JP4887919B2 - Tire mold member inspection method, tire mold member inspection apparatus, and mold member manufacturing process accuracy inspection method - Google Patents

Tire mold member inspection method, tire mold member inspection apparatus, and mold member manufacturing process accuracy inspection method Download PDF

Info

Publication number
JP4887919B2
JP4887919B2 JP2006163353A JP2006163353A JP4887919B2 JP 4887919 B2 JP4887919 B2 JP 4887919B2 JP 2006163353 A JP2006163353 A JP 2006163353A JP 2006163353 A JP2006163353 A JP 2006163353A JP 4887919 B2 JP4887919 B2 JP 4887919B2
Authority
JP
Japan
Prior art keywords
mold member
dimensional
tire
mold
measurement data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006163353A
Other languages
Japanese (ja)
Other versions
JP2007333462A (en
Inventor
総一郎 白土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2006163353A priority Critical patent/JP4887919B2/en
Publication of JP2007333462A publication Critical patent/JP2007333462A/en
Application granted granted Critical
Publication of JP4887919B2 publication Critical patent/JP4887919B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、作製したいタイヤのトレッド面形状に応じた3次元形状設計データに基づいて作製された、タイヤ作製用の型部材の形状精度を検査する方法および装置、また、作製したいタイヤのトレッド面形状に応じた3次元形状設計データに基づい作製されたマスター型部材の形状を繰り返し転写して、転写の度に異なる材質の型部材を順次作製するタイヤ作製用型部材作製過程における、それぞれ異なる複数の転写工程間での形状転写精度を検査する方法に関する。   The present invention relates to a method and apparatus for inspecting the shape accuracy of a mold member for tire production, which is produced based on three-dimensional shape design data corresponding to the shape of the tread surface of the tire to be produced, and the tread surface of the tire to be produced. A plurality of different parts in the tire production mold member production process in which the shape of the master mold member produced based on the three-dimensional shape design data corresponding to the shape is repeatedly transferred, and the mold members of different materials are sequentially produced each time the transfer is performed. The present invention relates to a method for inspecting shape transfer accuracy between the transfer processes.

高精度な形状のタイヤを作製するには、高精度な形状のタイヤ加硫用金型が必要であることはいうまでもない。このようなタイヤ加硫用金型には、一般的に部分モールドが採用されている。部分モールドは、上下サイドモールドと、径方向分割面を形成するよう複数に分割されたセグメントモールドと、を備えている。このような複数の部分モールドが組み合わされて配置されることで、タイヤ加硫用金型全体が構成される。   Needless to say, a tire vulcanization mold having a highly accurate shape is required to produce a tire having a highly accurate shape. Such a mold for tire vulcanization generally employs a partial mold. The partial mold includes an upper and lower side mold, and a segment mold that is divided into a plurality of pieces so as to form a radially dividing surface. By arranging such a plurality of partial molds in combination, the entire tire vulcanization mold is configured.

従来、高精度な形状のタイヤを作製する要素として、これらの部分モールドが加硫機に装着された状態(タイヤ加硫用金型が構成された状態)のみに着目していた。このため、従来では、複数のトレッドセグメントモールドなどの部分モールドを、加硫機に装着された状態と同様に配置し、この配置状態でトレッドセグメントの内周面(すなわちタイヤのトレッド面に対応する面)の形状を、一周分測定していた(例えば下記特許文献1および特許文献2)。また、複数のトレッドセグメントモールドについて、内周面の形状をそれぞれ測定し、測定した形状データを一周分の周面データとして合成する手法が、例えば、特許文献3に記載されている。
特開2002−257537号公報 特開2003−266445号公報 特開2005−271536号公報
Conventionally, attention has been focused only on a state in which these partial molds are mounted on a vulcanizer (a state in which a tire vulcanization mold is configured) as an element for producing a highly accurate tire. For this reason, conventionally, a plurality of partial molds such as a tread segment mold are arranged in the same manner as in a state where they are attached to a vulcanizer, and in this arrangement state, they correspond to the inner peripheral surface of the tread segment (that is, the tread surface of the tire). Surface) was measured for one round (for example, Patent Document 1 and Patent Document 2 below). For example, Patent Document 3 discloses a method of measuring the shape of the inner peripheral surface of each of the plurality of tread segment molds and synthesizing the measured shape data as peripheral surface data for one round.
JP 2002-257537 A JP 2003-266445 A JP 2005-271536 A

実際にタイヤを作製する際、複数の部分モールドは加硫機に配置される。加硫機に配置される際は、部分モールドの内周面(タイヤ表面に対応する面)ではなく、部分モールドのうちタイヤ面と対向する側の面である背面の形状や厚さも重要となってくる。高精度な形状のタイヤを作製するには、部分モールドにおける、このような面も含んだ全体の作製精度が重要である。上記特許文献1〜特許文献3では、いずれも、部分モールドの内周面を測定するのみであり、部分モールドのその他の面の形状の測定方法について、また作製精度の検査方法等についても、一切示唆もされていない。本願発明は、タイヤ作製用の型部材について、タイヤ表面に対応する面以外の部分も含む全体の形状精度を検査する方法および装置を提供することを目的とする。   When actually manufacturing a tire, a some partial mold is arrange | positioned at a vulcanizer. When placed in a vulcanizer, the shape and thickness of the back surface, which is the surface of the partial mold facing the tire surface, is important, not the inner peripheral surface of the partial mold (surface corresponding to the tire surface). Come. In order to manufacture a highly accurate tire, the overall manufacturing accuracy including such a surface in the partial mold is important. In the above Patent Documents 1 to 3, all of them only measure the inner peripheral surface of the partial mold, and the method for measuring the shape of the other surface of the partial mold, and the method for inspecting the production accuracy, etc. There is no suggestion. An object of the present invention is to provide a method and an apparatus for inspecting the overall shape accuracy of a mold member for producing a tire, including portions other than the surface corresponding to the tire surface.

