JPH05113321A - Measuring method for unevenness of surface of object - Google Patents

Measuring method for unevenness of surface of object

Info

Publication number
JPH05113321A
JPH05113321A JP4447091A JP4447091A JPH05113321A JP H05113321 A JPH05113321 A JP H05113321A JP 4447091 A JP4447091 A JP 4447091A JP 4447091 A JP4447091 A JP 4447091A JP H05113321 A JPH05113321 A JP H05113321A
Authority
JP
Japan
Prior art keywords
unevenness
light
optical axis
camera
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4447091A
Other languages
Japanese (ja)
Inventor
Taichi Tsujii
太一 辻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTER DETSUKU KK
Original Assignee
INTER DETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTER DETSUKU KK filed Critical INTER DETSUKU KK
Priority to JP4447091A priority Critical patent/JPH05113321A/en
Publication of JPH05113321A publication Critical patent/JPH05113321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To measure unevenness of the surface of an object in a noncontact manner. CONSTITUTION:The optical axis A of a CCD camera Ca is directed vertically to an object W, an angle theta formed by the axis B of an irradiation light from an irradiation light source La and the optical axis A of the camera is made fixed, the irradiation light is made to be a very-thin continuous light beam and applied to the object W and a reflected light therefrom is picked up by the use of the camera. In an image, the number of pixels of the image corresponding to distances of positional slippages of light points H, M and L of the reflected light based on unevenness of the surface of the object is read out and the height of the unevenness of the surface of the object is measured from this number and the real dimension for one pixel. A change in the height of the unevenness of the surface of the object is picked up as a lateral slippage of the reflected light. Accordingly, the height of the unevenness can be measured reliably in a noncontact manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、物体を非接触的にその
表面の凹凸を測定する物体表面の凹凸測定方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring unevenness of an object, which measures the unevenness of the surface of the object in a non-contact manner.

【0002】[0002]

【従来の技術】上記物体表面の凹凸を非接触にて測定す
る手段としては、例えば航空写真による山の高さを測定
する方法がある。これは太陽光の位置と被写体の影の長
さとの関係からその高さを測定するようにしたものであ
る。また第2の方法としては、例えば顔面等に対して真
横から写真撮影する方法がある。さらに第3の方法とし
ては、レーザー光線または超音波を発し、その反射波の
到達時間から凹凸を測定する方法がある。
2. Description of the Related Art As a means for measuring the unevenness of the surface of an object in a non-contact manner, for example, there is a method of measuring the height of a mountain by aerial photography. This is one in which the height is measured from the relationship between the position of sunlight and the length of the shadow of the subject. As a second method, for example, there is a method of taking a photograph directly from the side of the face or the like. Furthermore, as a third method, there is a method of emitting a laser beam or an ultrasonic wave and measuring the unevenness from the arrival time of the reflected wave.

【0003】[0003]

【発明が解決しようとする課題】しかし第1の方法によ
るときは、影の先端部が空気の濃度差、光の回析及び投
影面の凹凸等により不正確となり、精度を得ることが困
難である。また第2の方法では輪郭は測定できても、細
部の凹凸の測定は困難である。さらに第3の方法による
ときは、多数の反射波の中から目的とする1点の反射波
を選択することは困難で、精度を向上させるためには測
定機械が複雑高価となる等の問題がある。
However, in the case of the first method, the tip of the shadow becomes inaccurate due to the difference in the air concentration, the diffraction of light, the unevenness of the projection surface, etc., and it is difficult to obtain accuracy. is there. Moreover, although the contour can be measured by the second method, it is difficult to measure the unevenness of the details. Further, according to the third method, it is difficult to select a target reflected wave from a large number of reflected waves, and in order to improve accuracy, there is a problem that the measuring machine becomes complicated and expensive. is there.

