JPS59209482A - Position measuring device of material to be welded in pulse welding - Google Patents

Position measuring device of material to be welded in pulse welding

Info

Publication number
JPS59209482A
JPS59209482A JP8227283A JP8227283A JPS59209482A JP S59209482 A JPS59209482 A JP S59209482A JP 8227283 A JP8227283 A JP 8227283A JP 8227283 A JP8227283 A JP 8227283A JP S59209482 A JPS59209482 A JP S59209482A
Authority
JP
Japan
Prior art keywords
light
slit
welded
image
sectional images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8227283A
Other languages
Japanese (ja)
Inventor
Morihiko Kawabe
川辺 守彦
Masaru Morita
勝 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OMUNIPATSUKU KK
IHI Corp
Original Assignee
OMUNIPATSUKU KK
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OMUNIPATSUKU KK, IHI Corp filed Critical OMUNIPATSUKU KK
Priority to JP8227283A priority Critical patent/JPS59209482A/en
Publication of JPS59209482A publication Critical patent/JPS59209482A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • B23K9/1272Geometry oriented, e.g. beam optical trading
    • B23K9/1274Using non-contact, optical means, e.g. laser means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

PURPOSE:To provide a titled device which measures exactly the position of materials to be welded with signal processing of simple circuits by the constitution in which the sectional images of the materials to be welded by the two slit rays obtd. during the dark time of an arc are separately taken into a control device and that the correlative relation of both sectional images is decided. CONSTITUTION:A position measuring device is constituted of an image pickup device 3 consisting of light emitting sources 4a, 4b, an electronic shutter 22, a lens 23, an image sensing element 24 and a control device 6, etc. Slit rays 15a, 15b are irradiated respectively from the two light sources 4a, 4b to the groove 2 of materials 1 to be welded, and the welding arc light is detected by a photodetector 5. The detection signal is inputted via an amplifier 9 to a timing genenerator 10 which controls driving circuits 11, 12 to output the sectional image during the dark time of the arc pulse to the device 6. The device 6 takes separately the two sectional images therein, stores the images in a storage circuit 13 and discriminates the correlative relation between the two sectional images with a computer 14 thereby measuring the position of the materials 1.

Description

【発明の詳細な説明】 本発明はスリット状光線を被溶接物に照射し、被溶接物
]二に11)られるスリット状光線の切断像により、被
溶接物の姿勢等の測定を行うパルスiイ接に於ける被溶
接物の姿勢計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a pulse i for irradiating a workpiece with a slit-shaped beam, and measuring the posture, etc. of the workpiece using a cut image of the slit-shaped beam. The present invention relates to an apparatus for measuring the posture of a workpiece during welding.

現在非接触測定法の−として光切断による方法が知られ
ている。
Currently, a method using optical cutting is known as a non-contact measurement method.

これはスリット状の光線(平板状の光線、点光線を同一
平面上に配したもの、−の点光線を同一平面内に走査さ
せたものをいう)を被測定物に照射し、被測定物上に得
られる切断像をスリット状光線の斜方より観察し、切断
像の形状を観察して被測定物の形状等を判断するもので
ある。
This is done by irradiating the object to be measured with a slit-shaped light beam (a planar light beam, a point beam arranged on the same plane, a point beam scanned in the same plane). The cut image obtained above is observed from the oblique direction of the slit-shaped light beam, and the shape of the cut image is observed to judge the shape of the object to be measured.

然し、従来の−のスリット状光線による光切断法では、
被測定物とスリット状光線との相互関係、例えば該光線
に対して被測定物が傾いていることによっても切断像の
形状は変化し、正確な測定が行えないと共に得られる情
報量カシ少なく被測定物の姿勢判断まではできなかった
However, in the conventional light cutting method using a slit-shaped beam,
The shape of the cut image changes due to the mutual relationship between the object to be measured and the slit-shaped light beam, for example, if the object to be measured is tilted with respect to the light beam, making it difficult to perform accurate measurements and reducing the amount of information obtained. It was not possible to judge the attitude of the object to be measured.

又、この光切断は背景光に大きく影響され、背景光か強
い場合にはスリット状光線(信号光)を背景光より分離
するのが到しくなって、屓11定の信頼性が低下する。
In addition, this light cutting is greatly influenced by background light, and when the background light is strong, it becomes difficult to separate the slit-shaped light beam (signal light) from the background light, and the reliability of the signal decreases.

