JPS59211970A - Fuel cell generator - Google Patents

Fuel cell generator

Info

Publication number
JPS59211970A
JPS59211970A JP58086399A JP8639983A JPS59211970A JP S59211970 A JPS59211970 A JP S59211970A JP 58086399 A JP58086399 A JP 58086399A JP 8639983 A JP8639983 A JP 8639983A JP S59211970 A JPS59211970 A JP S59211970A
Authority
JP
Japan
Prior art keywords
air
cell
fuel cell
stopped
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58086399A
Other languages
Japanese (ja)
Inventor
Tatsuo Horiba
達雄 堀場
Noriko Kitami
北見 訓子
Teruo Kumagai
熊谷 輝夫
Kazuo Iwamoto
岩本 一男
Hidejiro Kawana
川名 秀治郎
Seiji Takeuchi
瀞士 武内
Yuichi Kamo
友一 加茂
Koki Tamura
弘毅 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58086399A priority Critical patent/JPS59211970A/en
Publication of JPS59211970A publication Critical patent/JPS59211970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a fuel cell generator with stable cell performance by suppressing the cathode potential and preventing the growth of platinum grains on the cathode when the operation of the fuel cell is interrupted or stopped. CONSTITUTION:During the cell operation, methanol is fed from a fuel reservoir 15 to a cell proper 1 through a fuel feed valve 16, air is guided by an air blower 17 to the cell proper 1 through an air inlet valve 18, and steam and unreacted air is discharged outside the cell through an air outlet valve 19. When the cell is stopped, the connection of the cell proper 1 and a load circuit 2 is opened by a load switch 20, and in conjunction with it, the air inlet valve 18 and air outlet valve 19 are closed. As a result, the feed of oxygen to an air pole is cut off when the cell operation is stopped, and the potential increase at the air pole can be suppressed. The potential essentially suppressing the reaction at a positive electrode is preferably made 0.9V vs NHE or less.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池発電装置に係り、特に酸性電解液を用
い、かつ正極の触媒活性成分に少なくとも白金を用いた
装置における・運転の中止又は停止時の正極の性能低f
を防止するのに好適な燃料電池発電装置に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a fuel cell power generation device, and particularly to a device that uses an acidic electrolyte and uses at least platinum as the catalytic active component of the positive electrode. The performance of the positive electrode is low when
The present invention relates to a fuel cell power generation device suitable for preventing.

〔発明の背景〕 ゛ 硫酸、す/酸などの酸性電解液を用い、白金を触媒とし
て空気、酸素などの酸化剤を反応物質とする正極を有す
る燃料電池発電装置のうち、室温ないし100C前後の
低温で作動するタイプものにおいて、従来白金触媒粒子
の成長についてはほとんど問題とされることはなかった
。これは温度が低いために白金触媒粒子間の焼結による
粒子成長が考えにくいためである。従って、燃料電池の
運転停止時には電池の正負1!隠間は開路になってお沙
、電池全体は開路螺圧を示した状態となっている。その
ような状態で停止した方が、電池内に反応物質を蓄積し
ている量の多い液体燃料電池においては癒料利用効率の
点からも有利であると考えられていた。
[Background of the Invention] Among fuel cell power generation devices that use an acidic electrolyte such as sulfuric acid or sulfur/acid, and have a positive electrode that uses platinum as a catalyst and an oxidizing agent such as air or oxygen as a reactant, Conventionally, in types that operate at low temperatures, growth of platinum catalyst particles has rarely been a problem. This is because particle growth due to sintering between platinum catalyst particles is unlikely due to the low temperature. Therefore, when the fuel cell stops operating, the positive and negative values of the battery are 1! Inkuma is in an open circuit state, and the entire battery is in a state where it shows open circuit pressure. It was thought that stopping in such a state would be advantageous in terms of the efficiency of use of the healing material in liquid fuel cells where a large amount of reactants are accumulated within the cell.