なお、このような型部材は、作製したいタイヤのトレッド面形状に応じた3次元形状設計データに基づいて作製されたマスター型の形状を繰り返し転写して、転写の度に異なる材質の型部材を順次作製する。本発明では、部分モールド全体の作製精度を決定づける、このような様々な転写段階それぞれ検査することを可能とする、タイヤ型部材検査方法およびタイヤ型部材検査装置を提供することも目的とする。   In addition, such a mold member repeatedly transfers the shape of the master mold produced based on the three-dimensional shape design data corresponding to the tread surface shape of the tire to be produced. Produced sequentially. Another object of the present invention is to provide a tire mold member inspection method and a tire mold member inspection apparatus that can inspect each of the various transfer stages that determine the production accuracy of the entire partial mold.

上記課題を解決するために、本発明は、作製したいタイヤのトレッド面形状に応じた3次元形状設計データに基づいて作製された、タイヤ作製用の型部材の形状精度を検査する方法であって、前記3次元形状設計データを取得し、前記型部材の3次元形状を計測し、計測によって取得された型部材3次元測定データと、前記型部材の3次元設計データとを比較することで、作製された前記型部材の形状の、前記3次元設計データからのずれ量を導出するものであり、前記型部材は、タイヤ一周分のトレッド面形状をタイヤ周方向に沿って複数の部分に分割した部分形状の1つに対応すると共にそれぞれが連結して配置されることでタイヤ金型をなす複数の部分モールド、または、前記部分モールドを作製するためのマスター型であり前記型部材の3次元形状を測定する際、載置平面を有する基板の前記載置平面に前記型部材が載置された状態で、少なくとも、前記載置平面の少なくとも一部の表面形状と、前記型部材のうち前記トレッド面形状に対応する表面部分であるタイヤ面と、前記型部材の前記タイヤ面と対向する側の表面である部材背面の少なくとも一部と、の3次元形状を測定し、比較の際、前記載置平面の3次元測定データ、前記型部材の前記タイヤ面の3次元測定データ、および前記型部材の前記部材背面の3次元測定データに基づき、前記型部材3次元測定データにおける測定データ基準点を設定し、前記測定データ基準点と、前記測定データ基準点に対応する前記3次元設計データにおける設計データ基準点とを一致させて、前記型部材3次元測定データと前記3次元設計データとを同一座標空間上に配置し、この配置状態で、前記型部材の前記3次元測定データと前記3次元設計データとのずれ量を導出することを特徴とするタイヤ型部材検査方法を提供する。 In order to solve the above problems, the present invention is a method for inspecting the shape accuracy of a mold member for tire production, which is produced based on three-dimensional shape design data corresponding to the tread surface shape of a tire to be produced. The three-dimensional shape design data is acquired, the three-dimensional shape of the mold member is measured, and the mold member three-dimensional measurement data acquired by measurement is compared with the three-dimensional design data of the mold member. The amount of deviation of the shape of the produced mold member from the three-dimensional design data is derived, and the mold member divides the tread surface shape for one round of the tire into a plurality of portions along the tire circumferential direction. the plurality of partial molds, each with corresponding one of the partial shape forming the tire mold by is disposed linked or, a master mold for making the part mold, the mold When measuring the three-dimensional shape of the material, at least a part of the surface shape of the mounting plane and the mold in a state where the mold member is mounted on the mounting plane of the substrate having the mounting plane. Measure and compare the three-dimensional shape of the tire surface, which is the surface portion corresponding to the tread surface shape, among the members, and at least part of the member back surface, which is the surface of the mold member facing the tire surface. In this case, based on the three-dimensional measurement data of the mounting plane, the three-dimensional measurement data of the tire surface of the mold member, and the three-dimensional measurement data of the rear surface of the mold member, A measurement data reference point is set, the measurement data reference point and the design data reference point in the three-dimensional design data corresponding to the measurement data reference point are matched, 3D design data is arranged on the same coordinate space, and in this arrangement state, a deviation amount between the 3D measurement data and the 3D design data of the mold member is derived. Provide a method.

また、前記部材背面の前記一部は、前記部分モールドをタイヤ作製のための加硫機に配置した際の、前記部分モールドの配置位置の基準となる配置基準点を少なくとも含み、前記比較の際、前記型部材3次元測定データから前記配置基準点に対応する点を抽出し、この抽出した点を前記測定データ基準点として設定することが好ましい。   In addition, the part of the rear surface of the member includes at least an arrangement reference point serving as a reference for the arrangement position of the partial mold when the partial mold is arranged in a vulcanizer for manufacturing a tire. It is preferable that a point corresponding to the arrangement reference point is extracted from the three-dimensional measurement data of the mold member, and the extracted point is set as the measurement data reference point.

また、前記型部材は、作製したい前記タイヤの赤道面に対応する前記タイヤ面を通る平面に平行な載置用表面を備え、前記型部材の3次元形状を測定する際、前記載置用表面と前記基板の前記載置面とが当接されて、前記型部材が前記載置平面に載置された状態で、少なくとも、前記載置平面の一部の表面形状と、前記型部材の前記タイヤ面と、前記部材背面の前記一部との3次元形状を測定し、測定した前記載置平面の一部の表面形状と、前記型部材の前記タイヤ面と、前記部材背面の前記一部との3次元測定データを用いて、前記測定データ基準点を設定することが好ましい。   The mold member includes a mounting surface parallel to a plane passing through the tire surface corresponding to the equator plane of the tire to be manufactured, and when measuring the three-dimensional shape of the mold member, the mounting surface described above And the placement surface of the substrate are in contact with each other, and the mold member is placed on the placement plane, at least a part of the surface shape of the placement plane, and the mold member The three-dimensional shape of the tire surface and the part of the member back surface is measured, the surface shape of a part of the mounting plane measured above, the tire surface of the mold member, and the part of the member back surface It is preferable to set the measurement data reference point using the three-dimensional measurement data.

