JP2007132807A - Three-dimensional shape measuring device and method - Google Patents

Three-dimensional shape measuring device and method Download PDF

Info

Publication number
JP2007132807A
JP2007132807A JP2005326254A JP2005326254A JP2007132807A JP 2007132807 A JP2007132807 A JP 2007132807A JP 2005326254 A JP2005326254 A JP 2005326254A JP 2005326254 A JP2005326254 A JP 2005326254A JP 2007132807 A JP2007132807 A JP 2007132807A
Authority
JP
Japan
Prior art keywords
tire
dimensional shape
measuring
shape data
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005326254A
Other languages
Japanese (ja)
Inventor
Naoyuki Katsura
直之 桂
Hiroshi Iizuka
洋 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2005326254A priority Critical patent/JP2007132807A/en
Publication of JP2007132807A publication Critical patent/JP2007132807A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional shape measuring device and a three-dimensional shape measuring method, capable of measuring a three-dimensional shape of the tire surface accurately with a high resolution to such a degree that an abrasion form of the tread surface of a tire can be known, concerning shape data of the three-dimensional shape of the tire. <P>SOLUTION: When performing three-dimensional shape measurement of the tire for measuring the three-dimensional shape of the tire by using a measuring unit having a determined measuring range, the three-dimensional shape of a rotary shaft journaling the tire is measured by using the measuring unit 30, to thereby extract the rotation axis of the tire. Then, the rotary shaft journaling the tire is rotated at each fixed angle, and shape data of the three-dimensional shape of the tire journaled by the rotary shaft 12 are acquired as a set of shape data by using the measuring unit 30 at each time. Then, a plurality of sets of shape data acquired by measuring the three-dimensional shape of the tire dividedly at every fixed angle are integrated, based on the rotation axis, to thereby generate shape data of the tire full circumference in the circumferential direction of the tire. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、タイヤの3次元形状データを取得する測定ユニット、例えば、タイヤにレーザ光を照射し、そのときのタイヤ表面からの反射光を受光することによりタイヤの3次元形状データを取得する3次元形状測定装置及び3次元形状測定方法に関する。   The present invention provides a measurement unit that acquires three-dimensional shape data of a tire, for example, three-dimensional shape data of a tire by irradiating the tire with laser light and receiving reflected light from the tire surface at that time. The present invention relates to a three-dimensional shape measuring apparatus and a three-dimensional shape measuring method.

タイヤ表面の形状測定は、トレッド部分の摩耗形態やタイヤの経時変化によるタイヤ断面形状の成長具合を調べる上で必要である。
タイヤのトレッド部分がタイヤの使用(走行)前後において、タイヤのトレッド部分のどの位置(タイヤの周方向の位置及び幅方向の位置)が摩耗したかを調べるために、タイヤの使用前と使用後における測定データの差を求めることが必要である。このためには、トレッド部の周上の位置及びタイヤの幅方向の位置を正確に位置合わせしなければならない。
また、タイヤの使用によりタイヤ断面形状が時間と共に変化する経時変化についても、タイヤの幅方向位置及び周方向位置をタイヤの使用前後で位置合わせをして3次元形状データを比較する必要がある。
The measurement of the shape of the tire surface is necessary in order to investigate the growth state of the tire cross-sectional shape due to the wear form of the tread portion and the change with time of the tire.
Before and after using the tire in order to investigate which position (position in the circumferential direction of the tire and position in the width direction) of the tire tread is worn before and after the tire is used (running). It is necessary to determine the difference in the measurement data at. For this purpose, the position on the circumference of the tread portion and the position in the width direction of the tire must be accurately aligned.
In addition, regarding the change with time in which the tire cross-sectional shape changes with time due to the use of the tire, it is necessary to align the position in the width direction and the circumferential direction of the tire before and after the use of the tire and compare the three-dimensional shape data.

ところで、従来のタイヤ表面の形状測定ではタイヤ断面形状等の2次元形状データしか得られないため、タイヤ全体の3次元形状データを得るには、測定位置を変えて2次元形状データを多数得なければならず、測定に長時間を要するといった問題がある。また、タイヤの3次元形状データを、トレッド部分の摩耗形態やタイヤ断面形状の変化等、タイヤの使用に伴う経時変化を調べるために用いるには、正確に位置及び向きを合わせたタイヤの3次元形状データが必要である。   By the way, the conventional measurement of the shape of the tire surface can only obtain two-dimensional shape data such as the tire cross-sectional shape. Therefore, in order to obtain the three-dimensional shape data of the entire tire, a large number of two-dimensional shape data can be obtained by changing the measurement position. There is a problem that it takes a long time to measure. In addition, in order to use the three-dimensional shape data of a tire in order to examine temporal changes accompanying the use of the tire, such as changes in the wear form of the tread portion and the tire cross-sectional shape, the three-dimensional shape of the tire with the correct position and orientation is used. Shape data is required.

下記特許文献1では、タイヤ表面にスリット光を照射し、このときのスリット光のタイヤ表面に投影された形状をエリアカメラで撮影し、この撮影されたエリアカメラの画素データからタイヤ表面の座標と輝度とを算出し、タイヤ表面の形状と外観を同時に検査するタイヤの外観・形状検査方法を開示している。   In Patent Document 1 below, slit light is irradiated on the tire surface, and the shape projected on the tire surface of the slit light at this time is photographed by an area camera, and the coordinates of the tire surface are obtained from pixel data of the photographed area camera. A tire appearance / shape inspection method is disclosed in which the brightness is calculated and the shape and appearance of the tire surface are simultaneously inspected.

しかし、上記特許文献1では、スリット光の1ラインずつしか測定することができないため、スリット光を僅かにずらしてタイヤ全体の3次元形状データを得るには長時間を要する。さらに、タイヤの形状を所定の基準方向に正確に合わせた3次元形状の測定データを取得することができないため、タイヤのトレッド表面の摩耗形態を知る、すなわち、タイヤのトレッド部分のどの位置(タイヤの周方向の位置及び幅方向の位置)が摩耗したかを調べることができない。タイヤ断面形状の経時変化も同様である。   However, in Patent Document 1, since only one line of slit light can be measured, it takes a long time to obtain three-dimensional shape data of the entire tire by slightly shifting the slit light. Furthermore, since measurement data of a three-dimensional shape in which the shape of the tire is precisely matched with a predetermined reference direction cannot be acquired, the wear form of the tire tread surface is known, that is, the position of the tire tread portion (the tire It is not possible to check whether the circumferential position and the width direction position) are worn. The change with time of the tire cross-sectional shape is also the same.

また、下記特許文献2には、タイヤトレッド部材表面の測定断面に沿った輪郭線上の変曲点に高反射率のマークを付し、タイヤトレッド表面の測定断面に沿ってレーザ光を照射し、その反射光を画素素子で検出し、検出した画像を分析してマークを付した変曲点の幅方向位置を特定し算出し、特定された変曲点の厚さ方向の中心地をアナログ重心法により割り出し、変曲点の厚さ方向の位置を算出するタイヤトレッドの断面形状測定方法が開示されている。
しかし、上記特許文献2では、トレッド部材の形状を測定する際、高反射率のマークを付して安定した反射光を検出するが、測定部分にマークを付す必要があるので、トレッドの形状を高分解能で測定することはできない。また、タイヤにマークを付すと、マークの厚さ分表面形状が変わるので、高反射率と低反射率が混在する場合、精度が極端に落ちるといった問題も生じる。また、変曲点以外は直線状の形状を想定しているので、曲線形状のタイヤを正確に形状測定することもできない。
Further, in Patent Document 2 below, a high reflectance mark is attached to the inflection point on the contour line along the measurement cross section of the tire tread member surface, and laser light is irradiated along the measurement cross section of the tire tread surface, The reflected light is detected by the pixel element, the detected image is analyzed, the position in the width direction of the marked inflection point is identified and calculated, and the center of gravity of the identified inflection point in the thickness direction is analog centroid A method for measuring the cross-sectional shape of a tire tread, which is calculated by the method and calculates the position of the inflection point in the thickness direction, is disclosed.
However, in Patent Document 2, when measuring the shape of the tread member, a highly reflective mark is attached to detect stable reflected light. However, since it is necessary to attach a mark to the measurement portion, the shape of the tread is changed. It cannot be measured with high resolution. In addition, when a mark is attached to the tire, the surface shape changes by the thickness of the mark, so that when the high reflectance and the low reflectance are mixed, there is a problem that the accuracy is extremely lowered. Moreover, since a linear shape is assumed except for the inflection point, it is impossible to accurately measure a curved tire.