しかし、硫酸、リン酸などの酸性電解液を用いる燃料電
池の空気極、酸素極などにおいて100C以下の低温運
転においても白金粒子の成長が観察された。このような
白金粒子の成長は、白金触媒の有効表面積を減少させ、
白金触媒の活性を低下させることになり、電極の性能を
低下させることになる。
However, growth of platinum particles was observed even in low-temperature operation of 100 C or less in air electrodes, oxygen electrodes, etc. of fuel cells that use acidic electrolytes such as sulfuric acid and phosphoric acid. The growth of such platinum particles reduces the effective surface area of the platinum catalyst,
This will reduce the activity of the platinum catalyst, which will reduce the performance of the electrode.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の問題点を解消し、カソ
ード(正極)での白金粒子の成長を防止し、電池性能の
安定した燃料電池発電装置を提供することにある。
An object of the present invention is to provide a fuel cell power generation device that eliminates the problems of the prior art described above, prevents the growth of platinum particles on the cathode (positive electrode), and has stable cell performance.

〔発明の概要〕[Summary of the invention]

本発明者らは燃料電池の運転の中止又は停止時、カソー
ド電位が上昇し、かつ白金触媒が硫酸、リン酸等の酸性
電解質に接触するために白金粒子が腐食することを見い
出した。
The present inventors have discovered that when the operation of a fuel cell is stopped or stopped, the cathode potential increases and the platinum catalyst comes into contact with an acidic electrolyte such as sulfuric acid or phosphoric acid, causing corrosion of platinum particles.

一般に白金触媒の腐食に関し、” At1as ofl
:lecirochemical  p:qu目1br
ia  in Aqueous8o1uti□n、Pe
rgamon  press (1966)においてM
 、 PourbaixはP n = 0以下の酸性状
態下で白金の腐食が以下のようなメカニズムで進行する
ことを述べている。
Regarding the corrosion of platinum catalysts in general, "At1as ofl
:lecirochemical p:Qu eye 1br
ia in Aqueous8o1uti□n, Pe
M in rgamon press (1966)
, Pourbaix states that corrosion of platinum progresses under the following mechanism under acidic conditions where P n =0 or less.

(1)  Pt+Hg0−+PtO+2H”+26  
(Eo=9.80V)(2)  PtO+H*C))P
tOx+2H”+26(E=1.045V)(1)、 
(2)はptの酸化反応である。このようにまず白金の
酸化物が高い電位(>9.80V)と濃い酸の存在下で
生成する。
(1) Pt+Hg0-+PtO+2H”+26
(Eo=9.80V) (2) PtO+H*C))P
tOx+2H”+26 (E=1.045V) (1),
(2) is the oxidation reaction of pt. Thus, oxides of platinum are first formed at high potentials (>9.80 V) and in the presence of concentrated acids.

(3)  Pt0z+4H”+2e−−+Pt”+2H
*0(Eo=0.837V) (3)は白金の表面に生成した酸化物の溶解反応でアシ
、白金粒子の表面が電解液中へイオンとなって溶解する
過程である。
(3) Pt0z+4H"+2e--+Pt"+2H
*0 (Eo=0.837V) (3) is a process in which the surface of reeds and platinum particles becomes ions and dissolves into the electrolytic solution due to a dissolution reaction of oxides generated on the surface of platinum.

(4)  P t” +2 e−→Pt   (EO=
1.188V)溶解した白金イオンは(4)によって還
元され白金粒子上に析出し白金粒子が成長する。
(4) Pt” +2 e−→Pt (EO=
1.188V) The dissolved platinum ions are reduced by (4) and precipitated on the platinum particles, thereby growing the platinum particles.

この文献に記載されている電位は白金板などの白金の巨
大粒子の腐食のメカニズムに関するものである。しかし
、燃料電池に用いられる白金粒子は炭素粉末上に微細分
散担持されたものであシ、その粒径は約3OAである。
The potentials described in this document relate to the corrosion mechanism of giant particles of platinum, such as platinum plates. However, the platinum particles used in fuel cells are finely dispersed and supported on carbon powder, and the particle size is about 3OA.