【0004】本発明は上記の点に鑑みてなされたもの
で、光線とカメラとの位置の相互関係から物体の凹凸の
高さを正確に測定することを目的とする。
The present invention has been made in view of the above points, and it is an object of the present invention to accurately measure the height of unevenness of an object from the mutual relationship between the position of the light beam and the position of the camera.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の第1の発明は、CCDカメラの光軸を物体に対し垂直
に向け、照射光源からの照射光軸とカメラ光軸とのなす
角度を一定とし、照射光を極細い連続光線として物体を
照射し、この反射光をカメラで撮像し、物体表面の凹凸
に基づく反射光の光点の位置ずれ距離を計測し、これに
より物体表面の凹凸を測定するようにしたものである。
また第2の発明は、この場合物体の全周の測定方法とし
て、物体を回転台に取り付け、台の回転と同期して各回
転角度毎に撮像することにより物体の全周における凹凸
を測定するようにしたものである。また第3の発明は、
照射光は多方向から照射し、各反射光の光点の位置ずれ
の距離から物体の凹凸を測定するようにしたものであ
る。また第4の発明は、カメラ及び照射光源はこれを固
定し、長尺の物体は順次直線的に移動させ、反射光の光
点の位置ずれから物体表面の凹凸を測定するようにした
ものである。また第5の発明は、照射光源は複数の細線
に分割し、各光線の光点を同時に撮影するようにしたも
のである。さらに第6の発明は、照射光軸とカメラ光軸
とは一定角度を保持しつつ一体とし、物体を中心として
回動し撮影するようにしたものである。
According to a first aspect of the present invention, an optical axis of a CCD camera is oriented perpendicular to an object, and an angle between an optical axis of an irradiation light source and an optical axis of the camera is formed. Is constant, the object is illuminated as an extremely thin continuous ray, the reflected light is imaged by a camera, and the displacement distance of the light spot of the reflected light based on the unevenness of the object surface is measured. The unevenness is measured.
In this case, the second aspect of the present invention is a method for measuring the entire circumference of the object, in which the object is mounted on a rotating table, and the unevenness in the entire circumference of the object is measured by capturing images at each rotation angle in synchronization with the rotation of the table. It was done like this. The third invention is
Irradiation light is emitted from multiple directions, and the unevenness of the object is measured from the distance of the positional deviation of the light spots of each reflected light. In a fourth aspect of the invention, the camera and the irradiation light source are fixed, the long object is sequentially moved linearly, and the unevenness of the object surface is measured from the displacement of the light spot of the reflected light. is there. Further, in the fifth invention, the irradiation light source is divided into a plurality of fine lines, and the light spots of the respective light rays are simultaneously photographed. Furthermore, in the sixth aspect of the invention, the irradiation optical axis and the camera optical axis are integrated while maintaining a constant angle, and the object is rotated about the object for photographing.

【0006】[0006]

【作用】カメラ光軸と照射光軸とは一定角度を保持す
る。照射光による物体表面の光点は凹凸により位置ずれ
を生じ、これをCCDカメラにより撮像し、位置ずれの
長さに相当する画像のピクセル数を読み出し、これから
実寸法を測定する。
Function: The camera optical axis and the irradiation optical axis maintain a constant angle. The light spot on the surface of the object due to the irradiation light is displaced due to the unevenness, and this is imaged by the CCD camera, the number of pixels of the image corresponding to the length of the displacement is read, and the actual size is measured from this.

【0007】[0007]

【実施例】図1は本発明の測定方法の原理を示す。Wは
断面非円形の筒状物体で中心点Oを中心として回転する
ものとする。1は大径部頂点、2は最小径点、3及び4
はそれぞれ頂点1及び2を通過する軌跡円、5は基準寸
法円を示す。またLaは光源、CaはCCDカメラ(以
下単にカメラという)を示し、カメラCaの光軸Aは物
体Wに対し垂直に即ち中心点Oを通過する。光源Laは
例えばレーザー光とし、物体Wの回転方向と直交して連
続して所要長さを有する極細い照射光とし、照射光軸B
はカメラ光軸Aに対し角度θを以て交差している。
FIG. 1 shows the principle of the measuring method of the present invention. W is a cylindrical object having a non-circular cross section, which rotates about a center point O. 1 is the apex of the large diameter portion, 2 is the minimum diameter point, 3 and 4
Indicates a locus circle passing through vertices 1 and 2, and 5 indicates a reference size circle. Further, La indicates a light source, and Ca indicates a CCD camera (hereinafter simply referred to as a camera), and an optical axis A of the camera Ca passes perpendicularly to an object W, that is, a center point O. The light source La is, for example, a laser beam, is an extremely thin irradiation light which has a required length continuously and orthogonally to the rotation direction of the object W, and the irradiation optical axis B
Intersects the camera optical axis A at an angle θ.