特開2003−240521号公報Japanese Patent Laid-Open No. 2003-240521 特開07−083630号公報JP 07-083630 A

そこで、本発明は、上記問題点を解決するために、タイヤの3次元形状の形状データを、タイヤのトレッド表面の摩耗形態を知ることができる程度に、高分解能かつ精度よくタイヤ表面の3次元形状を測定することができる3次元形状測定装置及び3次元形状測定方法を提供することを目的とする。   Therefore, in order to solve the above-described problems, the present invention provides high-resolution and high-precision three-dimensional tire surface data so that the three-dimensional shape data of the tire can know the wear form of the tread surface of the tire. It is an object of the present invention to provide a three-dimensional shape measuring apparatus and a three-dimensional shape measuring method capable of measuring a shape.

本発明は、タイヤの3次元形状を測定する3次元形状測定装置であって、タイヤを軸支する回転自在な回転シャフト回転シャフトと、この回転シャフトに軸支されたタイヤの3次元形状の形状データを出力する測定ユニットと、前記測定ユニットを載置した移動台が、前記回転シャフトの回転軸上の一点を中心点として、前記回転軸を含む平面上で円弧状に移動する移動機構と、前記回転シャフトを回転して、又は前記移動台を移動して、タイヤに対して、タイヤ周方向又はタイヤ幅方向の異なる位置で前記測定ユニットにより測定されて得られる複数組のタイヤの形状データを、前記回転軸を基準として統合するデータ処理ユニットと、を有することを特徴とする3次元形状測定装置を提供する。   The present invention relates to a three-dimensional shape measuring apparatus for measuring a three-dimensional shape of a tire, and a rotatable rotating shaft rotating shaft that supports the tire, and a three-dimensional shape of the tire that is supported by the rotating shaft. A measurement unit that outputs data, and a moving mechanism on which the moving table on which the measurement unit is mounted moves in a circular arc shape on a plane including the rotation axis, with one point on the rotation axis of the rotation shaft as a center point; A plurality of sets of tire shape data obtained by measuring the measurement unit at different positions in the tire circumferential direction or the tire width direction with respect to the tire by rotating the rotating shaft or moving the moving table. And a data processing unit that integrates with the rotation axis as a reference.

なお、タイヤの3次元形状を測定する前に、前記回転シャフトの回転軸の位置を抽出するために、前記測定ユニットは前記回転シャフトの形状を測定することが好ましい。
また、前記測定ユニットは、タイヤ周方向の限られた範囲のタイヤの3次元形状を測定するものであり、タイヤの測定の際、タイヤを軸支した前記回転シャフトを一定角度ずつ回転してタイヤ周方向の測定範囲を変えることにより、タイヤ周方向全周の範囲を測定することが好ましい。
さらに、前記測定ユニットが、タイヤ周方向全周の範囲のタイヤの3次元形状を測定した後、前記測定ユニットを載置した移動台が移動することにより、前記測定ユニットは、タイヤ幅方向の異なる位置から、タイヤの3次元形状を測定することが好ましい。
また、前記測定ユニットは、複数組のタイヤの形状データ内に、タイヤの同じ測定部分が含まれるように測定範囲を定めて測定し、前記処理ユニットは、複数組のタイヤの形状データの同じ部分が同じ位置に来るように、前記回転軸を基準として、少なくとも一組の形状データを写像変換することが好ましい。
前記回転シャフトに軸支されるタイヤは、前記回転シャフトの軸方向の予め定められた範囲内に取り付けられ、前記測定ユニットを載置した前記移動台が円弧状に移動するときの前記中心点は、前記軸方向の予め定められた範囲内に設けられていることが好ましい。
In addition, it is preferable that the measurement unit measures the shape of the rotating shaft in order to extract the position of the rotating shaft of the rotating shaft before measuring the three-dimensional shape of the tire.
The measurement unit measures a three-dimensional shape of the tire in a limited range in the tire circumferential direction. When measuring the tire, the rotating shaft that pivotally supports the tire is rotated by a certain angle to measure the tire. It is preferable to measure the range of the entire circumference in the tire circumferential direction by changing the measurement range in the circumferential direction.
Furthermore, after the measurement unit measures the three-dimensional shape of the tire in a range of the entire circumference in the tire circumferential direction, the measurement unit is different in the tire width direction by moving a moving table on which the measurement unit is placed. It is preferable to measure the three-dimensional shape of the tire from the position.
In addition, the measurement unit performs measurement by determining a measurement range so that the same measurement portion of the tire is included in the shape data of a plurality of sets of tires, and the processing unit is the same portion of the shape data of the plurality of sets of tires. Preferably, at least one set of shape data is map-transformed with the rotation axis as a reference so that they are at the same position.
The tire pivotally supported on the rotating shaft is attached within a predetermined range in the axial direction of the rotating shaft, and the center point when the moving table on which the measuring unit is mounted moves in an arc shape is It is preferable that it is provided within a predetermined range in the axial direction.

さらに、本発明は、タイヤの3次元形状の測定を、測定範囲が定められた測定ユニットを用いて行うタイヤの3次元形状測定方法であって、タイヤを軸支する回転シャフトの3次元形状を、測定ユニットを用いて測定して、タイヤの回転軸を抽出するステップと、タイヤを軸支した前記回転シャフトを一定の角度ずつ回転し、その度に前記測定ユニットを用いて、回転シャフトに軸支したタイヤの3次元形状の形状データを1組の形状データとして取得するステップと、一定の角度ずつ区切ってタイヤの3次元形状を測定することにより取得する複数組の形状データを、前記回転軸を基準として統合することにより、タイヤ周方向全周の形状データを作成するステップと、を有することを特徴とする3次元形状測定方法を提供する。   Furthermore, the present invention is a method for measuring a three-dimensional shape of a tire by measuring a three-dimensional shape of the tire using a measurement unit having a predetermined measurement range, wherein the three-dimensional shape of a rotating shaft that supports the tire is measured. , Measuring using the measurement unit, extracting the rotation axis of the tire, rotating the rotation shaft supporting the tire by a certain angle, and using the measurement unit each time, A step of acquiring three-dimensional shape data of the supported tire as a set of shape data, and a plurality of sets of shape data acquired by measuring the three-dimensional shape of the tire by dividing each tire by a predetermined angle, And a step of creating shape data of the entire circumference in the tire circumferential direction by integrating with reference as a reference.

その際、前記タイヤ周方向のタイヤ全周を測定することにより複数組の形状データを取得した後、さらに、前記回転軸上の一点を中心点として前記測定ユニットを、前記回転軸を含む平面上で円弧状に移動し、異なる位置からタイヤの3次元形状の形状データを測定するステップを、有することが好ましい。
また、前記測定ユニットは、複数組のタイヤの形状データに、タイヤの同じ測定部分が含まれるように測定範囲を定めてタイヤの3次元形状を測定し、前記複数組の形状データを統合する際、複数組のタイヤの形状データの同じ部分が同じ位置に来るように、前記回転軸を基準として、少なくとも一組の形状データを写像変換することにより、前記タイヤ周方向全周の形状データを作成することが好ましい。
At that time, after acquiring a plurality of sets of shape data by measuring the entire tire circumference in the tire circumferential direction, the measurement unit is further centered on one plane on the rotation axis on the plane including the rotation axis. It is preferable to have a step of measuring the shape data of the three-dimensional shape of the tire from different positions.
Further, the measurement unit determines a measurement range so that the same measurement portion of the tire is included in the plurality of sets of tire shape data, measures the three-dimensional shape of the tire, and integrates the plurality of sets of shape data. The shape data of the entire circumference in the tire circumferential direction is created by mapping and transforming at least one set of shape data on the basis of the rotation axis so that the same portion of the shape data of a plurality of sets is at the same position. It is preferable to do.

本発明では、タイヤ全体を表す3次元形状データが、タイヤの回転軸を基準として作成されるので、タイヤの3次元形状の形状データを、タイヤのトレッド表面の摩耗形態を知ることができる程度に、高分解能かつ精度よくタイヤ表面の3次元形状を測定することができる。これにより、タイヤの使用による摩耗進展の状況やタイヤの使用によるタイヤ断面形状の経時変化も、タイヤ周方向およびタイヤ幅方向の同じ位置で比較することができる。   In the present invention, since the three-dimensional shape data representing the entire tire is created based on the rotation axis of the tire, the three-dimensional shape data of the tire can be used to know the wear form of the tread surface of the tire. The three-dimensional shape of the tire surface can be measured with high resolution and accuracy. Thereby, the situation of wear progress due to the use of the tire and the change over time of the tire cross-sectional shape due to the use of the tire can also be compared at the same position in the tire circumferential direction and the tire width direction.