このような微粒子は1粒子中の表面に露出している原子
の割合が多くなって表面エネルギーが増加し、その化学
的性質は一般に巨大粒子に比べ活性である。
Such fine particles have a higher proportion of atoms exposed on the surface of each particle, resulting in increased surface energy, and their chemical properties are generally more active than that of large particles.

本発明は燃料電池の運転の中止又は停止した際正極での
反応を実質的に抑制する電位に保つ手段を備えたことを
特徴する。カソードのtiとしての白金が微細粒子でお
る点を考慮すると、特に0、(jV vl NHE 以
下とすることが望ましい。
The present invention is characterized in that it includes means for maintaining a potential that substantially suppresses the reaction at the positive electrode when the operation of the fuel cell is stopped or stopped. Considering the fact that platinum as the cathode ti is in the form of fine particles, it is particularly desirable to set it to 0, (jV vl NHE or less).

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実癩例に基づいて更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail based on a leprosy example.

第1図は本発明に係わる燃料電池発電装置の一実施例を
示すブロック図である。第1図において1は燃料電池発
電装置本体であり、この中には電池本体である積層電池
、燃料および酸化剤供給系制御系などが含ま扛ている。
FIG. 1 is a block diagram showing an embodiment of a fuel cell power generation device according to the present invention. In FIG. 1, reference numeral 1 denotes a main body of a fuel cell power generation apparatus, which includes a stacked battery which is a cell main body, a fuel and oxidizer supply system control system, and the like.

2は負荷回路であり、発電装置本体1の出力は、この2
において仕事をする。3は短絡回路でラシ、実質的に電
気抵抗が0であるような回路、もしくは、負荷回路2と
ほぼ同等な抵抗を有する低抵抗の回路である。したがっ
て短絡回路3としては、無抵抗回路、低抵抗回路、低抵
抗+コンデンサ回路などとすることができる。負荷回路
2と短絡回路3との接続はスイッチ部4で切換えられる
。すなわち、燃料電池の負荷運転時にはA−B、D−H
の接続となシ、燃料電池の目的とする負荷に対する運転
の中止又は停止した際、A−C,D−Fの接続となる。
2 is a load circuit, and the output of the generator main body 1 is this 2
work in 3 is a short circuit, which is a circuit with substantially zero electrical resistance, or a low resistance circuit with almost the same resistance as the load circuit 2. Therefore, the short circuit 3 can be a non-resistance circuit, a low resistance circuit, a low resistance+capacitor circuit, or the like. The connection between the load circuit 2 and the short circuit 3 is switched by a switch section 4. That is, during load operation of the fuel cell, A-B, D-H
However, when the operation of the fuel cell for the intended load is stopped or stopped, A-C and D-F are connected.

この結果、運転の中止又は停止時にはカソードにおける
電位上昇が防止され、カソードにおける白金粒子の成長
が抑えられる。
As a result, when the operation is stopped or stopped, potential increase at the cathode is prevented, and growth of platinum particles at the cathode is suppressed.

第2図は燃料電池としての酸性電解液型メタノール゛−
空気燃料電池の基本構造を示す。第2図において5が燃
料極、すなわちメタノール極であり、6が空−極である
。両電極5,6の間にはイオン交換膜7が設けてあり、
燃料であるメタノールの空気極6への拡散を阻止してい
る。両電極5.6間の電子授受は集電体14と各電極と
の接触によって可能となっている。燃料であるメタノー
ルは電解質である硫酸とともに水溶液となって、アノラ
イトとして燃料室8へ燃料人口9より供給される。メタ
ノール極5上で反応生成した二酸化炭素は排ガス出口1
0より排出される。空気極6は空気室11に接しており
、空気室11へは空気入口12よシ空気が供給され、空
気極6上で生成した水は水蒸気となって未反応の空気と
ともに排ガス出口13よシ排出される。なお第2図は電
池の基本構造である単電池の構造を示すものであシ、実
際の積層電池はこの基本構造を多数重ねて形成されてい
る。
Figure 2 shows acidic electrolyte type methanol used in fuel cells.
The basic structure of an air fuel cell is shown. In FIG. 2, 5 is a fuel electrode, that is, a methanol electrode, and 6 is an air electrode. An ion exchange membrane 7 is provided between both electrodes 5 and 6.
This prevents methanol, which is fuel, from diffusing into the air electrode 6. Exchange of electrons between the electrodes 5 and 6 is possible through contact between the current collector 14 and each electrode. Methanol, which is a fuel, becomes an aqueous solution together with sulfuric acid, which is an electrolyte, and is supplied from a fuel port 9 to a fuel chamber 8 as an anolite. Carbon dioxide generated by reaction on the methanol electrode 5 is discharged from the exhaust gas outlet 1.
Ejected from 0. The air electrode 6 is in contact with the air chamber 11, and air is supplied to the air chamber 11 through the air inlet 12, and the water generated on the air electrode 6 becomes water vapor and flows through the exhaust gas outlet 13 along with unreacted air. be discharged. Note that FIG. 2 shows the structure of a unit cell, which is the basic structure of a battery, and an actual stacked battery is formed by stacking many of these basic structures.