更に、該光切断法を溶1裟中に於ける被溶接物の測定に
使用するj易合(まア−ク光が強すぎて、事実上測定不
能である。
Furthermore, it is difficult to use the optical cutting method to measure a workpiece in a welding chamber (although the arc light is so strong that it is virtually impossible to measure it).

本発明は!斬かる実情に鑑み、光切断法による被溶接物
、特に溶接中の被溶接物の計測を行える様にすると共に
被溶接物の姿勢をも計測できる÷1にして光切断法のセ
ンサを自動溶接に於けるセンサどして使用可能としたも
のである。
This invention is! In view of the current situation, we have developed a sensor that automatically welds the optical cutting method by dividing it by 1, making it possible to measure the workpiece by optical cutting, especially the workpiece during welding, and also measuring the posture of the workpiece. It can be used as a sensor in

以ド図面を参照しつつ本発明の詳細な説明する。The present invention will now be described in detail with reference to the drawings.

図中1は開先溝2を有する被溶接物(以下ワークと称す
)、3は撮像装置、4a 、 4bはスリン)・状光線
〔以下スリット光線という〕を光するところの発光源、
5は光ディテクタ、6は制御−ル冒−1′であり、該制
御装置6の主たる構成要素は、フィルタ7、AD変換器
8、増幅器9、タイミンク発生As1O5発光源駆動回
路11、シャッタ駆動回路12、記憶回路13、コンピ
ュータ14、同期(11υ分泄回路30である。
In the figure, 1 is an object to be welded having a groove groove 2 (hereinafter referred to as a workpiece), 3 is an imaging device, 4a and 4b are a light emitting source that emits a slit-shaped light beam (hereinafter referred to as a slit beam),
Reference numeral 5 indicates a light detector, and reference numeral 6 indicates a control circuit 1'. The main components of the control device 6 are a filter 7, an AD converter 8, an amplifier 9, a timing generation As1O5 light source drive circuit 11, and a shutter drive circuit. 12, storage circuit 13, computer 14, synchronization (11υ division circuit 30).

本発明では2のスリット光′fj、、15a、15bを
ワーク1に1!、ξ)射して、2のψ月析像の相関関係
でワーク1の姿勢等を、;1測する。
In the present invention, two slit beams 'fj, 15a, 15b are applied to the workpiece 1! .

W等を計i’1lllする械絡について説明する。A mechanical connection that totals W, etc. will be explained.

発光源4a 、 4bからのスリット光線15a、15
bは撮像装置3−ド方で交差する様にしてあり、該スリ
ット光線15a、15bて得られる切断像16a、16
bは第2図に示す通りであり、画像」二Hガ向(HII
lllI)は尚2の長手方向、■方向(■唾1〕は7異
2    ゛に対して直角方向を示す。
Slit beams 15a, 15 from light sources 4a, 4b
The slit beams 15a and 15b intersect with each other on the side of the imaging device 3, and the cut images 16a and 16 obtained by the slit beams 15a and 15b are
b is as shown in FIG.
llI) indicates the longitudinal direction of 2, and the ■direction (■sal 1) indicates the direction perpendicular to 7 2゛.

Lりりに、第2図、第3図は切断像16aと16bとの
関係、スリット光線15a 、 15bとワーク1との
関係を示す。
Specifically, FIGS. 2 and 3 show the relationship between the cut images 16a and 16b, and the relationship between the slit beams 15a and 15b and the workpiece 1.