また、前記型部材の前記部材背面は、前記載置用表面と略垂直な垂直表面部分を少なくとも含み、前記型部材の3次元形状を測定する際、前記載置用表面と前記載置面とが当接されて前記型部材が前記載置平面に載置されて、前記垂直表面部分が前記載置面に垂直となった状態で、少なくとも、前記載置平面の一部の表面形状と、前記型部材の前記タイヤ面と、前記垂直表面部分と、の3次元形状を測定することが好ましい。   Further, the member back surface of the mold member includes at least a vertical surface portion substantially perpendicular to the mounting surface, and when measuring the three-dimensional shape of the mold member, the mounting surface and the mounting surface described above In a state where the mold member is placed on the placement plane and the vertical surface portion is perpendicular to the placement surface, at least a part of the surface shape of the placement plane, It is preferable to measure a three-dimensional shape of the tire surface of the mold member and the vertical surface portion.

また、前記比較の際、前記載置平面の3次元測定データに基づき、前記載置平面に対応する第1の平面を設定し、前記タイヤ面の3次元測定データを用いて、前記第1の平面と平行な前記タイヤ面を通る第2の平面を設定し、前記タイヤ面の3次元測定データの表す面と前記第2の平面との交線と、この交線の両端部を結ぶ直線に平行なそれぞれ異なる複数の直線それぞれと、のそれぞれ異なる2つの交点の組み合わせを複数抽出し、各組み合わせにおける2交点を結んだ複数の線分それぞれの中点を導出し、導出した複数の中点に基づいて、この中点を同一直線上の点として近似する近似直線を導出し、この近似直線を含む前記第1の平面に垂直な第3の平面を設定し、設定した前記第3の平面と前記部材背面との交線を導出し、この交線の中点を、前記基準点として設定することが好ましい。   In the comparison, based on the three-dimensional measurement data of the mounting plane, a first plane corresponding to the mounting plane is set, and the first plane is set using the three-dimensional measurement data of the tire surface. A second plane passing through the tire surface parallel to the plane is set, and a line connecting the surface represented by the three-dimensional measurement data of the tire surface and the second plane and a straight line connecting both ends of the line of intersection. Extract a plurality of combinations of two different intersections with each of a plurality of different parallel straight lines, derive the midpoint of each of the line segments connecting the two intersections in each combination, Based on this, the approximate straight line that approximates the midpoint as a point on the same straight line is derived, a third plane perpendicular to the first plane including the approximate straight line is set, and the set third plane and A line of intersection with the back of the member is derived and this line of intersection is derived. The midpoint, it is preferable to set as the reference point.

また、前記型部材の3次元形状測定データは、3次元スキャナを用いて取得され、前記3次元スキャナは、前記型部材に投射光を照射して、前記投射光の前記型部材の表面からの反射光を検知することで、前記型部材の3次元測定データを得るものであり、前記型部材の少なくとも一部の表面に光を照射する際、鏡を介して前記型部材に前記投射光を照射し、前記投射光の前記型部材の前記表面からの反射光を、前記鏡を介して検知することが好ましい。   The three-dimensional shape measurement data of the mold member is acquired using a three-dimensional scanner, and the three-dimensional scanner irradiates the mold member with projection light, and the projection light from the surface of the mold member. By detecting reflected light, three-dimensional measurement data of the mold member is obtained. When irradiating light on at least a part of the surface of the mold member, the projection light is applied to the mold member via a mirror. It is preferable to detect the reflected light of the projection light from the surface of the mold member through the mirror.

また、さらに、前記3次元形状測定データ測定データが表す形状および前記3次元形状設計データが表す形状の少なくともいずれか一方を、表示画面上に表示する表示出力ステップを有し、前記表示出力ステップでは、前記ずれ量が、予め定められた設計公差値よりも大きいと判定された測定点については、他の測定点と異なる表示形態で表示することが好ましい。   Further, the display output step of displaying on the display screen at least one of the shape represented by the three-dimensional shape measurement data measurement data and the shape represented by the three-dimensional shape design data. It is preferable to display the measurement points for which the deviation amount is determined to be larger than a predetermined design tolerance value in a display form different from other measurement points.

さらに、前記ずれ量が前記設計公差値よりも大きいと判定された測定点に対応する位置に、マーキングするステップを有することが好ましい。   Furthermore, it is preferable to have a step of marking at a position corresponding to a measurement point where the deviation amount is determined to be larger than the design tolerance value.