以下、添付の図面に示す実施形態に基づいて、本発明の3次元形状測定装置及び3次元形状測定方法を詳細に説明する。   Hereinafter, a three-dimensional shape measuring apparatus and a three-dimensional shape measuring method of the present invention will be described in detail based on embodiments shown in the accompanying drawings.

図1は、本発明における3次元形状測定装置の実施形態を表す概略構成図である。
図1に示す3次元形状測定装置10は、タイヤ・ホイール組立体である空気入りタイヤ(以下、タイヤという)Tの3次元形状を予め定めた位置及び向きに合わせて配置したときのタイヤT全体の3次元形状データを算出し記録保持する装置である。
3次元形状測定装置10は、回転シャフト12を備えるタイヤスタンド14と、レーザ光を用いた3次元形状測定ユニット(デジタイザ)30と、3次元形状測定ユニット30を載置した移動台40が、回転シャフト12の回転軸上の点Aを中心点として、回転軸を含む平面上で円弧状に移動する移動機構42と、コンピュータ50と、ディスプレイ60と、マウス・キーボード70とを有して構成される。
FIG. 1 is a schematic configuration diagram showing an embodiment of a three-dimensional shape measuring apparatus according to the present invention.
The three-dimensional shape measuring apparatus 10 shown in FIG. 1 is an entire tire T when a three-dimensional shape of a pneumatic tire (hereinafter referred to as a tire) T, which is a tire / wheel assembly, is arranged in a predetermined position and orientation. This is a device that calculates and records the three-dimensional shape data.
The three-dimensional shape measuring apparatus 10 includes a tire stand 14 including a rotating shaft 12, a three-dimensional shape measuring unit (digitizer) 30 using laser light, and a movable table 40 on which the three-dimensional shape measuring unit 30 is mounted. The moving mechanism 42 that moves in a circular arc shape on a plane including the rotation axis with the point A on the rotation axis of the shaft 12 as a central point, a computer 50, a display 60, and a mouse / keyboard 70 are configured. The

タイヤスタンド14は、タイヤ・ホイール組立体であるタイヤTを軸支する回転シャフト12を備え、測定対象用の軸支されたタイヤTを自動的に、あるいはオペレータのマニュアル操作で自在に回転することができる。
移動台40は、回転シャフト12の回転軸上の点Aに対して鉛直下方の点Bを中心に回転移動する回転移動板44上に設けられている。移動台40には、3次元形状測定ユニット30が載置されている。回転移動板44は、点Bを中心として回転する駆動シャフト46に固定されており、点Bの下方にて接続されている図示されないモータの駆動により、あるいはオペレータの手動操作により、回転するように駆動シャフト46が構成されている。移動台40に載せられた3次元形状測定ユニット30は、回転移動板44が移動することにより、点Aを中心点として、回転シャフト12の回転軸を含む平面上で円弧状に移動する。
なお、回転シャフト12に軸支されるタイヤTは、回転シャフト12の軸方向の、設定されたタイヤ装着範囲内に取り付けられるが、点Aは、このタイヤ装着範囲内に設けられている。点Aをタイヤ装着範囲内に設定するのは、3次元形状測定ユニット30が円弧状に移動しても、3次元形状測定ユニット30からタイヤTまでの距離が大きく変化しないようにするためである。これにより、レーザ光を用いる3次元形状測定ユニット30の光学系の焦点調整が不要となる。
回転移動板44およびこれを軸支して回転する駆動シャフト46は、本発明における移動機構に該当する。
The tire stand 14 includes a rotating shaft 12 that supports a tire T, which is a tire / wheel assembly, and can freely rotate the tire T that is supported for measurement automatically or manually by an operator. Can do.
The moving table 40 is provided on a rotary moving plate 44 that rotates about a point B that is vertically below the point A on the rotation axis of the rotary shaft 12. A three-dimensional shape measurement unit 30 is placed on the movable table 40. The rotary moving plate 44 is fixed to a drive shaft 46 that rotates about the point B, and is rotated by driving a motor (not shown) connected below the point B or by manual operation of the operator. A drive shaft 46 is configured. The three-dimensional shape measurement unit 30 placed on the moving table 40 moves in an arc shape on the plane including the rotation axis of the rotary shaft 12 with the point A as the center point by the movement of the rotary moving plate 44.
The tire T that is pivotally supported by the rotating shaft 12 is attached within a set tire mounting range in the axial direction of the rotating shaft 12, and the point A is provided within the tire mounting range. The reason why the point A is set within the tire mounting range is to prevent the distance from the three-dimensional shape measuring unit 30 to the tire T from changing greatly even if the three-dimensional shape measuring unit 30 moves in an arc shape. . This eliminates the need for focus adjustment of the optical system of the three-dimensional shape measurement unit 30 using laser light.
The rotationally moving plate 44 and the drive shaft 46 that pivots on the rotating plate 44 correspond to the moving mechanism in the present invention.

3次元形状測定ユニット30は、測定空間内に位置するタイヤT及び回転シャフト12の3次元形状データを出力する装置である。3次元測定ユニット30は、タイヤ周方向の限られた範囲のタイヤの3次元形状を測定するものであり、3次元形状測定装置10は、タイヤTを軸支した回転シャフト12を一定角度ずつ回転することにより、タイヤ周方向の全周の範囲を測定するように構成されている。   The three-dimensional shape measurement unit 30 is a device that outputs three-dimensional shape data of the tire T and the rotating shaft 12 located in the measurement space. The three-dimensional measuring unit 30 measures the three-dimensional shape of the tire in a limited range in the tire circumferential direction, and the three-dimensional shape measuring apparatus 10 rotates the rotating shaft 12 that supports the tire T by a predetermined angle. By doing so, it is comprised so that the range of the perimeter of a tire peripheral direction may be measured.

図2は、3次元形状測定ユニット30の構成を説明する図である。
3次元形状測定ユニット30は、CPU31、ドライバー回路32、レーザダイオード33、ガルバノミラー34、光学系35,36、CCD素子37、AD変換器38、FIFO39,信号処理プロセッサ40、及びフレームメモリ41を有する。
3次元形状測定ユニット30では、コンピュータ50からの測定開始指示に応じて、CPU31は測定開始のトリガー信号を生成し、図示されないクロックジェネレータを起動してクロック信号を生成する。このクロック信号はCCD素子37、AD変換器38、FIFO39、信号処理プロセッサ40に供給される。一方、トリガー信号の生成により、ドライバー回路32はレーザ光照射の信号を生成し、レーザダイオード33に供給する。レーザダイオード33は、これによりレーザ光を照射し、レーザ光をスリット光とし、このレーザ光の照射の信号に合わせて駆動を開始したガルバノミラー34を振らして、光学系35を介して照射されるスリット状のレーザ光をタイヤT及び基準立体物20上でスキャンさせる。
FIG. 2 is a diagram illustrating the configuration of the three-dimensional shape measurement unit 30.
The three-dimensional shape measurement unit 30 includes a CPU 31, a driver circuit 32, a laser diode 33, a galvano mirror 34, optical systems 35 and 36, a CCD element 37, an AD converter 38, a FIFO 39, a signal processor 40, and a frame memory 41. .
In the three-dimensional shape measurement unit 30, in response to a measurement start instruction from the computer 50, the CPU 31 generates a measurement start trigger signal and activates a clock generator (not shown) to generate a clock signal. This clock signal is supplied to the CCD element 37, AD converter 38, FIFO 39, and signal processor 40. On the other hand, by generating the trigger signal, the driver circuit 32 generates a laser light irradiation signal and supplies it to the laser diode 33. The laser diode 33 irradiates the laser beam by this, turns the laser beam into slit light, shakes the galvano mirror 34 that starts driving in accordance with the irradiation signal of the laser beam, and is irradiated through the optical system 35. A slit-shaped laser beam is scanned on the tire T and the reference three-dimensional object 20.