図中、 Dll、  撮像装置3の光学ユニット17とワーク1
との距離、 6 、光学ユニット17のH方向中・b線と開先l/I
′i2長手方向との角度、 Q、  : ’JR1i’M中心〔画像中心)とワーク
1の被ルリ定中心とのずれ、 ψ5 、光学ユニット17の光軸と15+1先IM 2
の垂線との傾き、 σ  同光軸と開先溝2と開先角2θ7の2等分線との
角度、 U 、同光軸とスリット光線15a、15bとの角1隻
、 HC9画面H軸H軸央の座標、 ■ 1画面■軸の11ゴ火の座標、 R2、ワ、ψ月(1i m 16aの屈曲点のV 1i
Toの座標、R2、ヨ、切断像16aのlTl1曲点の
H軸の座標、Rovl、1月所像16bの屈曲点のV方
向の座標、R13!1 : ”J月jIi(’l/ 1
6b (f)屈曲点のH方向の座標、V:l’ii標■
 より」二カの任意の座標、V:)’V標V より1ζ
刀の任、6ミの座標、n:H’;標V に於ける座標H
6から切断1象16a迄の距離、 町 5厘4!rf V+J+に於ける座標H6から切断
1′η16a迄の距離、 II 11  、’ P4’l 6 Vrb ニ於け7
+l’u標H6力)ら切1析(η16b迄の距離、 In、、  : I!fi標■77.に於ける座標HC
力)ら切1析1象16b迄の距r冊、 dwA1厘標HCから屈曲点RAH迄の距離、dWB 
 座el Hcから屈曲点R111+迄のyrx mt
、Od 、基へLレベルOからスリット光線15a。
In the figure, Dll, the optical unit 17 of the imaging device 3 and the workpiece 1
Distance from 6, H direction middle/b line of optical unit 17 and groove l/I
'i2 Angle with longitudinal direction, Q: 'JR1i' Displacement between M center (image center) and fixed center of workpiece 1, ψ5, optical axis of optical unit 17 and 15+1 ahead IM2
σ is the angle between the optical axis and the bisector of the groove groove 2 and the groove angle 2θ7, U is the angle between the optical axis and the slit rays 15a and 15b, HC9 screen H axis Coordinates of the center of the H axis, ■ 1 screen ■ Coordinates of the 11th axis, R2, Wa, ψ month (1i m V 1i of the bending point of 16a
Coordinates of To, R2, yo, H-axis coordinates of the lTl1 curve point of the cut image 16a, Rovl, V-direction coordinates of the curve point of the January image 16b, R13!1: "J month jIi ('l/ 1
6b (f) Coordinate of bending point in H direction, V: l'ii mark ■
From' two arbitrary coordinates, V:)'V mark V from 1ζ
Coordinates of 6mi, n:H'; Coordinates H at mark V
Distance from 6 to cutting 1 elephant 16a, town 5 rin 4! rf Distance from coordinate H6 at V+J+ to cutting 1'η16a, II 11,'P4'l 6 Vrb Ni 7
+l'u mark H6 force) Cut 1 analysis (distance to η16b, In,, : Coordinates HC at I!fi mark ■77.
Force) Distance from r cut 1 analysis 1 elephant 16b, dwA1 Distance from mark HC to bending point RAH, dWB
yrx mt from seat el Hc to bending point R111+
, Od, slit ray 15a from L level O to base.

15bが交わる点適の距離、 DW、レヘル0からワーク迄の距fAt、D、p、Dぷ
 : 0,1からワーク迄の距藤であり、D6はDw<
od、D;はD w > 01の時、 である。
15b intersects, DW, distance from 0 to workpiece fAt, D, p, Dp: distance from 0,1 to workpiece, D6 is Dw<
od, D; is when D w > 01.

次にd)5、Qd  ・等の算出についてil’1次説
明する。
Next, the calculation of d)5, Qd, etc. will be explained in the first order of il'.

(1)先ず小 について、 第4図はOi>Dwの時、第5図はOd<Dwの時の状
態の切断像16a、 16bを示しているが、いずれの
場合でも屈曲点R11,REのPUX:標から容易に求
めることができる。即ち、 で求められ、史に(RAV  REV ) (RAH’
−RB□、)の((13、正負判断より、d)。の正負
及びDW力)求められる。
(1) First, regarding the small, Fig. 4 shows the cut images 16a and 16b when Oi>Dw, and Fig. 5 shows the cut images 16a and 16b when Od<Dw. PUX: Can be easily determined from the mark. That is, it can be found by (RAV REV ) (RAH'
−RB□, ) ((13, From the positive/negative judgment, the positive/negative and DW force of d)) can be found.

(ii) Qd について、 fad は第61g1で示す様に /(L−(Vo−RAv(OrRBv))×Mで得られ
、誤差を少なくする為、RAVとRBVで求めC)れる
9d(J)+均をとれば、となる。ここでMは光学的(
8率である。
(ii) Regarding Qd, fad is obtained by /(L-(Vo-RAv(OrRBv))×M as shown in No. 61g1, and in order to reduce the error, it is calculated by RAV and RBVC) 9d(J) + If we take the average, we get Here M is optical (
The rate is 8.

Qii)ψ、について、 第7図では作図上ワーク1を水平とし、センサネ体を傾
けている。又、図中18はワーク1の上面、19は開先
溝底位置であり、ds、 D。
Regarding Qii) ψ, in Figure 7, the workpiece 1 is drawn horizontally and the sensor body is tilted. Further, in the figure, 18 is the top surface of the workpiece 1, 19 is the groove bottom position, and ds and D.