ここでメタノール極5、空気極6ともキャボット社製カ
ーボンブラックXC−72Hに白金を30%微細均一担
持したものを触媒粉末に用い、これをポリテトラフルオ
ロエチレン(P’I”FE )微粉末を結着剤として多
孔性炭素不織布基体上に塗布し、窒素中300〜350
Cで0.5〜2h焼成して作製した。なおPTFE量は
触媒に対して、メタノール極で5〜10%、空気極で1
5〜30%とした。得られた電極とデュポン社製陽イオ
ン交換膜Nafion 425を組み合わせ、更にタン
クル金網または黒鉛板などを集電体として単電池を構成
した。アノライトには3mO,!!、//!、の硫酸と
1mol/ lのメタノールを含む水溶液を用い、液ポ
ンプで供給した。空気はエアーポンプで送風した。
Here, for both the methanol electrode 5 and the air electrode 6, Cabot Carbon Black Coated on a porous carbon non-woven fabric substrate as a binder, at a temperature of 300 to 350 in nitrogen.
It was produced by firing at C for 0.5 to 2 hours. The amount of PTFE is 5 to 10% in the methanol electrode and 1% in the air electrode relative to the catalyst.
It was set at 5 to 30%. The obtained electrode was combined with a cation exchange membrane Nafion 425 manufactured by DuPont, and a single cell was constructed using a tank wire mesh or a graphite plate as a current collector. 3mO for anorite! ! ,//! An aqueous solution containing 1 mol/l of sulfuric acid and 1 mol/l of methanol was used and supplied by a liquid pump. Air was blown with an air pump.

このようにして電池を600に保ち後記する各運転モー
ドで運転し、そのときの電池性能の変化を測定した。
In this way, the battery was maintained at 600 ℃ and operated in each operation mode described later, and changes in battery performance at that time were measured.

電池の各運転モードを第3図に示す。第3図中、Gは1
00時間中90時間休止し、10時間運転するモードで
あり、第3図中、I]は100時間中90時間運転し、
10時間休止するモードであシ、第3図中、■は60m
A/cm”の一定′醒流密度で連続放電するモードであ
る。またG、Hの運転モードについては、休止時間中も
第1図のA−B。
FIG. 3 shows each operation mode of the battery. In Figure 3, G is 1
This is a mode in which the engine is stopped for 90 hours out of 00 hours and operated for 10 hours.
In the mode that stops for 10 hours, ■ in Figure 3 is 60m.
This mode is a mode in which continuous discharge is performed at a constant discharge density of A/cm''.Also, regarding the G and H operation modes, the operation mode A-B in Fig. 1 is maintained even during the rest period.

D−E接続である。運転休止中、第1図のA−C。This is a D-E connection. During the suspension of operation, A-C in Fig. 1.

D−Fの接続により電池の正負両極間を短絡した運転モ
ードをそれぞれG′、H′とする。各運転モードでの電
池性能の経時変化を第4図に示す。
The operating modes in which the positive and negative terminals of the battery are short-circuited by connecting D-F are designated as G' and H', respectively. Figure 4 shows changes in battery performance over time in each operating mode.