一方、光学系36を介して集束したレーザ光の反射光をCCD素子37にて受光し、生成された画像信号をAD変換器38によりデジタル信号とし、FIFO39を介して画像信号を順番に信号処理プロセッサ40に供給する。信号処理プロセッサ40は、光切断方法を用いた周知のアルゴリズムを実行する回路が組み込まれており、供給された画像信号から、タイヤT及び基準立体物20の3次元形状データを生成する部分である。この3次元形状データは、フレームメモリ41に逐次書き込まれ、必要に応じて呼び出される。画像信号から3次元形状データを生成する処理方法は、周知の光切断法を用いたアルゴリズムである。光切断法は、スリット光を測定対象物に照射し、測定対象物の曲がった帯状の反射光をCCD素子等のカメラで撮影し、画像における結像位置から3次元形状データを求める方法である。このときの演算は三角測量の原理に基づいて行われる。
生成されたタイヤT及び基準立体物20の3次元形状データは、コンピュータ50に供給される。
3次元形状測定ユニット30は、以上の作用を行うように構成された装置である。
このようなユニットとして、例えば光切断方法を用いた非接触3次元デジタイザVIVID9i((株)コニカ ミノルタ社製)が例示される。
On the other hand, the reflected light of the laser beam focused through the optical system 36 is received by the CCD element 37, the generated image signal is converted into a digital signal by the AD converter 38, and the image signal is sequentially processed through the FIFO 39. This is supplied to the processor 40. The signal processor 40 incorporates a circuit that executes a known algorithm using a light cutting method, and is a part that generates three-dimensional shape data of the tire T and the reference three-dimensional object 20 from the supplied image signal. . This three-dimensional shape data is sequentially written in the frame memory 41 and is called up as necessary. A processing method for generating three-dimensional shape data from an image signal is an algorithm using a known light cutting method. The light cutting method is a method of irradiating a measuring object with slit light, photographing a band-like reflected light of the measuring object with a camera such as a CCD element, and obtaining three-dimensional shape data from an imaging position in the image. . The calculation at this time is performed based on the principle of triangulation.
The generated three-dimensional shape data of the tire T and the reference three-dimensional object 20 are supplied to the computer 50.
The three-dimensional shape measurement unit 30 is a device configured to perform the above-described operation.
An example of such a unit is a non-contact three-dimensional digitizer VIVID9i (manufactured by Konica Minolta Co., Ltd.) using a light cutting method.

コンピュータ50は、回転シャフト12の3次元形状データから抽出された回転軸を基準として、タイヤTの3次元形状データを写像変換し、さらに写像変換した複数組の3次元形状データを統合し、統合化された3次元形状データを記録保持する部分である。
3次元形状測定ユニット30では、回転シャフト12の3次元形状データが測定され、さらに、回転シャフト12に装着されたタイヤTをタイヤ周方向に一定の角度ずつ回転させて、タイヤ周方向の異なる範囲のタイヤ形状が測定され、測定された3次元形状データがコンピュータ50に供給される。
コンピュータ50は、供給された3次元形状データを用い、回転シャフト12の3次元形状データから回転軸を抽出し、この回転軸を基準として、タイヤの3次元形状データを写像変換し、タイヤの3次元形状データを統合化する。詳細の処理フローは後述する。
The computer 50 performs mapping conversion of the three-dimensional shape data of the tire T on the basis of the rotation axis extracted from the three-dimensional shape data of the rotating shaft 12, and further integrates a plurality of sets of three-dimensional shape data obtained by mapping conversion. This is a part that records and holds the converted three-dimensional shape data.
The three-dimensional shape measurement unit 30 measures the three-dimensional shape data of the rotating shaft 12, and further rotates the tire T mounted on the rotating shaft 12 by a certain angle in the tire circumferential direction, so that different ranges in the tire circumferential direction are obtained. The tire shape is measured, and the measured three-dimensional shape data is supplied to the computer 50.
The computer 50 extracts the rotation axis from the three-dimensional shape data of the rotating shaft 12 using the supplied three-dimensional shape data, maps the tire three-dimensional shape data using this rotation axis as a reference, and converts the tire 3 Integrate dimensional shape data. A detailed processing flow will be described later.

ディスプレイ60は、タイヤTの3次元形状データを用いて再現される3次元形状や、統合化された3次元形状データに基づいて再現されるタイヤTの周方向全周の3次元形状や、1つの3次元形状データに集約されたタイヤT全体の3次元形状や、各種の断面プロファイル形状を画面表示し、又写像変換や統合化の処理のための入力画面を表示する部分である。
マウス・キーボード70は、ディスプレイ60に表示された入力画面や各種3次元形状の表示に対して所望の入力指示を与える入力操作系である。
The display 60 is a three-dimensional shape that is reproduced using the three-dimensional shape data of the tire T, a three-dimensional shape of the entire circumference of the tire T that is reproduced based on the integrated three-dimensional shape data, and 1 This is a part that displays the three-dimensional shape of the entire tire T and various cross-sectional profile shapes that are aggregated into three three-dimensional shape data, and displays an input screen for mapping conversion and integration processing.
The mouse / keyboard 70 is an input operation system that gives a desired input instruction to the input screen displayed on the display 60 and various three-dimensional shapes.

このような構成を有する3次元形状測定装置10の3次元形状測定ユニット30は、図3に示すように回転軸C上の点Aを中心点として、回転軸Cを含む平面上を、円弧状に移動する。これにより、3次元形状測定ユニット30の、タイヤ幅方向(図3中のX方向)の位置を変えて、複数の方向から、タイヤTの3次元形状データを取得する。   The three-dimensional shape measuring unit 30 of the three-dimensional shape measuring apparatus 10 having such a configuration has an arc shape on a plane including the rotation axis C with the point A on the rotation axis C as a center point as shown in FIG. Move to. Thereby, the three-dimensional shape data of the tire T is acquired from a plurality of directions by changing the position of the three-dimensional shape measurement unit 30 in the tire width direction (X direction in FIG. 3).

図4は、上記構成の3次元形状測定装置10を用いてタイヤTの3次元形状測定を行う工程のフローを示す図である。
まず、移動台40に載置した3次元形状測定ユニット30のタイヤ幅方向の位置を設定する。例えば、タイヤTのトレッド部分と相対する対向位置(角度0度、図3に示す位置)に3次元形状測定ユニット30を配置する。
タイヤTを回転シャフト12に装着する前の回転シャフト12を3次元形状測定ユニット30で測定(3次元デジタイズ)する(ステップS100)。測定された回転シャフト12の3次元形状データは、コンピュータ50に供給される。
FIG. 4 is a diagram illustrating a flow of a process of measuring the three-dimensional shape of the tire T using the three-dimensional shape measuring apparatus 10 having the above configuration.
First, the position in the tire width direction of the three-dimensional shape measurement unit 30 placed on the movable table 40 is set. For example, the three-dimensional shape measurement unit 30 is disposed at a position facing the tread portion of the tire T (an angle of 0 degrees, the position shown in FIG. 3).
The rotating shaft 12 before mounting the tire T on the rotating shaft 12 is measured (three-dimensional digitized) by the three-dimensional shape measuring unit 30 (step S100). The measured three-dimensional shape data of the rotating shaft 12 is supplied to the computer 50.

次に、タイヤ・ホイール組立体であるタイヤTを、回転シャフト12に装着し(ステップS102)、3次元形状測定ユニット30にてタイヤTのトレッド部分の3次元形状の測定を行い、3次元形状データを取得する(ステップS104)。すなわち、タイヤの3次元デジタイズを行う。
3次元形状データの取得後、回転シャフト12を一定角度、例えば30度回転し、3次元形状ユニット30のタイヤ周方向の測定範囲を変える(ステップS106)。なお、3次元形状ユニット30による測定範囲がタイヤ周方向の角度よりも少し小さい角度を上記一定角度とする。例えば3次元形状ユニット30によるタイヤ周方向の測定範囲が35度であれば、上記一定角度を30度とする。これにより、タイヤ周方向の各測定において、重なる部分があるので、後述するコンピュータ50では、タイヤ周方向の範囲が異なるタイヤの形状データ内に同じタイヤ測定部分があり、この同じ測定部分が、3次元形状データにおいて同じ位置に来るように、回転軸を基準として、少なくとも一組の形状データを微調整するためである。また、一定角度ずつ、測定範囲を変えるので、最初の測定範囲の端からの、タイヤ周方向の位置を知ることができる。
Next, the tire T, which is a tire / wheel assembly, is mounted on the rotating shaft 12 (step S102), and the three-dimensional shape measurement unit 30 measures the three-dimensional shape of the tread portion of the tire T. Data is acquired (step S104). That is, the tire is three-dimensionally digitized.
After acquiring the three-dimensional shape data, the rotating shaft 12 is rotated by a certain angle, for example, 30 degrees to change the measurement range in the tire circumferential direction of the three-dimensional shape unit 30 (step S106). In addition, the angle in which the measurement range by the three-dimensional shape unit 30 is slightly smaller than the angle in the tire circumferential direction is defined as the constant angle. For example, if the measurement range in the tire circumferential direction by the three-dimensional shape unit 30 is 35 degrees, the fixed angle is set to 30 degrees. Thus, since there are overlapping portions in each measurement in the tire circumferential direction, the computer 50 described later has the same tire measurement portion in the tire shape data having different ranges in the tire circumferential direction. This is for finely adjusting at least one set of shape data on the basis of the rotation axis so as to come to the same position in the dimensional shape data. Further, since the measurement range is changed by a certain angle, the position in the tire circumferential direction from the end of the first measurement range can be known.

