力の測定値の
関係からも明らかである。1. As shown in Table 1, active l@St addition,
This is also clear from the relationship between the electrical conductivity type of each active layer, N type or P type, depending on the growth temperature, etc., and the measured values of the relative optical output of these two types of active layers.
第1表
尚、以上のように両性不純物別を用いての結晶成長が不
安定であることは、ヘテロエピタキシィの不安定性に基
づくものと考えられる。Table 1 Note that the instability of crystal growth using different amphoteric impurities as described above is thought to be due to the instability of heteroepitaxy.
次に本発明の第2の実施例を説明する。子連の第1の実
施例は、Stを添加してN型(Ja+−xAlxA、s
(0≦X≦0.3)活性層(3)としたものであるが、
この第2の実施例はSlの代わりに′1゛eを添〃口し
たものである。即ち、Teの添加によりN型Ga I−
xAl>汰S(0≦X≦0.3)活性j@を形成し、葦
だl1leの添加量制御或いは成長温度等の制御Vこよ
シこのN型層a+−xAAxAs (0≦X≦0.3)
活性層のキャリア濃度を〜3 X 10”>、 ”とし
た場合、第1の実施例と同様にP型活性層とした発光素
子に比し発光効率が約2倍となる発光素子が得られた。Next, a second embodiment of the present invention will be described. The first example of the child chain is N-type (Ja+-xAlxA, s
(0≦X≦0.3) The active layer (3) is
In this second embodiment, '1'e is added instead of Sl. That is, by adding Te, N-type Ga I-
xAl>汰S(0≦X≦0.3) Active j@ is formed, and the amount of addition of the reed l1le or the growth temperature etc. is controlled by controlling the N-type layer a+-xAAxAs (0≦X≦0. 3)
When the carrier concentration of the active layer is ~3 x 10''>, '', a light emitting device with luminous efficiency approximately twice as high as that of the light emitting device with a P-type active layer as in the first example can be obtained. Ta.
尚、以上のような事実はN型層a+−xAlxAs (
0≦X≦0.3)活性層の厚みが約1μと比較的厚い低
電流注入型の発光素子に於いては少数キャリアの拡散定
数の小さいN型結晶の方が、ダブルへテロ接合の界面で
の再結合の影響を受は難く、結果的に高発光効率につな
がったものと解釈される。Incidentally, the above facts are true for the N-type layer a+-xAlxAs (
0 ≦ This is interpreted as being less susceptible to the effects of recombination at , resulting in high luminous efficiency.
次に本発明の第3の実施例を第2図を参照して説明する
。この第3の実施例は、上述の第1及び第2の実施例で
示″jP型GaA7Asクラッド層(2搬−P型GaA
s基板(1)上に一部電流狭窄用のN型0aAs層(5
)を介して形成されているものである。岡、第1図と同
一部外には同一符号が付しである。この第3の実施例に
より発光素子の電流集中が良くなりさらに高発光効率の
発光素子を得ることができる。また、上述の第1乃至第
3の実施例は、低電流注入型の、例えば発光ダイオード
からなる発光素子のみならず、半導体レーザ等の発光素
子にも有効であることは明らかである。Next, a third embodiment of the present invention will be described with reference to FIG. This third embodiment uses the "jP-type GaA7As cladding layer (2-P-type GaA7As cladding layer) shown in the first and second embodiments described above.
An N-type 0aAs layer (5) for current confinement is partially formed on the S substrate (1).
). The same parts and parts as in Figure 1 are given the same reference numerals. According to this third embodiment, current concentration in the light emitting element is improved, and a light emitting element with higher luminous efficiency can be obtained. It is clear that the first to third embodiments described above are effective not only for low current injection type light emitting elements such as light emitting diodes, but also for light emitting elements such as semiconductor lasers.