【0008】ただし照射光軸Bは必ずしも物体Wに垂直
とする必要はないが、可及的に垂直とすることが好まし
い。図は垂直に投光した状態即ち照射光軸Bは物体Wの
中心点Oに合致した状態で説明する。
However, the irradiation optical axis B does not necessarily have to be perpendicular to the object W, but it is preferable to make it as perpendicular as possible. The drawing will be described in the state where the light is projected vertically, that is, the irradiation optical axis B is aligned with the center point O of the object W.

【0009】次に照射光軸B上に任意の点Sを設定し、
この点を基準点とする。この基準点Sからカメラ光軸A
に対し垂線を下し光軸Bとの交点をKとする。この基準
点Sの位置即ち垂線SKは既知の寸法とし、図は物体W
の基準寸法円5の半径と同一とする。ただしこの半径の
1/2あるいは1/nとしてもよい。
Next, an arbitrary point S is set on the irradiation optical axis B,
This point is used as a reference point. From this reference point S to the camera optical axis A
A perpendicular line is drawn, and the point of intersection with the optical axis B is K. The position of the reference point S, that is, the vertical line SK has a known dimension, and the figure shows the object W.
The radius is the same as the reference size circle 5 of. However, the radius may be 1/2 or 1 / n.

【0010】次に照射光軸Bと上記各円との交点をそれ
ぞれH,M,Lとする。この点H,M,Lは物体Wが回
転したとき頂点1、基準寸法円5及び最小点2がそれぞ
れ照射される位置であり、以下光点という。各交点から
垂線を下しSKとの交点をh,m,lとする。 しかして SK/OS=sinθ ∴OS=SK/
sinθ SH=Sh/sinθ OH=OS−SH=1/sinθ・(SK−Sh) 同様にして OM=1/sinθ・(SK−Sm) OL=1/sinθ・(SK−Sl) また、 SH=Sh/sinθ, sinθ=SK
/OS 従って SH=Sh・OS/SK この場合、OS並びにSKは既知の数値であり、OS/
SK=C(定数)とすると、 SH=Sh・C 同様に SM=Sm・C SL=Sl・C となり、Sh,Sm,Slの長さを測定することにより
各光点H,M,Lの高さ、即ち凹凸の高さが計測でき
る。
Next, the intersections of the irradiation optical axis B and the above circles are designated as H, M and L, respectively. The points H, M, and L are the positions where the vertex 1, the reference size circle 5, and the minimum point 2 are irradiated when the object W rotates, and are referred to as light spots hereinafter. A perpendicular line is drawn from each intersection and the intersections with SK are h, m and l. Then SK / OS = sin θ ∴OS = SK /
sin θ SH = Sh / sin θ OH = OS-SH = 1 / sin θ · (SK-Sh) Similarly, OM = 1 / sin θ · (SK-Sm) OL = 1 / sin θ · (SK-Sl) Further, SH = Sh / sin θ, sin θ = SK
/ OS Therefore SH = Sh · OS / SK In this case, OS and SK are known numerical values, and OS /
If SK = C (constant), then SH = Sh · C as well as SM = Sm · C SL = S1 · C, and by measuring the lengths of Sh, Sm, and Sl, the light spots H, M, and L are measured. The height, that is, the height of the unevenness can be measured.

【0011】次にカメラによる撮像に当たっては、周知
手段にてS点を画像上に設定する。図2は各光点の位置
ずれを撮影したときの説明図である。ただし同図(a)
は光点Mを撮影したときの説明図で、Dは画像面、Sa
はS点の画像即ち基準線、Maは光点Mの撮影像であ
り、SaとMa間のピクセル数を読み取り、これに単位
ピクセル当たりの実寸法を乗じて算出する。同図(b)
は最大位置の光点Hの、また同図(c)は最小位置の光
点Lのそれぞれの撮影状態を示すもので、Ha,Laは
光点H,Lの画像である。
Next, when the image is picked up by the camera, the point S is set on the image by a well-known means. FIG. 2 is an explanatory diagram when a position shift of each light spot is photographed. However, the figure (a)
Is an explanatory view when the light spot M is photographed, D is an image plane, Sa
Is an image of S point, that is, a reference line, and Ma is a photographed image of the light spot M. The number of pixels between Sa and Ma is read, and this is multiplied by the actual size per unit pixel for calculation. The same figure (b)
Shows the shooting state of the light spot H at the maximum position, and FIG. 7C shows the shooting state of the light spot L at the minimum position. Ha and La are images of the light spots H and L, respectively.