次に、タイヤTの3次元デジタイズがタイヤ周方向の全周について行われたか判定される(ステップS108)。判定の結果、否定されると、タイヤ周方向の隣に位置する測定範囲について、3次元デジタイズが行われる。こうして、タイヤTの3次元デジタイズがタイヤ周方向の全周行われるまで、タイヤ周方向の測定範囲を逐次変えて3次元デジタイズが繰り返される。上記判定において、肯定されると、タイヤTのトレッド部分と相対する対向位置(角度0度)での測定は終了する。   Next, it is determined whether the three-dimensional digitization of the tire T has been performed for the entire circumference in the tire circumferential direction (step S108). If the result of determination is negative, three-dimensional digitization is performed for the measurement range located next to the tire circumferential direction. In this way, until the three-dimensional digitization of the tire T is performed in the entire tire circumferential direction, the three-dimensional digitization is repeated while sequentially changing the measurement range in the tire circumferential direction. If the determination is affirmative, the measurement at the facing position (angle 0 degree) facing the tread portion of the tire T ends.

次に、タイヤTのトレッドの一部分〜サイド部分〜ビード部分が測定範囲となるように、3次元形状ユニット30を円弧状に移動させ、タイヤ幅方向の位置を変える(ステップS110)。例えば角度0度から30度に変える。3次元形状ユニット30では、再度、タイヤTをタイヤ周方向に一定角度ずつタイヤTを回転させながら3次元デジタイズが行われる。こうして、タイヤ全周の3次元デジタイズが行われる。
さらに、角度を−30度に設定し、先に測定範囲としたタイヤTのサイド部分〜ビード部分と反対側のトレッドの一部分〜サイド部分〜ビード部分を測定範囲として3次元デジタイズが行われる。
こうしてタイヤTのタイヤ幅方向の異なる位置での3次元デジタイズがすべて終了したと判定される(ステップS112)と、タイヤTの測定はすべて終了する。
なお、3次元形状測定ユニット30から出力される3次元形状データは、測定のたびに順次コンピュータ50に供給され記録保持される。
Next, the three-dimensional shape unit 30 is moved in an arc shape so that a part of the tread of the tire T, a side part, and a bead part are within the measurement range, and the position in the tire width direction is changed (step S110). For example, the angle is changed from 0 degree to 30 degrees. In the three-dimensional shape unit 30, three-dimensional digitization is performed again while rotating the tire T by a certain angle in the tire circumferential direction. In this way, three-dimensional digitization of the entire circumference of the tire is performed.
Further, the angle is set to −30 degrees, and the three-dimensional digitization is performed using the part of the tread on the side opposite to the bead part to the side part to the side part to the bead part of the tire T as the measurement range.
Thus, when it is determined that the three-dimensional digitization at different positions in the tire width direction of the tire T has been completed (step S112), all measurements of the tire T are completed.
Note that the three-dimensional shape data output from the three-dimensional shape measurement unit 30 is sequentially supplied to the computer 50 and recorded and held for each measurement.

図5は、コンピュータ50に供給され記録保持されている3次元形状データを用いてタイヤT全体の統合化、集約された3次元形状データを作成する工程のフローを示す図である。
まず、回転シャフト12の3次元形状データから、回転軸が抽出される(ステップS200)。回転シャフト12は、円形状を成したロッドであるため、回転シャフト12の3次元形状の中心軸がタイヤTの回転軸C(図6参照)となる。この回転軸Cは、3次元形状ユニット30で定められた座標系における直線である。
FIG. 5 is a diagram showing a flow of a process of creating the integrated and aggregated three-dimensional shape data of the entire tire T using the three-dimensional shape data supplied to the computer 50 and recorded and held.
First, the rotation axis is extracted from the three-dimensional shape data of the rotation shaft 12 (step S200). Since the rotation shaft 12 is a rod having a circular shape, the central axis of the three-dimensional shape of the rotation shaft 12 is the rotation axis C of the tire T (see FIG. 6). The rotation axis C is a straight line in the coordinate system defined by the three-dimensional shape unit 30.

次に、抽出された回転軸Cを基準として、タイヤTの3次元形状データが、座標変換される(ステップS202)。
まず、角度0度におけるタイヤTの3次元形状データについて座標変換が行われる。3次元形状データは、タイヤ周方向の測定範囲毎に得られているので、各3次元形状データごとに、回転軸Cを基準とし、タイヤ周方向の測定範囲に基づいて、図6に示すように、回転軸Cの周りに3次元形状(3次元形状1、3次元形状2、3次元形状3、・・・)を順次配置するように座標変換される。
こうして、タイヤ周方向全周にわたり3次元形状データが座標変換されるが、上述したように、タイヤ周方向の測定において、タイヤの同じ測定部分が含まれるように測定範囲が設定される。例えば、図6において、3次元形状1と3次元形状2の一部が重なり、3次元形状2と3次元形状3の一部が重なる。
Next, the three-dimensional shape data of the tire T is coordinate-transformed using the extracted rotation axis C as a reference (step S202).
First, coordinate conversion is performed on the three-dimensional shape data of the tire T at an angle of 0 degrees. Since the three-dimensional shape data is obtained for each measurement range in the tire circumferential direction, as shown in FIG. 6 based on the measurement range in the tire circumferential direction with reference to the rotation axis C for each three-dimensional shape data. Then, the coordinate transformation is performed so that a three-dimensional shape (three-dimensional shape 1, three-dimensional shape 2, three-dimensional shape 3,...) Is sequentially arranged around the rotation axis C.
Thus, the three-dimensional shape data is coordinate-transformed over the entire circumference in the tire circumferential direction. As described above, in the measurement in the tire circumferential direction, the measurement range is set so that the same measurement portion of the tire is included. For example, in FIG. 6, a part of 3D shape 1 and a part of 3D shape 2 overlap, and a part of 3D shape 2 and a part of 3D shape 3 overlap.

このような3次元形状は、ディスプレイ60上に、カラーのドットにより表示される。ドットは、3次元形状1と3次元形状2のようにタイヤ周方向の測定範囲が異なる測定で取得された3次元形状データの場合、異なる色で表示される。オペレータは、ドットの色の重なり具合を確認しながら、例えば異なる色のドットにより形成されるトレッド部分が、トレッドブロックのエッジ等の特定の位置に関して、位置ずれしていないか(3次元形状1を表すドットと3次元形状2を表すドットで位置ずれしていないか)、をチェックする。位置ずれしている場合、一方の3次元形状データのタイヤ幅方向及びタイヤ周方向の位置をずらす微調整のための座標変換が行われる(ステップS204)。タイヤ幅方向又はタイヤ周方向の位置をずらす座標変換に限るのは、このときの3次元データは回転軸Cを基準として写像変換されているので、3次元形状データにタイヤ幅方向又はタイヤ周方向以外の位置をずらず写像変換を行うと、3次元形状データの配置が回転軸Cを基準とした配置ではなくなるからである。つまり、微調整で行う写像変換は、回転軸の向きが変化しない写像変換に限られる。
こうして3次元形状データの微調整が行われ、タイヤ周方向全周にわたる3次元形状データが、タイヤ幅方向の異なる測定位置毎に統合され、それぞれ1つの合成データとされる(ステップS206)。
Such a three-dimensional shape is displayed on the display 60 by colored dots. In the case of three-dimensional shape data acquired by measurement with different measurement ranges in the tire circumferential direction, such as the three-dimensional shape 1 and the three-dimensional shape 2, the dots are displayed in different colors. The operator confirms whether or not the dot colors overlap, for example, whether the tread portion formed by the different color dots is misaligned with respect to a specific position such as an edge of the tread block (the three-dimensional shape 1 is changed). Whether or not there is a positional deviation between the dot representing the dot and the dot representing the three-dimensional shape 2). When the position is shifted, coordinate conversion for fine adjustment for shifting the position in the tire width direction and the tire circumferential direction of one of the three-dimensional shape data is performed (step S204). Only the coordinate transformation that shifts the position in the tire width direction or the tire circumferential direction is because the three-dimensional data at this time is map-transformed on the basis of the rotation axis C, so that the three-dimensional shape data is converted into the tire width direction or the tire circumferential direction. This is because the mapping of the three-dimensional shape data is no longer based on the rotation axis C when mapping conversion is performed without shifting the positions other than. That is, mapping conversion performed by fine adjustment is limited to mapping conversion in which the direction of the rotation axis does not change.
In this way, fine adjustment of the three-dimensional shape data is performed, and the three-dimensional shape data over the entire circumference in the tire circumferential direction is integrated for each measurement position in the tire width direction, and each is combined data (step S206).