はそれぞれスリット光線15a、 15bの交点から開
先7+η底位置2、ワーク上面18迄の距離を示し・d
A・ dl;  反びdll、dl(まイ′−ンlで(
与られた直角五角形の斜辺の長さを示している。
respectively indicate the distance from the intersection of the slit beams 15a and 15b to the groove 7+η bottom position 2 and the top surface of the workpiece 18.・d
A. dl; warping dll, dl
It shows the length of the hypotenuse of a given right-angled pentagon.

第7図より、 ”’ A ;(L /l cosψ。From Figure 7, ”’ A  ;(L /l cosψ.

n B 二d BCO3ψ5 dA=c1.(Lmψ、、十tan(θ4−ψ、9))
d、B=d、9(fbn(θ、十ψ、)−tanψ0)
dWA ” dA CO3ψ。
n B 2d BCO3ψ5 dA=c1. (Lmψ,, ten tan (θ4−ψ, 9))
d, B=d, 9(fbn(θ, 1ψ,)−tanψ0)
dWA ” dA CO3ψ.

dVl ”” (l BCO3ψS dズーD、(tanψ、+15(θ、−ψo))clニ
ー〇、 (tan(θ、+ψ、 ) −tanψ、)か
得られ、 る。
dVl"" (l BCO3ψS dZD, (tanψ, +15 (θ, -ψo)) cl knee〇, (tan (θ, +ψ, ) -tanψ,) is obtained.

従って、 となり、Gn、−d、。A)、(nB−dWn)のjr
4tでψ5の正負が求まる。
Therefore, Gn, -d,. A), jr of (nB-dWn)
At 4t, the sign of ψ5 is determined.

更に、第2図で示したmA、”13 ’二つし1ても同
様な処理を行えば測定精1隻カダ向上する。
Furthermore, if the same process is performed for mA shown in FIG.

Qvlαについて、 開先溝2の開先角の半角を07 とし、θ。、θ′を画
像に於けるスリット像の■方向に対α する顛ぎ角、nB ’ ”Bは11■底位置19を通過
するスリツ1へ光線15bの位置〔切断像16bの11
11曲点〕から切断@16bのV方向等距離の点に於け
る月4標H1からの距離を示す。
Regarding Qvlα, let the half angle of the groove angle of the groove groove 2 be 07, and θ. , θ' is the tilt angle α relative to the ■ direction of the slit image in the image, nB '''B is the position of the light ray 15b to the slit 1 passing through the 11■ bottom position 19 [11 of the cut image 16b]
The distance from the lunar marker H1 at a point equidistant in the V direction of the cut @16b from the 11th curve point] is shown.

ここで■ニー■アとする。Let's say ■Nie■A here.

第a1gla、 b、 cより・ 7”、−rLWA=d%mnO乙 (”−Ml )rn
 2   d w A:CL 2 tan OZ  (
;M 2  )CL+ = ■7b / (迦(OK−
α))’h=V+1/ (t”n(ox+α) )・、
 M、 = (V、、wJ7 )/(tan ((It
、−α))M 2 ” (■7、論θi )/ (un
(Oy、+α))従って、 となり傾き角αが求められる。
From a1gla, b, c・7", -rLWA=d%mnOtsu ("-Ml)rn
2 d w A: CL 2 tan OZ (
;M 2 )CL+ = ■7b / (迦(OK-
α))'h=V+1/ (t”n(ox+α))・,
M, = (V,,wJ7)/(tan ((It
, −α)) M 2 ” (■7, theory θi )/ (un
(Oy, +α)) Therefore, the inclination angle α is obtained.

以上、2のスリット光線15a、15bの切断像16a
Above, the cut image 16a of the two slit beams 15a and 15b
.

16bの相関関係によって、ワーク1の姿勢を計4(す
するに十分なデータが得られることについて説明したか
、11「記した様に溶接に於いてはアーク光が検出光に
比してあまりに強すさる為、アーク光から、更に好まし
くは背景光から検出光を分離することが必要である。
Did I explain that the correlation in 16b provides enough data to determine the posture of the workpiece 1 in total? Because of the intensity, it is necessary to separate the detection light from the arc light, and more preferably from the background light.

この検出光の分列は以下の如く行われる。This separation of the detection light is performed as follows.