【0012】次に図3は物体Wの全周面の凹凸測定のた
めの一つの方法を示す。この方法は物体Wを回転台10
に取り付け、固定したカメラCa及び光源Laにより撮
影するようにしたものである。なお、この場合、物体W
は長さ方向に小径部Wa、大径部Wb、中間径部Wcを
設けて複数の段違いを有し、1個の光源では段部に死角
を生ずるときは、図(a)に示す如く複数の光源La
1,La2,La3を設け、それぞれの面を照射するこ
とが好ましい。なお図例はカメラは1個のみを示した
が、光源と同数備え、、それぞれの面を別個に測定する
ようにしてもよい。なお図(b)において基準点Sを最
大径部Wbと同一半径とし、前記要領にて各面の光点
E,F,Gからの垂線とSKとの交点をe,f,gとす
る。また図(c)は画像面を示し、Ea,Fa,Gaは
それぞれ光点画像を示す。
Next, FIG. 3 shows one method for measuring the unevenness of the entire peripheral surface of the object W. In this method, the object W is rotated on the turntable 10
The camera Ca and the light source La, which are attached and fixed to the camera, are used to take an image. In this case, the object W
Is provided with a small diameter portion Wa, a large diameter portion Wb, and an intermediate diameter portion Wc in the length direction, and has a plurality of step differences. When a single light source causes a blind spot in the step portion, as shown in FIG. Light source La
It is preferable to provide 1, La2 and La3 and irradiate each surface. Although only one camera is shown in the illustrated example, the same number of light sources may be provided and each surface may be measured separately. In FIG. 5B, the reference point S has the same radius as the maximum diameter portion Wb, and the intersections of the perpendiculars from the light points E, F, G on each surface and SK are e, f, g in the same manner. Further, FIG. 6C shows an image surface, and Ea, Fa, and Ga respectively show light spot images.

【0013】次に図4は、カメラを挟んで両側に光源を
配した例を示す。これは物体W2の凹凸の差が大きく、
かつこれに伴う傾斜角が大で、一方の光線のみでは死角
を生じる場合に好適である。即ち物体W2を挟んで同一
角度θを以て照射光源B2,B3を備え、物体W2が矢
印方向に回転しているとき、まず光軸B2により底部の
光点Pを撮像する。画像面DにおけるPaはその光点画
像である。ついで物体W2が2θ回転したとき光軸B3
により撮像される頂点光点Qの画像Qaと合成する。こ
れによりその高さを測定することができる。
Next, FIG. 4 shows an example in which light sources are arranged on both sides of the camera. This is because the difference in the unevenness of the object W2 is large,
Further, it is suitable when the inclination angle associated therewith is large and only one light ray causes a blind spot. That is, the irradiation light sources B2 and B3 are provided at the same angle θ across the object W2, and when the object W2 is rotating in the direction of the arrow, first, the light spot P at the bottom is imaged by the optical axis B2. Pa on the image plane D is the light spot image. Then, when the object W2 rotates 2θ, the optical axis B3
It is combined with the image Qa of the vertex light point Q captured by. This allows the height to be measured.

【0014】次に図5は多数の例えば4個の光源La
1,La2,La3,La4からそれぞれカメラCaの
光軸Aに対し角θ1,θ2,θ3,θ4を以て投光し、
かく光軸による光点R1,R2,R3,R4を同時に測
定するようにしたものである。
Next, FIG. 5 shows a large number of, for example, four light sources La.
1, La2, La3, and La4 project light at angles θ1, θ2, θ3, and θ4 with respect to the optical axis A of the camera Ca, respectively.
Thus, the light spots R1, R2, R3 and R4 on the optical axis are simultaneously measured.

【0015】周知の如く撮像時間は極めて短時間である
が、撮影周期には若干の時間を要する。従って物体表面
を微細間隔で撮影するためには、回転速度を遅くする必
要があるが本例によるときは、角度θ4毎に撮影すれば
よく、撮影回数を減じ、あるいは物体Wの回転速度を増
して撮影時間の短縮を計ることができる。
As is well known, the imaging time is extremely short, but the imaging cycle requires some time. Therefore, in order to image the object surface at minute intervals, it is necessary to slow down the rotation speed, but in this example, it is sufficient to take images at each angle θ4, and the number of times of shooting is reduced or the rotation speed of the object W is increased. Therefore, the shooting time can be shortened.