次に、3次元形状測定ユニット30(デジタイザ)によりタイヤ幅方向の異なる位置で測定され3次元形状データが、タイヤ幅方向の異なる測定位置毎にすべて統合化されたか否かが判定される(ステップS208)。
上述した測定では、3次元形状測定ユニット30を、タイヤ幅方向位置として角度0度の他に角度30度、−30度に配置したときの測定も行っている。そのため、3箇所の測定位置に対応した3次元形状データがコンピュータ50に記憶保持されている。したがって、角度30度、−30度の測定位置における3次元形状データの統合化が行われていない場合、上記判定は否定される。角度30度、角度―30度における3次元形状データについても、同様に座標変換が行われ、1つの合成データに統合化される。
Next, it is determined by the three-dimensional shape measurement unit 30 (digitizer) that measurement is performed at different positions in the tire width direction, and whether or not the three-dimensional shape data has been integrated for each measurement position different in the tire width direction (step). S208).
In the above-described measurement, measurement is also performed when the three-dimensional shape measurement unit 30 is arranged at 30 degrees and −30 degrees in addition to an angle of 0 degrees as a position in the tire width direction. Therefore, three-dimensional shape data corresponding to three measurement positions is stored and held in the computer 50. Therefore, when the integration of the three-dimensional shape data at the measurement positions at the angles of 30 degrees and −30 degrees is not performed, the above determination is denied. Coordinate conversion is similarly performed on the three-dimensional shape data at an angle of 30 degrees and an angle of -30 degrees and integrated into one composite data.

最後に、タイヤ幅方向の異なる測定位置別に(上記例では角度0度、30度、−30度の別に)統合化された複数の3次元形状データは1つの3次元形状データに集約される(ステップS210)。
こうして1つのデータに集約されたタイヤT全体の3次元形状データに基づいて、ディスプレイ60に3次元タイヤ形状が表示される。
Finally, a plurality of three-dimensional shape data integrated at different measurement positions in the tire width direction (in the above example, at angles of 0 degrees, 30 degrees, and −30 degrees) are aggregated into one three-dimensional shape data ( Step S210).
The three-dimensional tire shape is displayed on the display 60 based on the three-dimensional shape data of the entire tire T collected in one data.

図7(a)〜(d)は、タイヤ周方向の3次元形状データが統合化されたタイヤT全周の3次元形状データに基づいて再生されるタイヤの3次元形状の画像であり、ディスプレイ60に表示される一例を示している。
図7(a)〜(d)に用いたタイヤTは、サイズが495/45R22.5(リム;22.5×17、内圧;190kPa)であり、タイヤ幅が広いため、タイヤTの3次元形状は、3次元形状ユニット30にてタイヤ幅方向の4箇所の異なる位置で測定され、測定位置毎に3次元形状データが統合化されている。
図8は、図7(a)〜(d)に示すような4つの統合化された3次元形状データを、タイヤ幅方向に関して1つの3次元形状データに集約し、この3次元形状データに基づいてタイヤT全体を表す3次元形状を再生した画像の一例である。
FIGS. 7A to 7D are three-dimensional images of a tire that are reproduced based on the three-dimensional shape data of the entire circumference of the tire T in which the three-dimensional shape data in the tire circumferential direction are integrated. An example displayed at 60 is shown.
The tire T used in FIGS. 7A to 7D has a size of 495 / 45R22.5 (rim; 22.5 × 17, internal pressure: 190 kPa), and has a wide tire width. The shape is measured at four different positions in the tire width direction by the three-dimensional shape unit 30, and the three-dimensional shape data is integrated for each measurement position.
FIG. 8 summarizes four integrated three-dimensional shape data as shown in FIGS. 7A to 7D into one three-dimensional shape data in the tire width direction, and based on this three-dimensional shape data. 3 is an example of an image obtained by reproducing a three-dimensional shape representing the entire tire T.

図9(a)は、乗用車用タイヤのトレッド部分のうち、図9(b)に示すX−X線におけるタイヤ断面形状を示すグラフである。図10(a)は、乗用車用タイヤのトレッド部分のうち、図10(b)に示すY−Y線におけるタイヤ断面形状を示すグラフである。
このように、タイヤ周方向で統合化され、さらに1つに集約されたタイヤ全体を表す3次元形状データを用いてトレッド部分の摩耗形態を知ることができる。
タイヤ全体を表す3次元形状データは、回転軸Cを基準として作成され、しかもタイヤ幅方向のみならずタイヤ周方向の位置も規定されたデータであるため、タイヤの使用による摩耗進展の状況やタイヤの使用によるタイヤ断面形状の経時変化も、タイヤ周方向およびタイヤ幅方向の同じ位置で比較することができる。すなわち、本発明では、タイヤの3次元形状の形状データを、タイヤのトレッド表面の摩耗形態を知ることができる程度に、高分解能かつ精度よくタイヤ表面の3次元形状を測定することができる。
Fig.9 (a) is a graph which shows the tire cross-sectional shape in the XX line shown to FIG.9 (b) among the tread parts of the tire for passenger cars. Fig.10 (a) is a graph which shows the tire cross-sectional shape in the YY line shown to FIG.10 (b) among the tread parts of the tire for passenger cars.
Thus, the wear form of the tread portion can be known using the three-dimensional shape data representing the entire tire integrated in the tire circumferential direction and further integrated into one.
Since the three-dimensional shape data representing the entire tire is created based on the rotation axis C, and the position in the tire circumferential direction as well as the tire width direction is defined, the progress of wear due to the use of the tire and the tire The change with time of the tire cross-sectional shape due to the use of can also be compared at the same position in the tire circumferential direction and the tire width direction. That is, in the present invention, the three-dimensional shape of the tire surface can be measured with high resolution and high accuracy to the extent that the wear mode of the tread surface of the tire can be known from the shape data of the three-dimensional shape of the tire.

以上、本発明の3次元形状測定装置及び3次元形状測定方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。   As described above, the three-dimensional shape measuring apparatus and the three-dimensional shape measuring method of the present invention have been described in detail. However, the present invention is not limited to the above-described embodiment, and various improvements and modifications can be made without departing from the gist of the present invention. Of course.

本発明における3次元形状測定装置の一実施形態を表す概略構成図である。It is a schematic block diagram showing one Embodiment of the three-dimensional shape measuring apparatus in this invention. 図1に示す3次元形状測定ユニットの構成を説明する図である。It is a figure explaining the structure of the three-dimensional shape measurement unit shown in FIG. 本発明における3次元形状測定方法を説明する図である。It is a figure explaining the three-dimensional shape measuring method in this invention. 本発明における3次元形状測定方法の一例のフローを示す図である。It is a figure which shows the flow of an example of the three-dimensional shape measuring method in this invention. 本発明における3次元形状測定方法で行う形状データの処理フローの一例を示す図である。It is a figure which shows an example of the processing flow of the shape data performed with the three-dimensional shape measuring method in this invention. 本発明における3次元形状測定方法で行う形状データの処理方法を説明する図である。It is a figure explaining the processing method of the shape data performed with the three-dimensional shape measuring method in this invention. (a)〜(d)は、図1に示す3次元形状測定装置で得られる3次元形状の例を示す図である。(A)-(d) is a figure which shows the example of the three-dimensional shape obtained with the three-dimensional shape measuring apparatus shown in FIG. 図1に示す3次元形状測定装置で得られる3次元形状の他の例を示す図である。It is a figure which shows the other example of the three-dimensional shape obtained with the three-dimensional shape measuring apparatus shown in FIG. (a),(b)は、図1に示す3次元形状測定装置で得られるトレッド摩耗の結果の一例を示す図である。(A), (b) is a figure which shows an example of the result of the tread wear obtained with the three-dimensional shape measuring apparatus shown in FIG. (a),(b)は、図1に示す3次元形状測定装置で得られるトレッド摩耗の結果の他の例を示す図である。(A), (b) is a figure which shows the other example of the result of the tread wear obtained with the three-dimensional shape measuring apparatus shown in FIG.