第4図よ、9GおよびHでの性能の低下が大きいのに対
し、■の低下が小さいことがわかる。またH′、G′で
もIと同等以上の少ない性能の低下となることがわかる
。この試験ののち、電池を解体して調べてみると、Hl
Gでは空気極で白金粒子の成長が観察され、性能を低下
していた。従って、G、Hの性能の低下は主として空気
極の性能の低下によるものであり、それは電池を開路に
して放jdシている間に空気極の電位が向上し、白金粒
子が成長したためである。更に、G’ 、H’で■と同
等以上の性能が得られたことは、運転停止中、電池の正
負両極を短絡することによって空気極の電位上昇を抑え
、白金粒子の成長を防止できたことに示すものといえる
As shown in FIG. 4, it can be seen that the performance decrease in 9G and H is large, while the decrease in ■ is small. Furthermore, it can be seen that H' and G' also result in a small decrease in performance that is equal to or more than that of I. After this test, I disassembled the battery and examined it and found that Hl.
In G, growth of platinum particles was observed at the air electrode, reducing performance. Therefore, the decrease in the performance of G and H is mainly due to the decrease in the performance of the air electrode, and this is because the potential of the air electrode increases and platinum particles grow while the battery is open-circuited and discharged. . Furthermore, the fact that performance equivalent to or better than ■ was obtained for G' and H' is that by short-circuiting the positive and negative electrodes of the battery while the operation was stopped, it was possible to suppress the rise in potential of the air electrode and prevent the growth of platinum particles. This is especially true.

次に酸性電解液型メタノール−空気燃料電池の代りに酸
性電解液型水素−空気□燃料電池について各運転モード
における電池性能を測定した。この場合その電池の基本
構造は第2図と概ね同一である。異なる点は燃料極5が
ガス電極であるため、空気極と同一のものになること、
正負両極間のイオン交換膜7が不要となり、単に両電極
の接触を妨げるだけのセパレータがあれば十分であるこ
との2点である。電解液に3mot/4の硫酸を用い、
燃料室8に水素を、空気室11に空気をそれぞれ供給し
、この電池を葎転した。運転モードは第3図に示したG
、H,I並びに前記実施例10G′およdH′である。
Next, instead of the acidic electrolyte methanol-air fuel cell, an acidic electrolyte hydrogen-air □ fuel cell was used to measure cell performance in each operation mode. In this case, the basic structure of the battery is generally the same as that shown in FIG. The difference is that the fuel electrode 5 is a gas electrode, so it is the same as the air electrode.
Two points are that the ion exchange membrane 7 between the positive and negative electrodes is unnecessary, and a separator that simply prevents contact between the two electrodes is sufficient. Using 3mot/4 sulfuric acid as the electrolyte,
Hydrogen was supplied to the fuel chamber 8 and air was supplied to the air chamber 11, and the battery was turned over. The driving mode is G as shown in Figure 3.
, H, I, and Examples 10G' and dH'.

どれらの各運転モードにおける電池性能の経時変化を第
5図に示す、第4図と同様にGの性能低下が大きく、H
がこれに次ぎ、I、H’、G’の性能低下は小さいこと
がわかる。
Figure 5 shows the changes in battery performance over time in each operation mode. As in Figure 4, the performance decline in G is large, and in H
It can be seen that the performance deterioration of I, H', and G' is the next smallest.

第5図から、酸性電解液型水素−空気燃料電池の場合に
も運転停止中、電池の正負両極間を短絡させることによ
って空気極の電位上昇を抑え、白金粒子の成長を防止で
きることがわかる。
From FIG. 5, it can be seen that even in the case of an acidic electrolyte type hydrogen-air fuel cell, by short-circuiting the positive and negative electrodes of the cell during operation stoppage, it is possible to suppress the increase in the potential of the air electrode and prevent the growth of platinum particles.