また、本発明は、作製したいタイヤのトレッド面形状に応じた3次元形状設計データに基づいて作製された、タイヤ作製用の型部材の形状精度を検査する方法であって、前記3次元形状設計データを取得し、前記型部材の3次元形状を計測し、計測によって取得された型部材3次元測定データと、前記型部材の3次元設計データとを比較することで、作製された前記型部材の形状の、前記3次元設計データからのずれ量を導出するものであり、前記型部材は、タイヤ一周分のトレッド面形状をタイヤ周方向に沿って複数の部分に分割した部分形状の1つに対応すると共にそれぞれが連結して配置されることでタイヤ金型をなす複数の部分モールド、または、前記部分モールドを作製するためのマスター型であり、前記型部材の3次元形状を測定する際、載置平面を有する基板の前記載置平面に前記型部材が載置された状態で、少なくとも、前記載置平面の少なくとも一部の表面形状と、前記型部材のうち前記トレッド面形状に対応する表面部分であるタイヤ面と、の3次元形状を測定し、比較の際、前記載置平面の3次元測定データ、および前記型部材の前記タイヤ面の3次元測定データに基づき、作製したい前記タイヤの中心軸に対応する設計中心軸線上の少なくとも一点を導出して、導出した前記一点を、前記型部材3次元測定データにおける測定データ基準点として設定測定データ基準点を設定し、前記測定データ基準点と、前記測定データ基準点に対応する前記3次元設計データにおける設計データ基準点とを一致させて、前記型部材3次元測定データと前記3次元設計データとを同一座標空間上に配置し、この配置状態で、前記型部材の前記3次元測定データと前記3次元設計データとのずれ量を導出し、前記比較の際、前記載置平面の3次元測定データに基づき、前記載置平面に対応する第1の平面を設定し、前記タイヤ面の3次元測定データを用いて、前記第1の平面と平行な前記タイヤ面を通る第2の平面を設定し、前記タイヤ面の3次元測定データの表す面と前記第2の平面との交線から、それぞれ異なる2点の組み合わせを複数抽出し、各組み合わせの2点を結んだ複数の線分それぞれの垂直2等分線のうち、異なる2つの垂直2等分線の交点の全てを導出し、導出した複数の交点に基づいて、前記設計中心軸線上の点を近似して表す軸心点を規定し、この軸心点を通り前記第1の平面と垂直な線と、作製したい前記タイヤの中心軸に対応する、前記型部材の3次元設計データにおける設計中心軸線と、を一致させて、前記3次元測定データの前記測定データ基準点以外の位置の前記ずれ量を導出することを特徴とするタイヤ型部材検査方法も提供するFurther, the present invention is a method for inspecting the shape accuracy of a mold member for tire production, which is produced based on the three-dimensional shape design data corresponding to the tread surface shape of a tire to be produced. The mold member produced by acquiring data, measuring the three-dimensional shape of the mold member, and comparing the three-dimensional measurement data of the mold member acquired by measurement with the three-dimensional design data of the mold member The shape member is one of partial shapes obtained by dividing the tread surface shape for one round of the tire into a plurality of portions along the tire circumferential direction. a plurality of partial molds forming a tire mold by respectively with corresponding is arranged connected to or, a master mold for making the part mold, measuring the three-dimensional shape of the mold member When the mold member is placed on the placement plane of the substrate having the placement plane, at least a surface shape of at least a part of the placement plane and the tread surface shape of the mold member The three-dimensional shape of the tire surface, which is the surface portion corresponding to the above, is measured, and at the time of comparison, based on the three-dimensional measurement data of the mounting plane described above and the three-dimensional measurement data of the tire surface of the mold member Deriving at least one point on the design center axis corresponding to the center axis of the tire to be set , setting the derived point as a measurement data reference point in the mold member three-dimensional measurement data, setting a measurement data reference point , By matching the measurement data reference point with the design data reference point in the three-dimensional design data corresponding to the measurement data reference point, the mold member three-dimensional measurement data and the three-dimensional design data are matched. Are arranged in the same coordinate space, and in this arrangement state, a deviation amount between the three-dimensional measurement data and the three-dimensional design data of the mold member is derived. Based on the dimensional measurement data, a first plane corresponding to the mounting plane is set, and a second plane passing through the tire plane parallel to the first plane using the three-dimensional measurement data of the tire surface. And a plurality of combinations of two different points are extracted from the intersection line between the surface represented by the three-dimensional measurement data of the tire surface and the second plane, and a plurality of line segments connecting the two points of each combination are extracted. An axis center point representing all the intersections of two different perpendicular bisectors in each of the perpendicular bisectors and approximating the points on the design center axis based on the plurality of derived intersections A line passing through this axis and perpendicular to the first plane; The deviation amount of the position other than the measurement data reference point of the three-dimensional measurement data is derived by matching the center axis of the three-dimensional design data of the mold member corresponding to the center axis of the tire to be produced. There is also provided a method for inspecting a tire mold member .

また、前記軸心点として、導出した複数の交点の重心点を導出することが好ましい。   Moreover, it is preferable to derive the barycentric point of a plurality of derived intersections as the axial point.

また、前記型部材の前記3次元設計データは、前記設計中心軸線と、作製したいタイヤの半径のデータとで表された、断面が真円状の3次元形状データであり、前記比較の際、前記近似中心軸線と前記設計中心軸線とを一致させて、前記3次元測定データと、断面が真円状の前記3次元設計データとのずれ量を導出することが好ましい。   Further, the three-dimensional design data of the mold member is three-dimensional shape data having a perfect cross section represented by the design center axis and data of a radius of a tire to be manufactured. It is preferable that the approximate center axis and the design center axis coincide with each other to derive a shift amount between the three-dimensional measurement data and the three-dimensional design data having a perfect cross section.

本発明は、また、作製したいタイヤのトレッド面形状に応じた3次元形状設計データに基づいて作製された、タイヤ作製用の型部材の形状精度を検査する装置であって、前記3次元形状設計データを取得する手段と、前記型部材の3次元形状を計測する手段と、計測によって取得された型部材3次元測定データと、前記型部材の3次元設計データとを比較することで、作製された前記型部材の形状の、前記3次元設計データからのずれ量を導出する手段と、を有し、前記型部材は、タイヤ一周分のトレッド面形状をタイヤ周方向に沿って複数の部分に分割した部分形状の1つに対応すると共にそれぞれが連結して配置されることでタイヤ金型をなす複数の部分モールド、または、前記部分モールドを作製するためのマスター型であり前記型部材の3次元形状を計測する手段は、載置平面を有する基板の前記載置平面に前記型部材が載置された状態で、少なくとも、前記載置平面の少なくとも一部の表面形状と、前記型部材のうち前記トレッド面形状に対応する表面部分であるタイヤ面と、前記型部材の前記タイヤ面と対向する側の表面である部材背面の少なくとも一部と、の3次元形状を測定し、前記導出する手段では、比較の際、前記載置平面の3次元測定データ、前記型部材の前記タイヤ面の3次元測定データ、および前記型部材の前記部材背面の3次元測定データに基づき、前記型部材3次元測定データにおける測定データ基準点を設定し、前記測定データ基準点と、前記測定データ基準点に対応する前記3次元設計データにおける設計データ基準点とを一致させて、前記型部材3次元測定データと前記3次元設計データとを同一座標空間上に配置し、この配置状態で、前記型部材の前記3次元測定データと前記3次元設計データとのずれ量を導出することを特徴とする、タイヤ型部材検査装置も併せて提供する。 The present invention is also an apparatus for inspecting the shape accuracy of a mold member for tire production, which is produced based on three-dimensional shape design data corresponding to the tread surface shape of a tire to be produced. It is produced by comparing the means for acquiring data, the means for measuring the three-dimensional shape of the mold member, the three-dimensional measurement data of the mold member acquired by measurement, and the three-dimensional design data of the mold member. Means for deriving a deviation amount of the shape of the mold member from the three-dimensional design data, and the mold member has a tread surface shape for one round of the tire in a plurality of portions along the tire circumferential direction. a plurality of partial molds, each with corresponding one of the divided partial shapes forming a tire mold by is disposed linked, or a master mold for making the part mold, the mold The means for measuring the three-dimensional shape of the material is the state in which the mold member is placed on the placement plane of the substrate having the placement plane, and at least the surface shape of at least a part of the placement plane, Measuring a three-dimensional shape of a tire surface which is a surface portion corresponding to the tread surface shape of the mold member and at least a part of a member back surface which is a surface of the mold member facing the tire surface; In the means for deriving, in the comparison, based on the three-dimensional measurement data of the mounting plane, the three-dimensional measurement data of the tire surface of the mold member, and the three-dimensional measurement data of the rear surface of the mold member , A measurement data reference point in the mold member three-dimensional measurement data is set, and the measurement data reference point is matched with a design data reference point in the three-dimensional design data corresponding to the measurement data reference point, The member three-dimensional measurement data and the three-dimensional design data are arranged in the same coordinate space, and in this arrangement state, a deviation amount between the three-dimensional measurement data and the three-dimensional design data of the mold member is derived. A tire type member inspection apparatus is also provided.