符号の説明Explanation of symbols

10 3次元形状測定装置
12 回転シャフト
14 タイヤスタンド
30 3次元形状測定ユニット
40 移動台
42 移動機構
44 回転移動板
46 駆動シャフト
50 コンピュータ
60 ディスプレイ
70 マウス・キーボード
DESCRIPTION OF SYMBOLS 10 3D shape measuring apparatus 12 Rotating shaft 14 Tire stand 30 3D shape measuring unit 40 Moving stand 42 Moving mechanism 44 Rotating moving plate 46 Drive shaft 50 Computer 60 Display 70 Mouse keyboard

Claims (9)

タイヤの3次元形状を測定する3次元形状測定装置であって、
タイヤを軸支する回転自在な回転シャフトと、
この回転シャフトに軸支されたタイヤの3次元形状の形状データを出力する測定ユニットと、
前記測定ユニットを載置した移動台が、前記回転シャフトの回転軸上の一点を中心点として、前記回転軸を含む平面上で円弧状に移動する移動機構と、
前記回転シャフトを回転して、又は前記移動台を移動して、タイヤに対して、タイヤ周方向又はタイヤ幅方向の異なる位置で前記測定ユニットにより測定されて得られる複数組のタイヤの形状データを、前記回転軸を基準として統合するデータ処理ユニットと、を有することを特徴とする3次元形状測定装置。
A three-dimensional shape measuring apparatus for measuring a three-dimensional shape of a tire,
A rotatable rotating shaft that supports the tire, and
A measurement unit that outputs shape data of a three-dimensional shape of a tire supported on the rotating shaft;
A moving mechanism on which the moving unit on which the measurement unit is mounted moves in an arc shape on a plane including the rotation axis, with one point on the rotation axis of the rotation shaft as a center point;
A plurality of sets of tire shape data obtained by measuring the measurement unit at different positions in the tire circumferential direction or the tire width direction with respect to the tire by rotating the rotating shaft or moving the moving table. And a data processing unit that integrates with the rotation axis as a reference.
タイヤの3次元形状を測定する前に、
前記回転シャフトの回転軸の位置を抽出するために、前記測定ユニットは前記回転シャフトの形状を測定する請求項1に記載の3次元形状測定装置。
Before measuring the three-dimensional shape of the tire,
The three-dimensional shape measuring apparatus according to claim 1, wherein the measuring unit measures the shape of the rotating shaft in order to extract the position of the rotating shaft of the rotating shaft.
前記測定ユニットは、タイヤ周方向の限られた範囲のタイヤの3次元形状を測定するものであり、
タイヤの測定に際し、タイヤを軸支した前記回転シャフトを一定角度ずつ回転してタイヤ周方向の測定範囲を変えることにより、タイヤ周方向全周の範囲を測定する請求項1又は2に記載の3次元形状測定装置。
The measurement unit measures a three-dimensional shape of a tire in a limited range in the tire circumferential direction,
3. The tire according to claim 1, wherein, when measuring the tire, the range of the entire circumference in the tire circumferential direction is measured by changing the measurement range in the tire circumferential direction by rotating the rotating shaft pivotally supporting the tire by a predetermined angle. Dimensional shape measuring device.
前記測定ユニットが、タイヤ周方向全周の範囲のタイヤの3次元形状を測定した後、前記測定ユニットを載置した移動台が移動することにより、前記測定ユニットは、タイヤ幅方向の異なる位置から、タイヤの3次元形状を測定する請求項3に記載の3次元形状測定装置。   After the measurement unit measures the three-dimensional shape of the tire in the range of the entire circumference in the tire circumferential direction, the moving unit on which the measurement unit is placed moves, so that the measurement unit is moved from a different position in the tire width direction. The three-dimensional shape measuring apparatus according to claim 3, which measures a three-dimensional shape of a tire. 前記測定ユニットは、複数組のタイヤの形状データ内に、タイヤの同じ測定部分が含まれるように測定範囲を定めて測定し、
前記処理ユニットは、複数組のタイヤの形状データの同じ部分が同じ位置に来るように、前記回転軸を基準として、少なくとも一組の形状データを写像変換する請求項1〜4のいずれか1項に記載の3次元形状測定装置。
The measurement unit determines the measurement range so that the same measurement part of the tire is included in the shape data of a plurality of sets of tires, and measures,
5. The processing unit according to claim 1, wherein at least one set of shape data is map-transformed on the basis of the rotation axis so that the same part of the shape data of a plurality of sets is at the same position. The three-dimensional shape measuring apparatus described in 1.
前記回転シャフトに軸支されるタイヤは、前記回転シャフトの軸方向の予め定められた範囲内に取り付けられ、
前記測定ユニットを載置した前記移動台が円弧状に移動するときの前記中心点は、前記軸方向の予め定められた範囲内に設けられている請求項1〜5のいずれか1項に記載の3次元形状測定装置。
The tire pivotally supported on the rotating shaft is attached within a predetermined range in the axial direction of the rotating shaft,
The said center point when the said mobile stand which mounted the said measurement unit moves to circular arc shape is provided in the predetermined range of the said axial direction, The any one of Claims 1-5. 3D shape measuring device.
タイヤの3次元形状の測定を、測定範囲が定められた測定ユニットを用いて行うタイヤの3次元形状測定方法であって、
タイヤを軸支する回転シャフトの3次元形状を、測定ユニットを用いて測定して、タイヤの回転軸を抽出するステップと、
タイヤを軸支した前記回転シャフトを一定の角度ずつ回転し、その度に前記測定ユニットを用いて、回転シャフトに軸支したタイヤの3次元形状の形状データを1組の形状データとして取得するステップと、
一定の角度ずつ区切ってタイヤの3次元形状を測定することにより取得する複数組の形状データを、前記回転軸を基準として統合することにより、タイヤ周方向全周の形状データを作成するステップと、を有することを特徴とする3次元形状測定方法。
A method for measuring a three-dimensional shape of a tire, wherein the measurement of the three-dimensional shape of the tire is performed using a measurement unit having a measurement range.
Measuring the three-dimensional shape of the rotating shaft that supports the tire using a measuring unit, and extracting the rotating shaft of the tire;
The step of rotating the rotating shaft supporting the tire by a certain angle, and using the measurement unit each time, obtaining three-dimensional shape data of the tire supporting the rotating shaft as a set of shape data When,
Creating a plurality of sets of shape data obtained by measuring a three-dimensional shape of a tire by dividing each tire by a certain angle, with the rotation axis as a reference, thereby creating shape data of the entire circumference in the tire circumferential direction; A three-dimensional shape measuring method characterized by comprising:
前記タイヤ周方向のタイヤ全周を測定することにより複数組の形状データを取得した後、さらに、前記回転軸上の一点を中心点として前記測定ユニットを、前記回転軸を含む平面上で円弧状に移動し、異なる位置からタイヤの3次元形状の形状データを測定するステップを、有する請求項7に記載の3次元形状測定方法。   After acquiring a plurality of sets of shape data by measuring the entire tire circumference in the tire circumferential direction, the measurement unit is further arcuate on a plane including the rotation axis, with one point on the rotation axis as a center point. The three-dimensional shape measuring method according to claim 7, further comprising: measuring the shape data of the three-dimensional shape of the tire from different positions. 前記測定ユニットは、複数組のタイヤの形状データに、タイヤの同じ測定部分が含まれるように測定範囲を定めてタイヤの3次元形状を測定し、
前記複数組の形状データを統合する際、複数組のタイヤの形状データの同じ部分が同じ位置に来るように、前記回転軸を基準として、少なくとも一組の形状データを写像変換することにより、前記タイヤ周方向全周の形状データを作成する請求項7又は8に記載の3次元形状測定方法。
The measurement unit measures the three-dimensional shape of the tire by defining a measurement range so that the same measurement portion of the tire is included in the shape data of a plurality of sets of tires,
When integrating the plurality of sets of shape data, mapping conversion of at least one set of shape data on the basis of the rotation axis so that the same portion of the plurality of sets of tire shape data is at the same position, The three-dimensional shape measurement method according to claim 7 or 8, wherein shape data of the entire circumference in the tire circumferential direction is created.
JP2005326254A 2005-11-10 2005-11-10 Three-dimensional shape measuring device and method Pending JP2007132807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005326254A JP2007132807A (en) 2005-11-10 2005-11-10 Three-dimensional shape measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005326254A JP2007132807A (en) 2005-11-10 2005-11-10 Three-dimensional shape measuring device and method