【0016】次に図6は長尺の紙布状の物体W3の連続
測定方法を示す。物体W3は左右のリール21,22に
巻き付け、一定速度にて一方のリール21に巻取りつつ
前記要領にて表面の凹凸、疵、皺、異物の付着等を測定
するようにしたものである。同図(c)は画像面を示
し、光点画像Taは異物Tが付着したとき、これに従っ
て屈曲し、測定容易である。
Next, FIG. 6 shows a continuous measuring method of a long paper cloth-like object W3. The object W3 is wound around the left and right reels 21 and 22, and wound on one reel 21 at a constant speed, and the surface unevenness, flaws, wrinkles, adhesion of foreign matter, etc. are measured in the above-described manner. FIG. 7C shows the image surface, and the light spot image Ta is easily bent when the foreign matter T adheres and bends accordingly.

【0017】以上の各実施例は1個の光源から極細い1
本の光軸を投光する構造を示したが、図7は1個の光源
から複数の微細間隔のかつ平行した細線状の光軸を物体
に照射する例を示す。これによるときは測定は線でなく
面とすることができ、例えば肌の滑らかな状態の良否の
測定に有効である。同図(d)は3本の光軸による光点
群Uに対する光点画像群Uaを示す。
In each of the above-described embodiments, one light source is very thin.
Although the structure for projecting the optical axis of the book is shown, FIG. 7 shows an example in which a single light source irradiates an object with a plurality of finely-spaced and parallel thin-line optical axes. In this case, the measurement can be performed on a surface instead of a line, which is effective for measuring the quality of the smooth condition of the skin, for example. FIG. 3D shows a light spot image group Ua for the light spot group U with three optical axes.

【0018】次に図8はさらに他の例を示す。前記各実
施例は何れもカメラ及び光源を固定し、物体を回動また
は移動する方式を示したが、本実施例は物体を固定し、
カメラCa及び光源Laを走行台30上に固定して両光
軸の角度θを一定とし、走行台30は物体Wの中心点O
を中心とした円軌道31上を走行するようにしたもので
ある。投光及び撮影要領は前記第2実施例を除く各実施
例を適用できるもので、説明を省略する。
Next, FIG. 8 shows still another example. In each of the above-mentioned embodiments, the camera and the light source are fixed and the object is rotated or moved. However, in this embodiment, the object is fixed,
The camera Ca and the light source La are fixed on the traveling table 30 so that the angle θ between both optical axes is constant, and the traveling table 30 controls the center point O of the object W.
It is designed to travel on a circular orbit 31 centered at. The light projecting and photographing procedures can be applied to each embodiment except the second embodiment, and the description thereof will be omitted.

【0019】次に図9乃至11は本発明を他の用途に利
用した例を示す。図9は多数重ねられたパウチW4の個
数を自動的に計測するようにしたもので、パウチPAを
回転台(図示省略)に乗せ、これを前記要領にて光源L
aからの投光及びカメラCaにより撮影することによ
り、パウチの端部縫合部Paが同図(c)の画像面Dに
は光点画像Paとして表示され、これを読み取ればよ
い。同図(a)は正面図、同図(b)は平面図である。
Next, FIGS. 9 to 11 show examples in which the present invention is used for other purposes. In FIG. 9, the number of pouches W4 stacked in large numbers is automatically measured. The pouches PA are placed on a rotary table (not shown), and the light sources L are placed in the same manner as described above.
By projecting light from a and capturing an image with the camera Ca, the end suture portion Pa of the pouch is displayed as a light spot image Pa on the image surface D of FIG. The figure (a) is a front view and the figure (b) is a top view.

【0020】また図10は多数の重ねられた箱W45を
同一要領にて測定するもので、同図(d)に示す如く画
像面Dには光点画像Baaには重ね部は凹部となって現
れる。これを読み取ればよい。
Further, FIG. 10 shows a case where a large number of stacked boxes W45 are measured in the same manner. As shown in FIG. 10D, the light spot image Baa is formed on the image surface D and the overlapped portion is formed as a recess. appear. You can read this.