パルス溶接即ちパルス状の溶接電流により溶接をする場
合、アーク強度もパルス的に変動し、アーク光も一定で
なく溶接型’IA’hのパルス形状(こJlじして明暗
を生ずる。
In pulse welding, that is, when welding with a pulsed welding current, the arc intensity also fluctuates in a pulsed manner, and the arc light is also not constant, resulting in a welding type 'IA'h pulse shape (this causes brightness and darkness).

従って、検出光はアーク光の弱いときのみ(こ検知する
様にする。
Therefore, the detection light is only detected when the arc light is weak.

第1図に於いて、撮像装置3は対物側より、保護カラス
20、波長選択フィルり21、電子シャツタ22、レン
ズ23、jM像素子24等がらなっており、電子シャッ
タ22は電圧を印加することによりi3過光を通過遮断
できるものである。
In FIG. 1, the imaging device 3 includes, from the objective side, a protective glass 20, a wavelength selection filter 21, an electronic shutter 22, a lens 23, a jM image element 24, etc., and the electronic shutter 22 applies a voltage. By doing so, it is possible to pass and block i3 excess light.

(最イη素f−24、電子シャッタ22、発光源4a 
、 4bはそれぞれ制御装置66に接続され、同期して
駆動される様になっている。
(most η element f-24, electronic shutter 22, light source 4a
, 4b are each connected to a control device 66 and are driven synchronously.

jl!l素像24からのアナログ映像信号25はフィル
タ21を介してAD変換器8へ人力され、デジタル映像
信号26として一旦記憶回路13にストアされる。
jl! The analog video signal 25 from the primary image 24 is inputted to the AD converter 8 via the filter 21, and is temporarily stored in the storage circuit 13 as a digital video signal 26.

ソー、光ディテクタ5によって被測定箇所の明度か検出
され、検知結果は増幅器9を通してタイミンク発生器1
0にパノノされる。タイミンク発生器lOには予め明度
についてレベル設定信号か人力されており、検出明度か
設定したレベルLに附して増派した鮎にタイミンク信号
が発せられる(Jになっている(第9図)。第9図中溶
接;u IALのパルスJ[づ刀ことタイミンク信号と
のずれがあるのは、ヒートの発光がある為光ディテクタ
5が検知する明度とアーク九単体の明度とは一致しない
ことを示している。
The brightness of the area to be measured is detected by the light detector 5, and the detection result is sent to the timing generator 1 through the amplifier 9.
0 will be panono. A level setting signal for brightness is manually input to the timing generator IO in advance, and when the detected brightness reaches the set level L, a timing signal is issued to the increased sweetfish (J (Fig. 9)). Welding in Fig. 9: The reason why there is a deviation from the pulse J of IAL (also known as the timing signal) is that the brightness detected by the light detector 5 and the brightness of the arc 9 alone do not match due to the emission of heat. It shows.

タイミンク発生器10はシャッタ駆動回路12を作動さ
せ、被測定箇所の明度が設定レベル以上の時に電子シャ
ッタ22に電圧を印加する様にする。即ち、撮像装置3
はアーク光の暗時のみに検出光を取込む様にする。又、
タイミンク発生器10のタイミンク信号はAD変換器8
、記憶回路13にもパノノされ、ストアされた信号の検
知時期か明らかにされ、又タイミンク信号により同期し
て信号処理を行う。
The timing generator 10 operates the shutter drive circuit 12 so that a voltage is applied to the electronic shutter 22 when the brightness of the area to be measured is above a set level. That is, the imaging device 3
Detection light is taken in only when the arc light is dark. or,
The timing signal of the timing generator 10 is sent to the AD converter 8.
It is also panned over to the memory circuit 13 to clarify the detection timing of the stored signal, and performs signal processing in synchronization with a timing signal.

醒、波長選択フィルタは検出信号のノイズ比を更に改善
する為のものであり、検出光取込時の被測冗箇所の光が
ビード部の発光によるものに支配されていれば、スリッ
ト光線は青色系を使用し、波長選択フィルタも青色系の
ものを使用する等する。
Note, the wavelength selection filter is intended to further improve the noise ratio of the detection signal, and if the light at the redundant point to be measured when capturing the detection light is dominated by the light emitted from the bead, the slit beam will be For example, use a blue color and use a blue wavelength selection filter.