本発明は、また、作製したいタイヤのトレッド面形状に応じた3次元形状設計データに基づいて作製された、タイヤ作製用の型部材の形状精度を検査する装置であって、前記3次元形状設計データを取得する手段と、前記型部材の3次元形状を計測する手段と、計測によって取得された型部材3次元測定データと、前記型部材の3次元設計データとを比較することで、作製された前記型部材の形状の、前記3次元設計データからのずれ量を導出する手段と、を有し、前記型部材は、タイヤ一周分のトレッド面形状をタイヤ周方向に沿って複数の部分に分割した部分形状の1つに対応すると共にそれぞれが連結して配置されることでタイヤ金型をなす複数の部分モールド、または、前記部分モールドを作製するためのマスター型であり、前記型部材の3次元形状を計測する手段は、載置平面を有する基板の前記載置平面に前記型部材が載置された状態で、少なくとも、前記載置平面の少なくとも一部の表面形状と、前記型部材のうち前記トレッド面形状に対応する表面部分であるタイヤ面と、の3次元形状を測定し、前記導出する手段では、比較の際、前記載置平面の3次元測定データ、および前記型部材の前記タイヤ面の3次元測定データに基づき、作製したい前記タイヤの中心軸に対応する設計中心軸線上の少なくとも一点を導出して、導出した前記一点を、前記型部材3次元測定データにおける測定データ基準点として設定測定データ基準点を設定し、前記測定データ基準点と、前記測定データ基準点に対応する前記3次元設計データにおける設計データ基準点とを一致させて、前記型部材3次元測定データと前記3次元設計データとを同一座標空間上に配置し、この配置状態で、前記型部材の前記3次元測定データと前記3次元設計データとのずれ量を導出し、前記比較の際、前記載置平面の3次元測定データに基づき、前記載置平面に対応する第1の平面を設定し、前記タイヤ面の3次元測定データを用いて、前記第1の平面と平行な前記タイヤ面を通る第2の平面を設定し、前記タイヤ面の3次元測定データの表す面と前記第2の平面との交線から、それぞれ異なる2点の組み合わせを複数抽出し、各組み合わせの2点を結んだ複数の線分それぞれの垂直2等分線のうち、異なる2つの垂直2等分線の交点の全てを導出し、導出した複数の交点に基づいて、前記設計中心軸線上の点を近似して表す軸心点を規定し、この軸心点を通り前記第1の平面と垂直な線と、作製したい前記タイヤの中心軸に対応する、前記型部材の3次元設計データにおける設計中心軸線と、を一致させて、前記3次元測定データの前記測定データ基準点以外の位置の前記ずれ量を導出することを特徴とする、タイヤ型部材検査装置も、併せて提供する。 The present invention is also an apparatus for inspecting the shape accuracy of a mold member for tire production, which is produced based on three-dimensional shape design data corresponding to the tread surface shape of a tire to be produced. It is produced by comparing the means for acquiring data, the means for measuring the three-dimensional shape of the mold member, the three-dimensional measurement data of the mold member acquired by measurement, and the three-dimensional design data of the mold member. Means for deriving a deviation amount of the shape of the mold member from the three-dimensional design data, and the mold member has a tread surface shape for one round of the tire in a plurality of portions along the tire circumferential direction. A plurality of partial molds corresponding to one of the divided partial shapes and connected to each other to form a tire mold, or a master mold for producing the partial mold, The means for measuring the three-dimensional shape of the material is the state in which the mold member is placed on the placement plane of the substrate having the placement plane, and at least the surface shape of at least a part of the placement plane, The means for measuring the three-dimensional shape of the tire member, which is the surface portion corresponding to the shape of the tread surface of the mold member, and the means for deriving the three-dimensional measurement data of the mounting plane described above and the mold at the time of comparison Based on the three-dimensional measurement data of the tire surface of the member, at least one point on the design center axis corresponding to the center axis of the tire to be produced is derived, and the derived one point is measured in the mold member three-dimensional measurement data. A set measurement data reference point is set as a data reference point, and the measurement data reference point is matched with the design data reference point in the three-dimensional design data corresponding to the measurement data reference point. The mold member three-dimensional measurement data and the three-dimensional design data are arranged in the same coordinate space, and in this arrangement state, a deviation amount between the three-dimensional measurement data and the three-dimensional design data of the mold member is derived. In the comparison, a first plane corresponding to the mounting plane is set based on the three-dimensional measurement data of the mounting plane, and the first plane is set using the three-dimensional measurement data of the tire surface. A second plane passing through the tire surface parallel to the tire surface, and extracting a plurality of different combinations of two points from the intersection line of the surface represented by the three-dimensional measurement data of the tire surface and the second plane, Deriving all of the intersections of two different vertical bisectors among the vertical bisectors of the plurality of line segments connecting the two points of each combination, and based on the plurality of derived intersections, the design center Specifies the axial center point that approximates the point on the axis. The line perpendicular to the first plane passing through this axial center point is matched with the design center axis in the three-dimensional design data of the mold member corresponding to the center axis of the tire to be manufactured. There is also provided a tire mold member inspection apparatus characterized by deriving the deviation amount of a position other than the measurement data reference point of the dimension measurement data .