第6図は本発明に係る燃料電池発電装置の他の実施例を
示すゴロツクである。第6図において、電池運転中、燃
料だめ(メタノール)15から燃料供令バルブ16を介
して電池本体1ヘメタノールが供給され、また空気プロ
ワ17によυ空気入ロバルプ(電磁弁)18を介して電
池本体1へ空気が導入さrL1水蒸気と未反応空気は空
気出ロバルプ(電磁弁)19を介して電池本体外に排出
される。
FIG. 6 is a diagram showing another embodiment of the fuel cell power generating apparatus according to the present invention. In FIG. 6, during battery operation, methanol is supplied from a fuel reservoir (methanol) 15 to the battery main body 1 via a fuel supply valve 16, and is also supplied to the battery body 1 by an air blower 17 via an air-inlet valve (electromagnetic valve) 18. Air is introduced into the battery body 1, and the rL1 water vapor and unreacted air are discharged to the outside of the battery body via an air outlet valve (electromagnetic valve) 19.

電池運転の停止時、負荷スイッチ20により電池本体1
と負荷回路2との接続は開放される。本実施例において
負荷スイッチ20の作動に基づいて空気入口バルブ18
および空気出口パルプ19を自動的に開閉する回路が設
けられておシ、負荷スイッチ20の開放にエリ空気入口
パルプ18および空気出口パルプ19が閉じられる。こ
の結果、電池の運転停止時、空気極への酸素の供給が断
たれることになる。ば池運転停止中、カソード(空気極
)が高い一位となるのは空気極の活物質である酸素の存
在によって保持されるので、酸素の供給を遮断すること
によって空気極における電位上昇を抑えることができる
When battery operation is stopped, the load switch 20
The connection between the load circuit 2 and the load circuit 2 is opened. In this embodiment, the air inlet valve 18 is activated based on the actuation of the load switch 20.
A circuit is provided to automatically open and close the air outlet pulp 19. When the load switch 20 is opened, the air inlet pulp 18 and the air outlet pulp 19 are closed. As a result, when the battery stops operating, the supply of oxygen to the air electrode is cut off. When the pond is stopped, the cathode (air electrode) remains at a high level due to the presence of oxygen, which is the active material of the air electrode, so by cutting off the oxygen supply, the rise in potential at the air electrode is suppressed. be able to.

第6図に示す大施例においても電池本体1部分は酸性成
噴液型メタノールー空気燃料電池ひよび酸性電解液型水
素−空気j熱料電池のいずれでも同様の効果を発揮する
In the large embodiment shown in FIG. 6, the 1 part of the battery main body exhibits the same effect in both the acid injection liquid type methanol-air fuel cell and the acidic electrolyte type hydrogen-air j-thermal cell.

前記実施例において、酸化剤としては空気を用いたが、
酸素を用いることも可能である。また酸(11) 性電解質は硫酸の他にリン酸、トリフルオロメタンスル
ホン酸などを用いることができる。すなわち本→6明は
すべてのタイプの酸性電解液型燃料電池に対し適用する
ことができる。
In the above examples, air was used as the oxidizing agent, but
It is also possible to use oxygen. In addition to sulfuric acid, phosphoric acid, trifluoromethanesulfonic acid, etc. can be used as the acid (11) electrolyte. In other words, this book can be applied to all types of acidic electrolyte fuel cells.