【0021】また図11は箱の良否を判別するようにし
たもので、前記各例と同一要領にて測定することによ
り、箱W6の角部稜線BCの不整形箇所BDは同図
(d)の画像面Dにおいて稜線画像BCaと不整形部画
像BDaとは明瞭に区分して表示される。
In addition, FIG. 11 shows whether the box is good or bad. By performing the measurement in the same manner as in each of the above examples, the irregular shape portion BD of the corner ridge BC of the box W6 is shown in FIG. On the image surface D, the ridge line image BCa and the irregular portion image BDa are clearly displayed.

【0022】なお図例を省略したが、CCDカメラによ
り得られる撮像は、これをコンピュータに入力し、各画
像毎に凹凸の高さを修正し、これを各回転角毎に合成す
ることにより、簡単に物体の3次元画像としてのコンピ
ュータグラフィックを作成することができる。
Although not shown in the figure, the image obtained by the CCD camera is input to a computer, the height of the unevenness is corrected for each image, and this is combined for each rotation angle. It is possible to easily create a computer graphic as a three-dimensional image of an object.

【0023】[0023]

【発明の効果】以上の如く本発明によるときは、カメラ
光軸と照射光軸とを一定角度に保持し撮像するようにし
たから、物体の表面の凹凸の高さの変化が反射光の横ず
れとして撮像することができ、その判別は容易である。
かつその横ずれの長さからその高さを測定することがで
きる。この場合、物体を回転して一端から順次撮像する
ことにより、物体全面の凹凸を容易に測定することがで
きる。また光源を複数個備え、多方向から照射すること
により、同時に多数箇所の凹凸を測定することができ
る。この場合、カメラ光軸を挟んで両側に光軸を配備す
ることにより、凹凸の段差が大きい場合においても、そ
の段差による死角を生ずることなく、正確に撮像するこ
とができる。また1個の光源からスリット等を利用し微
細間隔を以て複数の平行した光軸を照射し前記要領で撮
像することにより、物体表面を線でなく面として測定す
ることができる。さらに物体を固定し、カメラと光源と
を物体を走行台上に載置し、カメラ光軸と照射光軸との
角度を一定に保持しつつ物体を中心として回動し撮像す
るときは、回転を不適当とする物体の測定に対し極めて
有効である。
As described above, according to the present invention, since the camera optical axis and the irradiation optical axis are held at a constant angle for imaging, a change in the height of the unevenness of the surface of the object causes lateral deviation of the reflected light. Can be imaged, and its determination is easy.
And the height can be measured from the length of the lateral deviation. In this case, the unevenness of the entire surface of the object can be easily measured by rotating the object and sequentially capturing images from one end. Further, by providing a plurality of light sources and irradiating from multiple directions, it is possible to measure unevenness at a large number of locations at the same time. In this case, by disposing the optical axes on both sides of the camera optical axis, even if the unevenness has a large step, it is possible to accurately capture an image without causing a blind spot due to the step. Further, by irradiating a plurality of parallel optical axes with a minute interval from one light source using a slit or the like and capturing an image in the above manner, the surface of the object can be measured as a surface instead of a line. Furthermore, when the object is fixed, the camera and light source are placed on the platform, and the object is rotated around the object while keeping the angle between the camera optical axis and the irradiation optical axis constant, the rotation is performed. It is extremely effective for the measurement of objects that make

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】本発明による光点の位置ずれの撮影説明図であ
る。
FIG. 2 is an explanatory diagram for capturing a positional deviation of a light spot according to the present invention.

【図3】物体の回転撮影要領説明図である。FIG. 3 is a diagram illustrating a rotation imaging procedure of an object.

【図4】他の投光方法を利用した本発明の物体表面の凹
凸測定方法の説明図である。
FIG. 4 is an explanatory diagram of a method for measuring unevenness of an object surface of the present invention using another light projecting method.

【図5】さらに他の多数投光による本発明の上記測定方
法の説明図である。
FIG. 5 is an explanatory view of the above-described measuring method of the present invention by still another multiple light projection.

【図6】長尺物体に対する本発明の上記測定方法の説明
図である。
FIG. 6 is an explanatory diagram of the measuring method of the present invention for a long object.