以上アーク光の強度か弱い時に検出光を1[ヌ込む様に
するとアーク光の強烈な影響を著しく4へさくすること
ができるが、依然として背景光力)残っている。この背
景光から検出光をづγ劇tするには更に吹の操作を行う
As mentioned above, when the intensity of the arc light is weak, the strong influence of the arc light can be significantly reduced to 4 if the detection light is reduced to 1 (intensity), but the background light power still remains. In order to extract the detection light from this background light, a further operation is performed.

テータ取込119JfJI(第9図参照)に発光6j″
A4a。
Light emission 6j'' at data intake 119JfJI (see Figure 9)
A4a.

4bを点滅させて、検出光のある場合とない場合とをそ
れぞれノ最像すれば、検出光部分を除いた他の部分は略
類イリした映像fg号が得られる筈であり、両映像信号
を比較すれば背景光がら検出光を分設抽出できる。
If you blink 4b and image the cases with and without the detection light, you should be able to obtain a video fg in which the other parts except for the detection light part are almost identical, and both video signals By comparing the values, the detected light can be extracted separately from the background light.

IIIち、発光源駆動回路11は、タイミンク発生x(
10からのタイミンク信号によって第9図に示す様にス
リット光線をワーク1に照射せしめる(Jに発光汎j4
a 、 4bを駆動させる。
III. The light emitting source drive circuit 11 performs timing generation x (
The timing signal from 10 causes the work 1 to be irradiated with a slit beam as shown in FIG.
Drive a and 4b.

該発光源4a 、 4bの点滅によって記憶回路13に
は略同時期の検出光のあるB央像信号となり(,3号か
ス1アされ、史にコンピュータ14で両信号が比φ& 
?jIi算されて背景光から分離された検出光の映像信
−3が出力される。
Due to the flashing of the light emitting sources 4a and 4b, a central image signal B with detected light at approximately the same time is stored in the memory circuit 13 (No.
? A video signal 3 of the detected light which has been calculated by jIi and is separated from the background light is output.

■して1.亥出力伝号27は極めて信号・ノイズ比の良
いものどなり、層側精度は向上する。
■Do 1. The output signal 27 has an extremely good signal-to-noise ratio, and the accuracy on the layer side is improved.

次に、発光源4a 、 4bを交D:に駆動せしめて、
映像−4−リ1jIi@ 16a、 16bが同時には
撮像されなし)任にし、liJ像信号の処理は切断@]
、6a、16bのいずれか一万っつ行うイエにし、次に
処fg! L得られたf/J報を比較する社にすると1
本の切断像の映像信号を処理する能力て2本の切断像の
映像信号を処理し得、記憶回路13の容量、コンピュー
タ14の容量が少なくてすむ。
Next, the light emitting sources 4a and 4b are driven to alternating current D:,
Image-4-Li 1jIi@ 16a and 16b are not imaged at the same time), and processing of liJ image signal is disconnected@]
, 6a, or 16b 10,000 times, then execute fg! When comparing the obtained f/J report, it is 1
With the ability to process the video signal of a cut image of a book, it is possible to process the video signal of two cut images, and the capacity of the storage circuit 13 and the capacity of the computer 14 can be reduced.

第1図に示した撮像装置3かテレヒヵメラであり表示装
置(図示せず)がビデオモニタであった場合について以
下説明する。
A case where the imaging device 3 shown in FIG. 1 is a television camera and the display device (not shown) is a video monitor will be described below.

ビデオモニタの映像は多数の走査線の集合によって形成
されるが、映像信号(ビデオ信号)28の取込みについ
てはいくつかの方法が考えられる。
An image on a video monitor is formed by a collection of many scanning lines, and several methods can be considered for capturing the image signal (video signal) 28.

その1例を第10図に示す。An example is shown in FIG.

第10図に示す例は、1フイールド(画面を走打線が一
巡するだけの信号群)毎に、発光源4a+4bを切換え
、切断像16a、切断@16b及び背景光についてのビ
デオ信号を取込む様にしたものである。切断像16a、
16b 、背景光の取込むタイミンクは、ビデオ信号中
に含まれる同期信号29を第1図で示した同期信号分離
回路3oて分離し、該同期信号をタイミンク発生器1o
にパノJすることによって、タイミンク発生器1oが発
光fA4a。
In the example shown in FIG. 10, the light emitting sources 4a+4b are switched every field (a group of signals where the running and batting line goes around the screen once), and video signals for the cut image 16a, the cut @ 16b, and the background light are captured. This is what I did. Cut image 16a,
16b, the timing at which the background light is captured is determined by separating the synchronization signal 29 included in the video signal using the synchronization signal separation circuit 3o shown in FIG.
By panoJ, the timing generator 1o emits light fA4a.