更に運転停止時の正負両極の短絡、又は運転停止時の酸
化剤の供給遮断の手段は本発明における実施例であり、
本発明は、電池運転の中止又は停止時、正極でP t 
+ 2H*O−→PtOs+4H”+48の反応が実質
的に起らない電位、望ましくは、0.9V v8  N
HB 以下に抑える手段を有する限りこれらをすべて包
含するものである。
Further, means for shorting the positive and negative electrodes when the operation is stopped or for cutting off the supply of the oxidizing agent when the operation is stopped is an embodiment of the present invention,
The present invention provides P t at the positive electrode when the battery operation is stopped or stopped.
+ 2H*O−→PtOs+4H”+48 potential at which the reaction does not substantially occur, preferably 0.9V v8 N
All of these are included as long as there is a means to suppress HB or less.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、装置の目的とする負荷に
対する運転の中止又は停止した際における正極でのd位
上昇を抑え、正極での白金粒子の成長を防止することが
できるので電池性能が長期的に安定する。
As described above, according to the present invention, it is possible to suppress the increase in d level at the positive electrode when the device is stopped or stopped for the intended load, and to prevent the growth of platinum particles at the positive electrode, thereby improving battery performance. is stable over the long term.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係する燃料電池発電装置の運転系統の
一例を示すブロック図、J219はメタン(12) 一ルー空気燃料電池の基本構造の断面模式図、第3図は
(G) (H) (I)は電池の試験運転モードを示す
図、第4図は酸性電解液型メタノール−空気燃料電池の
各運転モードにおける性能の経時変化を示す図、第5図
は酸性電解液型水素−空気燃料の各運転モードにおける
性能の経時変化を示す図、第6図は本発明に係る燃料電
池発電装置の運転系統の他の例を示すブロック図である
。 1・・・燃料電池発電装置本体、2・・・負荷回路、3
・・・短絡回路、5・・・メタノール極、6・・・空気
極、7・・・イオン交換膜、14・・・集電体、18・
・・空気入ロバルプ(電磁弁)、19・・・空気出口パ
ルプ(it電磁弁、20・・・負荷スイッチ。 代理人 弁理士 鵜沼辰之 (13) 羊 l 目 第2目 $39 片 71rl   (/L) 吟 町 (k) O1σθ   2ρθ   3ρθ ffrIt′I(h) 茅4目 θ    16θ  2σσ  Jσθヌ苛 Il  
(h) 茅5目 θ    /lρ   2σρ  J/θ埒 1”l 
 (h、) 竿 6 目 日立市幸町3丁目1番1号株式 %式% 日立市幸町3丁目1番1号株式 会社日立製作所日立研究所内
Fig. 1 is a block diagram showing an example of the operation system of the fuel cell power generation device according to the present invention, J219 is a cross-sectional schematic diagram of the basic structure of a methane (12)-air fuel cell, and Fig. 3 is (G) ( H) (I) is a diagram showing the test operation mode of the battery, Figure 4 is a diagram showing changes in performance over time in each operation mode of an acidic electrolyte type methanol-air fuel cell, and Figure 5 is a diagram showing changes in performance over time in each operation mode of an acidic electrolyte type methanol-air fuel cell. FIG. 6 is a block diagram showing another example of the operation system of the fuel cell power generator according to the present invention. 1...Fuel cell power generation device main body, 2...Load circuit, 3
... Short circuit, 5... Methanol electrode, 6... Air electrode, 7... Ion exchange membrane, 14... Current collector, 18.
... Air inlet Robulp (Solenoid valve), 19... Air outlet Pulp (IT solenoid valve, 20... Load switch. Agent Patent attorney Tatsuyuki Unuma (13) Sheep l 2nd eye $39 Piece 71rl (/ L) Ginmachi (k) O1σθ 2ρθ 3ρθ ffrIt'I(h) Kaya 4me θ 16θ 2σσ Jσθ Nurai Il
(h) Kaya 5 eyes θ /lρ 2σρ J/θ埒 1”l
(h,) Rod 6 3-1-1 Saiwai-cho, Hitachi City Stock % formula % Hitachi Laboratories, Hitachi, Ltd. 3-1-1 Saiwai-cho, Hitachi City

Claims (1)