本発明によれば、タイヤの作製に用いる型部材について、タイヤの表面形状に対応する以外の部分も含めて詳細に形状を測定し、これら型部材の形状の、設計形状からのずれ量を正確に検査することができる。これにより、例えば、部分モールド部材を実際に加硫機に配置した状態における、タイヤ表面に対応するモールド部材表面部分の設計値に対するずれ量を、正確に検査することができる。また、各転写段階における、転写工程前後での型部材の形状のずれ量を正確に検査することができる。このような検査結果は、各作製工程での作製精度の向上や、作製工程全体のトータルの作製精度の向上に役立てることができ、高精度の形状の部分モールドの作製、ひいては、高精度の形状のタイヤの作製に役立てることができる。   According to the present invention, the shape of the mold member used for manufacturing the tire is measured in detail including the portion other than that corresponding to the surface shape of the tire, and the amount of deviation of the shape of the mold member from the design shape is accurately measured. Can be inspected. Thereby, the deviation | shift amount with respect to the design value of the mold member surface part corresponding to the tire surface in the state which has actually arrange | positioned the partial mold member in the vulcanizer, for example can be test | inspected correctly. In addition, it is possible to accurately inspect the deviation of the shape of the mold member before and after the transfer process at each transfer stage. Such inspection results can be used to improve the manufacturing accuracy in each manufacturing process and to improve the total manufacturing accuracy of the entire manufacturing process. This can be used for the production of tires.

以下、本発明のタイヤ型部材検査方法、タイヤ型部材検査装置、および型部材作製工程精度検査方法について、添付の図面に示される好適実施形態を基に詳細に説明する。   Hereinafter, a tire mold member inspection method, a tire mold member inspection apparatus, and a mold member manufacturing process accuracy inspection method of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.

まず、本発明のタイヤ型部材検査方法およびタイヤ型部材検査装置について説明する(以下、第1の態様とする)。第1の態様では、3次元形状設計データに基づいて作製された、タイヤの作製に用いる型部材の3次元形状を計測し、計測によって取得された型部材の3次元測定データと、型部材の3次元設計データとを比較することで、作製された型部材の作製精度、すなわち、型部材測定データの型部材設計データからのずれ量を導出する。本発明において、型部材は、それぞれが連結して配置されることでタイヤ金型を成す、タイヤ一周分のトレッド面形状を周方向に沿って複数の部分に分割した各部分形状に対応する、複数の部分モールドそれぞれ、または、これら部分モールドを作製するために用いる各種中間型部材のことをいう。   First, a tire mold member inspection method and a tire mold member inspection apparatus of the present invention will be described (hereinafter referred to as a first aspect). In the first aspect, the three-dimensional shape of the mold member, which is produced based on the three-dimensional shape design data and used for producing the tire, is measured. By comparing with the three-dimensional design data, the production accuracy of the produced mold member, that is, the deviation amount of the mold member measurement data from the mold member design data is derived. In the present invention, the mold member corresponds to each partial shape obtained by dividing the tread surface shape for one round of the tire into a plurality of portions along the circumferential direction, each forming a tire mold by being connected and arranged. Each of the plurality of partial molds or various intermediate mold members used for producing these partial molds.

複数の部分モールドとは、タイヤ作製の際に加硫機に配置される、複数のトレッドセグメント部分モールドそれぞれを指す。また、各種中間型部材とは、このようなトレッドセグメント部分モールドを作製するために用いる、CADやCAMデータである型部材設計データに応じて樹脂材を切削して作製したマスター型、このマスター型を型枠にセットした状態のマスター型部材、マスター型部材の型枠内面の空間形状が転写されたゴム型、このゴム型を型枠にセットした状態のゴム型部材、ゴム型部材の型枠内面の空間形状が転写された石膏型、この石膏型基板を型枠にセットした状態の石膏型部材、のいずれをも含む。各種中間型部材および各種中間型部材の作製については、後の第2の態様の説明において、詳述する。   A plurality of partial molds refers to each of a plurality of tread segment partial molds that are arranged in a vulcanizer during tire manufacture. In addition, various intermediate mold members are a master mold prepared by cutting a resin material according to mold member design data which is CAD or CAM data, which is used to produce such a tread segment partial mold. Master mold member set in a mold, a rubber mold in which the space shape of the inner surface of the master mold member is transferred, a rubber mold member in which this rubber mold is set in the mold, and a mold of the rubber mold member It includes both a gypsum mold in which the space shape of the inner surface is transferred, and a gypsum mold member in a state where the gypsum mold substrate is set in a mold frame. The production of various intermediate mold members and various intermediate mold members will be described in detail later in the description of the second aspect.

図1は、本発明のタイヤ型部材検査装置の一例である、型部材3次元形状測定装置10(以下、単に装置10とする)について説明する概略構成図である。以下、装置10を用いて、部分モールド30の3次元形状を計測し、計測によって取得された部分モールド30の3次元測定データ(モールド測定データ)と、部分モールド30の3次元設計データ(モールド設計データ)とを比較して、作製された部分モールド30の作製精度を導出する例について説明する。   FIG. 1 is a schematic configuration diagram illustrating a mold member three-dimensional shape measuring apparatus 10 (hereinafter simply referred to as an apparatus 10), which is an example of a tire mold member inspection apparatus according to the present invention. Hereinafter, the apparatus 10 is used to measure the three-dimensional shape of the partial mold 30, the three-dimensional measurement data (mold measurement data) of the partial mold 30 obtained by the measurement, and the three-dimensional design data (mold design) of the partial mold 30. Data) and an example of deriving the production accuracy of the produced partial mold 30 will be described.