【図7】微細間隔を有する複数の光軸による測定要領説
明図である。
FIG. 7 is an explanatory diagram of a measurement procedure using a plurality of optical axes having fine intervals.

【図8】他の物体全周面の測定要領説明図である。FIG. 8 is an explanatory diagram of a measuring procedure of the entire peripheral surface of another object.

【図9】本発明を他の用途に適用した第1例の説明図で
ある。
FIG. 9 is an explanatory diagram of a first example in which the present invention is applied to another application.

【図10】本発明を他の用途に適用した第2例の説明図
である。
FIG. 10 is an explanatory diagram of a second example in which the present invention is applied to another application.

【図11】本発明を他の用途に適用した第3例の説明図
である。
FIG. 11 is an explanatory diagram of a third example in which the present invention is applied to another application.

【符号の説明】[Explanation of symbols]

Ca CCDカメラ A カメラ光軸 La 光源 B 照射光軸 H 光点 M 光点 L 光点 P 光点 Q 光点 R 光点 U 光点 W 物体 10 回転台 Ca CCD camera A camera optical axis La light source B irradiation optical axis H light spot M light spot L light spot P light spot Q light spot R light spot U light spot W object 10 turntable

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年11月2日[Submission date] November 2, 1992

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図10[Name of item to be corrected] Fig. 10

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図10】 [Figure 10]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図11[Name of item to be corrected] Fig. 11

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図11】 FIG. 11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 CCDカメラの光軸を物体に対し垂直に
向け、照射光源からの照射光軸とカメラ光軸とのなす角
度を一定とし、照射光を極細い連続光線として物体を照
射し、この反射光をカメラで撮像し、物体表面の凹凸に
基づく反射光の光点の位置ずれ距離を計測し、これによ
り物体表面の凹凸を測定することを特徴とする物体表面
の凹凸測定方法。
1. An optical axis of a CCD camera is directed perpendicular to an object, an angle between an optical axis of the irradiation light source and an optical axis of the camera is made constant, and the object is irradiated with an extremely thin continuous ray, A method for measuring unevenness of an object surface, characterized by taking an image of this reflected light with a camera, measuring a positional deviation distance of a light point of the reflected light based on the unevenness of the object surface, and measuring the unevenness of the object surface.
【請求項2】 物体を回転台に取り付け、台の回転と同
期して各回転角度毎に撮像することにより物体の全周に
おける凹凸を測定することを特徴とする請求項1記載の
物体表面の凹凸測定方法。
2. The surface of the object according to claim 1, wherein the object is mounted on a rotating table, and the unevenness in the entire circumference of the object is measured by imaging at each rotation angle in synchronization with the rotation of the table. Asperity measurement method.
【請求項3】 照射光は多方向から照射し、各反射光の
光点の位置ずれの距離から物体の凹凸を測定することを
特徴とする請求項1または2記載の物体表面の凹凸測定
方法。
3. The method for measuring unevenness of an object surface according to claim 1 or 2, wherein the irradiation light is applied from multiple directions, and the unevenness of the object is measured from the distance of displacement of the light spots of each reflected light. ..
【請求項4】 カメラ及び照射光源はこれを固定し、長
尺の物体は順次直線的に移動させ、反射光の光点の位置
ずれから物体表面の凹凸を測定することを特徴とする請
求項1または3記載の物体表面の凹凸測定方法。
4. The camera and the irradiation light source are fixed, the long object is linearly moved in sequence, and the unevenness of the object surface is measured from the displacement of the light spot of the reflected light. 1. The method for measuring unevenness on the surface of an object according to 1 or 3.
【請求項5】 照射光源は複数の細線に分割したことを
特徴とする請求項1,2,3あるいは4記載の物体表面
の凹凸測定方法。
5. The unevenness measuring method for an object surface according to claim 1, 2, 3 or 4, wherein the irradiation light source is divided into a plurality of fine lines.
【請求項6】 照射光軸とカメラ光軸とは一定角度を保
持しつつ一体とし、物体を中心として回動することを特
徴とする請求項1,3,4あるいは5記載の物体表面の
凹凸測定方法。
6. The unevenness of the object surface according to claim 1, 3, 4 or 5, wherein the irradiation optical axis and the camera optical axis are integrated while maintaining a constant angle and rotated about the object. Measuring method.
JP4447091A 1991-02-15 1991-02-15 Measuring method for unevenness of surface of object Pending JPH05113321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4447091A JPH05113321A (en) 1991-02-15 1991-02-15 Measuring method for unevenness of surface of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4447091A JPH05113321A (en) 1991-02-15 1991-02-15 Measuring method for unevenness of surface of object