【特許請求の範囲】 1゜酸性電解液を用い、かつ正極の触媒活性成分に少な
くとも白金を用いた燃料電池発電装置において、該装置
の目的とする負荷に対する運転を中止又は停止した際に
正極での反応を実質的に抑制する電位に保つ手段を備え
たことを特徴とする燃料電池発電装置。 2、特許請求の範囲第1項において、前記手段が正極電
位を0.9V vs NHE以下に抑制する手段である
ことを特徴とする燃料電池発電装置。 3、%許請求の範囲第1項において、前記手段が正極と
負極とを短絡又は抵抗器を介して接続する手段であるこ
とを特徴とする燃料電池発電装置。 4、%許請求の範囲第1項において、前記手段が、酸化
剤の供給を遮断する手段であることを特徴とする燃料電
池発電装量。
[Scope of Claims] In a fuel cell power generation device using a 1° acidic electrolyte and at least platinum as a catalytic active component of the positive electrode, when the device is stopped or stopped for its intended load, the positive electrode 1. A fuel cell power generation device characterized by comprising means for maintaining the potential at a potential that substantially suppresses the reaction of the fuel cell. 2. The fuel cell power generation device according to claim 1, wherein the means is means for suppressing the positive electrode potential to 0.9 V vs. NHE or less. 3.% Allowance The fuel cell power generation device according to claim 1, wherein the means is means for connecting the positive electrode and the negative electrode via a short circuit or a resistor. 4.% Permissible The fuel cell power generation system according to claim 1, wherein the means is means for cutting off the supply of the oxidizing agent.
JP58086399A 1983-05-17 1983-05-17 Fuel cell generator Pending JPS59211970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58086399A JPS59211970A (en) 1983-05-17 1983-05-17 Fuel cell generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58086399A JPS59211970A (en) 1983-05-17 1983-05-17 Fuel cell generator

Publications (1)

Publication Number Publication Date
JPS59211970A true JPS59211970A (en) 1984-11-30

Family

ID=13885789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58086399A Pending JPS59211970A (en) 1983-05-17 1983-05-17 Fuel cell generator

Country Status (1)

Country Link
JP (1) JPS59211970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065677A1 (en) * 1999-04-26 2000-11-02 Siemens Aktiengesellschaft Operating concept for direct methanol fuel cells
US7943261B2 (en) 2002-10-31 2011-05-17 Panasonic Corporation Method of operating fuel cell system and fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000065677A1 (en) * 1999-04-26 2000-11-02 Siemens Aktiengesellschaft Operating concept for direct methanol fuel cells
US7943261B2 (en) 2002-10-31 2011-05-17 Panasonic Corporation Method of operating fuel cell system and fuel cell system

Similar Documents

Publication Publication Date Title
US7241521B2 (en) Hydrogen/hydrogen peroxide fuel cell
JP5054912B2 (en) Catalyst for fuel cell, method for producing the same, and fuel cell system including the same
CN109560310B (en) Fuel cell ultra-low platinum loading self-humidifying membrane electrode and preparation method thereof
WO2009104570A1 (en) Air electrode
CN111900420A (en) Anode catalyst slurry, anode catalyst layer, membrane electrode and fuel cell
ES2899235T3 (en) regenerative fuel cells
JPS6322023B2 (en)
JP3163370B2 (en) Redox battery
JPH09167622A (en) Electrode catalyst and solid polymer type fuel cell using same
JP4937527B2 (en) Platinum catalyst for fuel cell and fuel cell including the same
JP4977911B2 (en) Electrode catalyst powder for air electrode of hydrogen-air / solid polymer electrolyte type reversible cell, electrode-electrolyte membrane assembly (MEA) having air electrode and reversible cell using the same
CN113871629A (en) Anti-reversal catalyst, preparation method and application thereof
JPH06330367A (en) Production of gas electrode
JP2004335252A (en) Electrode catalyst for fuel cell, and its manufacturing method
JPS59211970A (en) Fuel cell generator
JPS63236262A (en) Fuel cell
JP2021093348A (en) Cathode catalyst layer, membrane electrode assembly, and fuel battery
JPS63237363A (en) Methanol fuel cell
JP2021075745A (en) Hydrogen generating apparatus
JPH06231773A (en) Fuel cell
JP3758615B2 (en) Fuel cell
JP2004349180A (en) Membrane electrode assembly
KR20070092876A (en) Cathode catalyst for fuel cell and membrane-electrode assembly for fuel cell comprising same
KR100717792B1 (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same
KR100508672B1 (en) Fuel cell cosuming liquid fuel included sodium borohydride