装置10は、部分モールド30を載置するための載置台12と、載置台12に載置された部分モールド30や載置台12の形状(後述する載置面15の形状)の3次元形状を測定するための3次元スキャナ18と、載置台12および3次元スキャナ18と接続されたコンピュータ20とを有して構成されている。なお、コンピュータ20には、オペレータからの各種入力指示を受け付ける、キーボードやマウスなどからなる入力手段22と、コンピュータ20による各種計算結果等を表示出力するためにディスプレイ24とが接続されている。   The apparatus 10 has a mounting table 12 for mounting the partial mold 30, and a three-dimensional shape of the shape of the partial mold 30 and the mounting table 12 mounted on the mounting table 12 (the shape of a mounting surface 15 described later). A three-dimensional scanner 18 for measurement, and a computer 20 connected to the mounting table 12 and the three-dimensional scanner 18 are configured. The computer 20 is connected to an input means 22 such as a keyboard and a mouse for receiving various input instructions from an operator, and a display 24 for displaying various calculation results by the computer 20.

載置台12は、部分モールド30を載置するための平面状の載置面15を有するステージ14と、このステージ14の載置面15と反対の側に設けられた、ステージ14を移動させたり回転させたりするためのステージ移動手段16とを備えている。本実施形態では、ステージ移動手段16は、所定の回転軸(図1中、一転鎖線で示している)を中心として、ステージ14を回転させることができる構成となっている。ステージ移動手段16は、コンピュータ20の後述する動作制御部43と接続されており、動作制御部43から出力される制御信号によって動作(ステージ14の回転)が制御されている。   The mounting table 12 moves the stage 14 having a planar mounting surface 15 for mounting the partial mold 30 and the stage 14 provided on the side opposite to the mounting surface 15 of the stage 14. And stage moving means 16 for rotating. In the present embodiment, the stage moving unit 16 is configured to be able to rotate the stage 14 around a predetermined rotation axis (shown by a chain line in FIG. 1). The stage moving unit 16 is connected to an operation control unit 43 (to be described later) of the computer 20, and the operation (rotation of the stage 14) is controlled by a control signal output from the operation control unit 43.

図2は、コンピュータ20について説明する概略構成図である。コンピュータ20はメモリ40とCPU41とを有し、メモリ40に記憶されたプログラムをCPU41が実行することで、処理手段42および動作制御部43が動作する公知のコンピュータである。動作制御部43は、3次元スキャナ18、およびステージ移動手段16と接続されており、3次元スキャナ18およびステージ移動手段16それぞれに制御信号を送信し、それぞれの動作を制御する。処理手段42は、3次元スキャナ18によって測定された型部材測定データを取得し、型部材の測定データ(モールド測定データ)と型部材の設計データ(モールド設計データ)と、を比較する部位であり、データ取得部44と、基準点導出部45と、比較部46とを有して構成されている。なお、メモリ40には、部分モールド30の3次元設計データが予め記憶されている。   FIG. 2 is a schematic configuration diagram for explaining the computer 20. The computer 20 has a memory 40 and a CPU 41, and is a known computer in which the processing means 42 and the operation control unit 43 operate when the CPU 41 executes a program stored in the memory 40. The operation control unit 43 is connected to the three-dimensional scanner 18 and the stage moving unit 16, and transmits a control signal to each of the three-dimensional scanner 18 and the stage moving unit 16 to control each operation. The processing means 42 is a part that acquires the mold member measurement data measured by the three-dimensional scanner 18 and compares the mold member measurement data (mold measurement data) with the mold member design data (mold design data). The data acquisition unit 44, the reference point deriving unit 45, and the comparison unit 46 are included. In the memory 40, three-dimensional design data of the partial mold 30 is stored in advance.

データ取得部44は、3次元スキャナ18によって測定されたモールド部材測定データや、ステージ14の載置面15の3次元測定データ(載置面測定データ)等を取得する部位である。データ取得部44によって取得されたモールド測定データや載置面測定データは、基準点導出部45に送られる。基準点導出部45は、モールド測定データや載置面測定データに応じて、モールド測定データにおける測定データ基準点を導出(設定)する。モールド測定データおよび測定データ基準点のデータは、比較部46に送られる。   The data acquisition unit 44 is a part that acquires mold member measurement data measured by the three-dimensional scanner 18, three-dimensional measurement data (mounting surface measurement data) of the mounting surface 15 of the stage 14, and the like. The mold measurement data and the mounting surface measurement data acquired by the data acquisition unit 44 are sent to the reference point deriving unit 45. The reference point deriving unit 45 derives (sets) a measurement data reference point in the mold measurement data according to the mold measurement data and the placement surface measurement data. The mold measurement data and the measurement data reference point data are sent to the comparison unit 46.

比較部46は、メモリ40に記憶されているモールド設計データを読み出し、測定データ基準点に対応するモールド設計データの設計データ基準点と、測定データ基準点とを一致させた状態で、モールド測定データとモールド設計データとのずれ量と導出する。比較部46において導出された、ずれ量などの比較結果は、例えばディスプレイ24(図2においては図示せず)に表示出力される。なお、モールド設計データは、コンピュータ20のメモリ40に記憶されていることに限らず、磁気記録媒体や光学記録媒体など、各種の外部記憶メディアに記憶されていてもよい。   The comparison unit 46 reads out the mold design data stored in the memory 40, and mold measurement data in a state where the design data reference point of the mold design data corresponding to the measurement data reference point and the measurement data reference point coincide with each other. And the amount of deviation between the mold design data. The comparison result such as the shift amount derived by the comparison unit 46 is displayed and output on the display 24 (not shown in FIG. 2), for example. The mold design data is not limited to being stored in the memory 40 of the computer 20, but may be stored in various external storage media such as a magnetic recording medium and an optical recording medium.