Publications (1)

Publication Number Publication Date
JPH05113321A true JPH05113321A (en) 1993-05-07

Family

ID=12692401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4447091A Pending JPH05113321A (en) 1991-02-15 1991-02-15 Measuring method for unevenness of surface of object

Country Status (1)

Country Link
JP (1) JPH05113321A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132807A (en) * 2005-11-10 2007-05-31 Yokohama Rubber Co Ltd:The Three-dimensional shape measuring device and method
JP2007322419A (en) * 2006-06-02 2007-12-13 Emhart Glass Sa Bottle inspection device
JP2009541774A (en) * 2006-06-26 2009-11-26 オウェンス ブロックウェイ グラス コンテナー インコーポレイテッド Apparatus and method for measuring side wall thickness of non-circular transparent container
JP2010112811A (en) * 2008-11-06 2010-05-20 Meinan Mach Works Inc Apparatus and method for measuring three-dimensional shape of wood block
JP2017026584A (en) * 2015-07-28 2017-02-02 ブラザー工業株式会社 Three-dimensional shape measurement device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132807A (en) * 2005-11-10 2007-05-31 Yokohama Rubber Co Ltd:The Three-dimensional shape measuring device and method
JP2007322419A (en) * 2006-06-02 2007-12-13 Emhart Glass Sa Bottle inspection device
JP2009541774A (en) * 2006-06-26 2009-11-26 オウェンス ブロックウェイ グラス コンテナー インコーポレイテッド Apparatus and method for measuring side wall thickness of non-circular transparent container
JP2010112811A (en) * 2008-11-06 2010-05-20 Meinan Mach Works Inc Apparatus and method for measuring three-dimensional shape of wood block
US8805052B2 (en) 2008-11-06 2014-08-12 Meinan Machinery Works, Inc. Apparatus and method for measuring three-dimensional shape of wood block
EP2184578B1 (en) * 2008-11-06 2015-05-20 Meinan Machinery Works, Inc. Apparatus and method for measuring three-dimensional shape of a wood block
JP2017026584A (en) * 2015-07-28 2017-02-02 ブラザー工業株式会社 Three-dimensional shape measurement device

Similar Documents

Publication Publication Date Title
US5747822A (en) Method and apparatus for optically digitizing a three-dimensional object
US20170010356A1 (en) 3d measuring machine
JP3537522B2 (en) Crucible measurement method
JP2002509259A (en) Method and apparatus for three-dimensional inspection of electronic components
US20030142203A1 (en) Omnidirectional visual system, image processing method, control program, and readable recording medium
JP2001521140A (en) 3D inspection system
US11543367B2 (en) Method acquiring projection image, control apparatus, control program, processing apparatus, and processing program
JP2002529685A (en) Tomographic reconstruction of electronic components from shadow sensor data.
JP2008241643A (en) Three-dimensional shape measuring device
JP2009036589A (en) Target for calibration and device, method and program for supporting calibration
JPS61500185A (en) Multidimensional measurement method and device for objects
JP2014153149A (en) Shape measurement device, structure manufacturing system, shape measurement method and program
JP3428122B2 (en) 3D shape measuring device
JPH05113321A (en) Measuring method for unevenness of surface of object
CN109521022A (en) Touch screen defect detecting device based on the confocal camera of line
JP3770612B2 (en) Appearance inspection device
JP2002257511A (en) Three dimensional measuring device
JPH01235839A (en) Apparatus and method for forming transmission line image
JP2007240197A (en) Three-dimensional shape measuring system
JP2003148936A (en) Three-dimensional measurement method for object by light-section method
JPH0723848B2 (en) Object recognition method and apparatus
JP2000193751A (en) Radiation image-pickup system arrangement confirmation method and arrangement confirmation tool used for it
JP2012013593A (en) Calibration method for three-dimensional shape measuring machine, and three-dimensional shape measuring machine
JPS6129710A (en) Measuring method
JPH04164205A (en) Three dimensional image analysis device