第1図は本発明の第1の実施例を示j断面図、第2図は
本発明の第3の実施例を示す断面図である。
■・・P型GaAs
2・・・P型()aAlAsクラッド層3・N型層a+
−xAdxAs (0≦x ≦0.3 )41.N型G
aAlAsクラット44
5・・N型G a A s電流狭窄層FIG. 1 is a sectional view showing a first embodiment of the invention, and FIG. 2 is a sectional view showing a third embodiment of the invention. ■...P-type GaAs 2...P-type ()aAlAs cladding layer 3/N-type layer a+
-xAdxAs (0≦x≦0.3)41. N type G
aAlAs crat 44 5...N-type GaAs current confinement layer
Claims (1)
クラッド層、N m Ga+−xAlxAs活性層、N
型GaAlAsクラッド層を順次積層してG a A1
3A sダブルへテロ型接合が形成されたことを特徴と
する発光素子。 (2)N型Ga +−xAlxAs活性層は、Siが添
加されていることを特徴とする特許請求の範囲第1項記
載の発光素子。 (3)N型Ga 1−xAA! xAs活性層は、Te
が添加されていることを特徴とする特許請求の範囲第1
項記載の発光素子。 (4]N型Ga+−xAlxAs活性Jf1 (D x
は、0≦x≦()、3であることを特徴とする特許請求
の範囲第1項dピ載の発光素子。 (5) P型層 a AA! A sクラッド層は、前
記P型層aAs蘂板上に一部がN型層 a A s電流
狭窄層を介して積ノーシ形成されていることを特徴とす
る特許請求の範囲第1項記載の発光素子。[Claims] (1) P-type GaAlAs on a P W GaAs substrate
Cladding layer, N m Ga+-xAlxAs active layer, N
GaAlAs type cladding layers are sequentially stacked to form GaA1
A light emitting device characterized in that a 3A s double heterojunction is formed. (2) The light emitting device according to claim 1, wherein the N-type Ga + -xAlxAs active layer is doped with Si. (3) N-type Ga 1-xAA! The xAs active layer is made of Te
Claim 1 characterized in that:
The light-emitting element described in . (4) N-type Ga+-xAlxAs activity Jf1 (D x
The light emitting device according to claim 1, wherein: 0≦x≦(), 3. (5) P-type layer a AA! The As cladding layer is partially formed on the P-type layer aAs cladding layer through an N-type layer aAs current confinement layer. Light emitting element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58086560A JPS59213179A (en) | 1983-05-19 | 1983-05-19 | Light emitting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58086560A JPS59213179A (en) | 1983-05-19 | 1983-05-19 | Light emitting element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59213179A true JPS59213179A (en) | 1984-12-03 |
Family
ID=13890394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58086560A Pending JPS59213179A (en) | 1983-05-19 | 1983-05-19 | Light emitting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59213179A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6428971A (en) * | 1987-07-24 | 1989-01-31 | Sharp Kk | Gaalas infrared light emitting diode |
JP2007507083A (en) * | 2003-06-27 | 2007-03-22 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Light emitting semiconductor device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5629382A (en) * | 1979-08-20 | 1981-03-24 | Oki Electric Ind Co Ltd | Light emitting device of double hetero structure and manufacture thereof |
JPS5790990A (en) * | 1980-11-27 | 1982-06-05 | Sharp Corp | Semiconductor light emitting device |
JPS57199277A (en) * | 1981-06-01 | 1982-12-07 | Toshiba Corp | Semiconductor luminous elements and manufacture thereof |
-
1983
- 1983-05-19 JP JP58086560A patent/JPS59213179A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5629382A (en) * | 1979-08-20 | 1981-03-24 | Oki Electric Ind Co Ltd | Light emitting device of double hetero structure and manufacture thereof |
JPS5790990A (en) * | 1980-11-27 | 1982-06-05 | Sharp Corp | Semiconductor light emitting device |
JPS57199277A (en) * | 1981-06-01 | 1982-12-07 | Toshiba Corp | Semiconductor luminous elements and manufacture thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6428971A (en) * | 1987-07-24 | 1989-01-31 | Sharp Kk | Gaalas infrared light emitting diode |
JP2007507083A (en) * | 2003-06-27 | 2007-03-22 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Light emitting semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5045897A (en) | Quaternary II-VI materials for photonics | |
JP3643665B2 (en) | Semiconductor light emitting device | |
JP3188522B2 (en) | Method of forming light emitting diode | |
JPH0897468A (en) | Semiconductor light emitting device | |
JP3251046B2 (en) | Method for growing compound semiconductor, compound semiconductor light emitting device and method for manufacturing the same | |
US5299217A (en) | Semiconductor light-emitting device with cadmium zinc selenide layer | |
JP2003023179A (en) | p-TYPE III NITRIDE SEMICONDUCTOR, ITS MANUFACTURING METHOD, SEMICONDUCTOR DEVICE, AND ITS MANUFACTURING METHOD | |
JP3458007B2 (en) | Semiconductor light emitting device | |
JP2763008B2 (en) | Double hetero epitaxial wafer and light emitting diode | |
JPS59213179A (en) | Light emitting element | |
JPH08125221A (en) | Semiconductor light-emitting element | |
US5190891A (en) | Method for fabricating a semiconductor laser device in which the p-type clad layer and the active layer are grown at different rates | |
JP3432444B2 (en) | Semiconductor light emitting device | |
US4284467A (en) | Method for making semiconductor material | |
US5382813A (en) | Light emission diode comprising a pn junction of p-type and n-type A1-containing ZnS compound semiconductor layers | |
JP2005536896A (en) | Manufacturing method of semiconductor chip emitting electromagnetic radiation and semiconductor chip emitting electromagnetic radiation | |
JPS62204583A (en) | Semiconductor light-emitting element | |
JP2545212B2 (en) | Blue light emitting element | |
JPH08255930A (en) | Fabrication of semiconductor light emitting element | |
JPH04177881A (en) | Manufacture of semiconductor device | |
JPS63213378A (en) | Manufacture of semiconductor light emitting element | |
JPH08213654A (en) | Semiconductor device having distributed bragg reflection mirror multilayered film | |
JP2803375B2 (en) | Semiconductor structure | |
JP3340859B2 (en) | Semiconductor light emitting device | |
JP3703927B2 (en) | Semiconductor laser element |