4b、記憶回路13等に指令することによって行われる
4b, by instructing the memory circuit 13 and the like.

fflll図に示す例は、1走査線分のビデオ信号1i
jに発光源4a、4bを切換え、切断像16a、16b
を1走査線毎に受払に取込み、切断像16a、16bの
11、!込みを1フイールドで完了する様にしたもので
ある。
In the example shown in the figure, the video signal 1i for one scanning line is
The light emitting sources 4a and 4b are switched to j, and the cut images 16a and 16b are
11 of the cut images 16a, 16b, ! This allows the processing to be completed in one field.

ビデオfl’+υの1走査線分の信号C図中IHて小す
)には映像信号31と同期18号32か含まれ、映イρ
信号の取込むタイミングはこの同期信号32を四則fi
i号分n1回路30て分路し、iσ述と同様な力法で行
なわれる。
The signal C for one scanning line of the video fl'+υ (IH in the figure) contains the video signal 31 and the synchronization signal 18 and 32, and the video signal ρ
The signal import timing is based on this synchronization signal 32 according to the four rules fi.
The i-th n1 circuit 30 is used to shunt the signal, and the calculation is performed in the same manner as in the iσ statement.

拡大したビデオfi3すで明らかな任に、切断像16a
、 16bは部列の走査線で表示され、各走査線て′表
われるピーク((f4か切断像16a、16bのある−
、ピj1を小すものである。
Enlarged video fi3 It is already clear that the cut image 16a
, 16b are displayed as partial rows of scanning lines, and the peaks ((f4 or -) that appear in each scanning line are
, pi j1 is made smaller.

第11図に小す方法では1フイールドで映像信なる。In the method shown in FIG. 11, one field is enough to transmit an image.

尚、スリット光線の照射方向は上記実施例に訳定される
ものではなく、2の切断像の相関関係により1111記
した諸データが得られればよい。
Incidentally, the irradiation direction of the slit light beam is not limited to the above-mentioned embodiments, but it is sufficient that the various data described in 1111 can be obtained from the correlation between the two cut images.

以」−述べた如く本発明によれば、 (i)  光切断法による計測センサか溶接機のセンサ
として使用可能となる、 (11)従来の光切断法では計測し得ながったワークの
姿勢計測が′可能となる、 13ii)  アーク光、背景光から分離されたノイズ
比のよい映像信号を得ることができる、 (Jψ (6号処理の為の回路が簡潔となる、等の優れ
た効果を発揮する。
As described above, according to the present invention, (i) it can be used as a measurement sensor using the optical cutting method or as a sensor for a welding machine; (11) it can be used to measure workpieces that could not be measured using the conventional optical cutting method; 13ii) It is possible to obtain a video signal with a good noise ratio that is separated from arc light and background light, (Jψ (Jψ) be effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置の概略図、第2図は切断像の画面
にり4する位置付けの説明図、第3図はスリット光線と
ワークとの関係を示す図、第4図、第5図、第6図は画
面中の切断像の位置関係を示す図、第7図はワークに対
するスリン[・光線の関係を示す図、mB図a、b、c
はワークに対するスリット光線の関係及び切断像の画像
を示す説明図、第9図は本装置の基本タイミンクチャー
ト、第1O図、第11図は映像信号の取込みタイミンク
を示すタイミンクチャートである。 1は被溶接物、4a 、 4bは発光源、5は光ディテ
クタ、6はm制御装置、15a、15bはスリット光線
、16a、 16bは切断像、22は電子シャッタ、2
4は(111像素子を示す。 !11   訂  出  1頭  人 イ」川島播1g重工業株式会社 躬  1:′T   出  願  人 4;)式会汁 オムニパツク 第1図 第3図 第4図    第5図 第6図 ’j;*’170 簿9図
Fig. 1 is a schematic diagram of the apparatus of the present invention, Fig. 2 is an explanatory diagram of the positioning of the cut image on the screen, Fig. 3 is a diagram showing the relationship between the slit beam and the workpiece, Figs. Figure 6 is a diagram showing the positional relationship of cut images on the screen, Figure 7 is a diagram showing the relationship of Surin [・rays to the workpiece, mB diagrams a, b, c
9 is an explanatory diagram showing the relationship of the slit beam to the workpiece and an image of the cut image, FIG. 9 is a basic timing chart of this apparatus, and FIGS. 1O and 11 are timing charts showing the timing of capturing the video signal. 1 is a workpiece to be welded, 4a and 4b are light emitting sources, 5 is a light detector, 6 is an m control device, 15a and 15b are slit beams, 16a and 16b are cutting images, 22 is an electronic shutter, 2
4 indicates (111 image elements. !11 Revised 1 head person) Kawashima Hari 1g Heavy Industries Co., Ltd. 1:'T Applicant 4;) Ceremony Omnipack Fig. 1 Fig. 3 Fig. 4 Fig. 5 Figure 6'j;*'170 Book 9