Publications (1)

Publication Number Publication Date
JP2007132807A true JP2007132807A (en) 2007-05-31

Family

ID=38154594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005326254A Pending JP2007132807A (en) 2005-11-10 2005-11-10 Three-dimensional shape measuring device and method

Country Status (1)

Country Link
JP (1) JP2007132807A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263692A (en) * 2006-03-28 2007-10-11 Yokohama Rubber Co Ltd:The Method, device, and system for evaluating tire shape change
JP2009139268A (en) * 2007-12-07 2009-06-25 Yokohama Rubber Co Ltd:The Tire wheel tread measurement apparatus
JP2009250740A (en) * 2008-04-04 2009-10-29 Bridgestone Corp Image synthesizing method and visual inspecting device of tire
JP2010210325A (en) * 2009-03-09 2010-09-24 Yokohama Rubber Co Ltd:The Auxiliary device for photographing tire
KR101004148B1 (en) 2008-10-09 2010-12-27 이재우 apparatus and method of analyzing tire shape
WO2011115257A1 (en) * 2010-03-18 2011-09-22 株式会社ブリヂストン Shape measurement method and shape measurement apparatus for tires
US8037744B2 (en) 2008-01-23 2011-10-18 The Yokohama Rubber Co., Ltd. Method for measuring deformation of tire tread
CN106918299A (en) * 2017-03-15 2017-07-04 深圳市安车检测股份有限公司 A kind of line-structured light machine vision tire wear measuring method
JP2017198672A (en) * 2016-04-19 2017-11-02 バトラー エンジニアリング アンド マーケティング エス ピー エーButler Engineering & Marketing S.P.A. Device and method for analyzing and detecting geometrical feature of object
CN111238834A (en) * 2020-01-20 2020-06-05 东莞市秉能橡胶有限公司 Tire measuring method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959884A (en) * 1972-10-11 1974-06-11
JPS5821506A (en) * 1981-07-31 1983-02-08 Yokohama Rubber Co Ltd:The Method and apparatus for measuring profile of tire
JPH05113321A (en) * 1991-02-15 1993-05-07 Inter Detsuku:Kk Measuring method for unevenness of surface of object
JPH1038533A (en) * 1996-04-22 1998-02-13 Toyo Tire & Rubber Co Ltd Instrument and method for measuring shape of tire
JPH1074272A (en) * 1996-08-30 1998-03-17 Minolta Co Ltd Three-dimensional shape data processor
JP2001197521A (en) * 2000-01-06 2001-07-19 Toppan Printing Co Ltd Image pickup device, image pickup method, and storage medium recording data relating to image pickup condition
JP2007003379A (en) * 2005-06-24 2007-01-11 Bridgestone Corp Detecting technique of tire internal failure and detecting device of tire internal failure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959884A (en) * 1972-10-11 1974-06-11
JPS5821506A (en) * 1981-07-31 1983-02-08 Yokohama Rubber Co Ltd:The Method and apparatus for measuring profile of tire
JPH05113321A (en) * 1991-02-15 1993-05-07 Inter Detsuku:Kk Measuring method for unevenness of surface of object
JPH1038533A (en) * 1996-04-22 1998-02-13 Toyo Tire & Rubber Co Ltd Instrument and method for measuring shape of tire
JPH1074272A (en) * 1996-08-30 1998-03-17 Minolta Co Ltd Three-dimensional shape data processor
JP2001197521A (en) * 2000-01-06 2001-07-19 Toppan Printing Co Ltd Image pickup device, image pickup method, and storage medium recording data relating to image pickup condition
JP2007003379A (en) * 2005-06-24 2007-01-11 Bridgestone Corp Detecting technique of tire internal failure and detecting device of tire internal failure

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263692A (en) * 2006-03-28 2007-10-11 Yokohama Rubber Co Ltd:The Method, device, and system for evaluating tire shape change
JP2009139268A (en) * 2007-12-07 2009-06-25 Yokohama Rubber Co Ltd:The Tire wheel tread measurement apparatus
US8037744B2 (en) 2008-01-23 2011-10-18 The Yokohama Rubber Co., Ltd. Method for measuring deformation of tire tread
JP2009250740A (en) * 2008-04-04 2009-10-29 Bridgestone Corp Image synthesizing method and visual inspecting device of tire
KR101004148B1 (en) 2008-10-09 2010-12-27 이재우 apparatus and method of analyzing tire shape
JP2010210325A (en) * 2009-03-09 2010-09-24 Yokohama Rubber Co Ltd:The Auxiliary device for photographing tire
JP2011196734A (en) * 2010-03-18 2011-10-06 Bridgestone Corp Method and device for measuring shape of tire
WO2011115257A1 (en) * 2010-03-18 2011-09-22 株式会社ブリヂストン Shape measurement method and shape measurement apparatus for tires
US9175952B2 (en) 2010-03-18 2015-11-03 Bridgestone Corporation Shape measurement method and shape measurement apparatus for tires
JP2017198672A (en) * 2016-04-19 2017-11-02 バトラー エンジニアリング アンド マーケティング エス ピー エーButler Engineering & Marketing S.P.A. Device and method for analyzing and detecting geometrical feature of object
CN106918299A (en) * 2017-03-15 2017-07-04 深圳市安车检测股份有限公司 A kind of line-structured light machine vision tire wear measuring method
CN106918299B (en) * 2017-03-15 2019-03-29 深圳市安车检测股份有限公司 A kind of line-structured light machine vision tire wear measurement method
CN111238834A (en) * 2020-01-20 2020-06-05 东莞市秉能橡胶有限公司 Tire measuring method

Similar Documents

Publication Publication Date Title
JP2007132807A (en) Three-dimensional shape measuring device and method
JP2007263611A (en) Distortion measuring instrument and method
JP6355710B2 (en) Non-contact optical three-dimensional measuring device
JP5176517B2 (en) Tire tread measuring device
TWI510756B (en) A shape measuring device, a shape measuring method, a manufacturing method and a program for a structure
US7805987B1 (en) System and method for pneumatic tire defect detection
JP6289283B2 (en) Method for correcting surface shape data of annular rotating body, and appearance inspection device for annular rotating body
JP4760358B2 (en) Road surface shape measuring method and measuring system
JP3837431B2 (en) Pipe inner surface shape measuring device
CN105102925A (en) Three-dimensional coordinate scanner and method of operation
TW201341756A (en) Profile measuring apparatus, structure manufacturing system, method for measuring profile, method for manufacturing structure, program for measuring profile and non-transitory computer readable medium
JP4977415B2 (en) Apparatus and method for creating reference shape data for tire inspection
JP4887919B2 (en) Tire mold member inspection method, tire mold member inspection apparatus, and mold member manufacturing process accuracy inspection method
JP5681189B2 (en) Correction method of tire outer shape measurement data and tire appearance inspection device
JP5124997B2 (en) Tire mold side plate inspection method and inspection apparatus, tire mold side plate type determination method and determination apparatus, tire mold processing step inspection method and inspection apparatus
JP2015535337A (en) Laser scanner with dynamic adjustment of angular scan speed
US7869060B2 (en) Jig for measuring an object shape and method for measuring a three-dimensional shape
JP5923054B2 (en) Shape inspection device
JP2005195335A (en) Three-dimensional image photographing equipment and method
CN109477714B (en) Non-contact probe and method of operation
JP4463162B2 (en) Reference coordinate capture method for 3D shape measurement equipment
JP2015072197A (en) Shape measurement device, structure manufacturing system, shape measurement method, structure manufacturing method, and shape measurement program
JP3914500B2 (en) Defect inspection equipment
US9741109B2 (en) Tire inner surface imaging method and device
JP2008196881A (en) Device and method for measuring thickness distribution of cross section of tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329