Claims (1)

【特許請求の範囲】[Claims] 1)2のスリット状光線を被溶接物に照射せしめる一対
の発光源と、電子シャッタを具備した撮像装置と、被計
測部の明度を検出する光ディテクタと、該ディテクタの
検出結果によりアーク暗時にIr1I記電子シヤツタを
開とし、電子シャツタ開時に発光源を点滅して2のスリ
ット光線による9ノ断像の映像信号を撮像装置より個別
に取込み、両切断像の相関関係を1′1]別する(工構
成したli!f御装置とを(+ffiえたことをIl&
 i7Jとするパルス溶接に於ける被溶接物の姿勢51
  爪り装置。
1) A pair of light emitting sources that irradiate the workpiece with the slit-shaped beam described in 2, an imaging device equipped with an electronic shutter, a light detector that detects the brightness of the part to be measured, and a detection result of the detector that detects when the arc is dark. Ir1I The electronic shutter is opened, the light emitting source is blinked when the electronic shutter is opened, and the video signals of 9 cross-sectional images by the 2 slit beams are individually captured by the imaging device, and the correlation between the two cross-sectional images is determined by 1'1]. (+ffi) and the configured li!f control device.
Posture 51 of workpiece during pulse welding with i7J
Nail device.
JP8227283A 1983-05-11 1983-05-11 Position measuring device of material to be welded in pulse welding Pending JPS59209482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8227283A JPS59209482A (en) 1983-05-11 1983-05-11 Position measuring device of material to be welded in pulse welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8227283A JPS59209482A (en) 1983-05-11 1983-05-11 Position measuring device of material to be welded in pulse welding

Publications (1)

Publication Number Publication Date
JPS59209482A true JPS59209482A (en) 1984-11-28

Family

ID=13769846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8227283A Pending JPS59209482A (en) 1983-05-11 1983-05-11 Position measuring device of material to be welded in pulse welding

Country Status (1)

Country Link
JP (1) JPS59209482A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106984926A (en) * 2017-05-03 2017-07-28 武汉科技大学 A kind of seam tracking system and welding seam tracking method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106984926A (en) * 2017-05-03 2017-07-28 武汉科技大学 A kind of seam tracking system and welding seam tracking method

Similar Documents

Publication Publication Date Title
US7046838B1 (en) Three-dimensional data input method and apparatus
US8400503B2 (en) Method and apparatus for automatic application and monitoring of a structure to be applied onto a substrate
US5416590A (en) Apparatus and process for measuring gap and mismatch
US4694479A (en) Video-radiographic process and equipment for a quality controlled weld seam
US20180125338A1 (en) Method and camera for the three-dimensional measurement of a dental object
JP2000346638A (en) Method for generating measuring procedure file, measuring apparatus and storage medium
JPH061173B2 (en) Curved property inspection device
JPH08266476A (en) Eyeball motion measuring apparatus
JP2002031513A (en) Three-dimensional measuring device
US20040184040A1 (en) Shape measuring device
JPS59209482A (en) Position measuring device of material to be welded in pulse welding
JPH0966054A (en) X-ray radiographic system
JPS5969046A (en) Endoscope image system
JPH0432705A (en) Road sectional unevenness measuring instrument
JP7276050B2 (en) Spectacle frame shape measuring device and lens processing device
JPH0323856B2 (en)
JPH06109437A (en) Measuring apparatus of three-dimensional shape
JP2887656B2 (en) Laser processing equipment
JP2002107127A (en) Shape-measuring apparatus
JPH05296745A (en) Form measuring device
JP4909108B2 (en) Corneal imaging device
JPH02216408A (en) Substrate inspection device
JPH05337785A (en) Grinding path correcting device of grinder robot
JPH04164205A (en) Three dimensional image analysis device
JPH05113321A (en) Measuring method for unevenness of surface of object