3次元スキャナ18は、測定空間内に位置する、部分モールド30やステージ14の載置面15の3次元形状を測定して、モールド測定データや載置面測定データを得る装置である。3次元スキャナ18は、部分モールド30が載置面15に載置された状態で、測定空間内に部分モールド30全体と載置面15の少なくとも一部が入るよう、すなわち、部分モールド30全体と載置面15の少なくとも一部が計測可能範囲となるよう、配置位置や配置角度が調整されている。   The three-dimensional scanner 18 is a device that obtains mold measurement data and placement surface measurement data by measuring the three-dimensional shape of the placement surface 15 of the partial mold 30 and the stage 14 located in the measurement space. The three-dimensional scanner 18 allows the entire partial mold 30 and at least a part of the mounting surface 15 to enter the measurement space in a state where the partial mold 30 is mounted on the mounting surface 15. The arrangement position and the arrangement angle are adjusted so that at least a part of the placement surface 15 is within the measurable range.

図3は、3次元スキャナ18の構成を説明する図である。3次元形状スキャナ18は、CPU47、ドライバー回路48、レーザダイオード49、ガルバノミラー50、光学系51,52、CCD素子53、AD変換器54、FIFO55,信号処理プロセッサ56、及びフレームメモリ57を有する。
3次元スキャナ18では、コンピュータ20からの測定開始指示に応じて、CPU47は測定開始のトリガー信号を生成し、図示されないクロックジェネレータを起動してクロック信号を生成する。このクロック信号はCCD素子53、AD変換器54、FIFO55、信号処理プロセッサ56に供給される。一方、トリガー信号の生成により、ドライバー回路48はレーザ光照射の信号を生成し、レーザダイオード49に供給する。レーザダイオード49は、これによりレーザ光を照射し、レーザ光をスリット光とし、このレーザ光の照射の信号に合わせて駆動を開始したガルバノミラー50を振らして、光学系51を介して照射されるスリット状のレーザ光を、部分モールド30および載置面15上でスキャンさせる。
FIG. 3 is a diagram illustrating the configuration of the three-dimensional scanner 18. The three-dimensional shape scanner 18 includes a CPU 47, a driver circuit 48, a laser diode 49, a galvanometer mirror 50, optical systems 51 and 52, a CCD element 53, an AD converter 54, a FIFO 55, a signal processor 56, and a frame memory 57.
In the three-dimensional scanner 18, in response to a measurement start instruction from the computer 20, the CPU 47 generates a measurement start trigger signal and activates a clock generator (not shown) to generate a clock signal. This clock signal is supplied to the CCD element 53, AD converter 54, FIFO 55, and signal processor 56. On the other hand, by generating the trigger signal, the driver circuit 48 generates a laser light irradiation signal and supplies it to the laser diode 49. The laser diode 49 irradiates the laser beam by this, turns the laser beam into slit light, shakes the galvano mirror 50 that starts driving in accordance with the irradiation signal of the laser beam, and is irradiated through the optical system 51. A slit-shaped laser beam is scanned on the partial mold 30 and the mounting surface 15.

一方、光学系52を介して集束したレーザ光の反射光をCCD素子53にて受光し、生成された画像信号をAD変換器54によりデジタル信号とし、FIFO55を介して画像信号を順番に信号処理プロセッサ56に供給する。信号処理プロセッサ56は、光切断方法を用いた周知のアルゴリズムを実行する回路が組み込まれており、供給された画像信号から、部分モールド30および載置面15の3次元形状データ(モールド部材測定データおよび載置面測定データ)を生成する部分である。この3次元形状データは、フレームメモリ57に逐次書き込まれ、必要に応じて呼び出される。画像信号から3次元形状データを生成する処理方法は、周知の光切断法を用いたアルゴリズムである。光切断法は、スリット光を測定対象物に照射し、測定対象物の曲がった帯状の反射光をCCD素子等のカメラで撮影し、画像における結像位置から3次元形状データを求める方法である。このときの演算は三角測量の原理に基づいて行われる。
生成されたモールド部材測定データおよび載置面測定データは、コンピュータ20に供給される。
3次元スキャナ18は、以上の作用を行うように構成された装置である。
このようなユニットとして、例えば光切断方法を用いた非接触3次元デジタイザVIVID9i((株)コニカ ミノルタ社製)が例示される。
On the other hand, reflected light of the laser beam focused through the optical system 52 is received by the CCD element 53, the generated image signal is converted into a digital signal by the AD converter 54, and the image signal is sequentially processed through the FIFO 55. This is supplied to the processor 56. The signal processor 56 incorporates a circuit that executes a well-known algorithm using a light cutting method. From the supplied image signal, three-dimensional shape data (mold member measurement data) of the partial mold 30 and the mounting surface 15 is obtained. And mounting surface measurement data). This three-dimensional shape data is sequentially written in the frame memory 57 and is called up as necessary. A processing method for generating three-dimensional shape data from an image signal is an algorithm using a known light cutting method. The light cutting method is a method of irradiating a measuring object with slit light, photographing a band-like reflected light of the measuring object with a camera such as a CCD element, and obtaining three-dimensional shape data from an imaging position in the image. . The calculation at this time is performed based on the principle of triangulation.
The generated mold member measurement data and placement surface measurement data are supplied to the computer 20.
The three-dimensional scanner 18 is a device configured to perform the above operation.
An example of such a unit is a non-contact three-dimensional digitizer VIVID9i (manufactured by Konica Minolta Co., Ltd.) using a light cutting method.

第1の実施態様では、このような構成の装置10を用いて、部分モールド30の作製精度について検査する。図4(a)は、部分モールド30が、他の複数の部分モールドとともにタイヤ加硫機の加硫コンテナ31に設置された状態を示す概略上面図であり、図4(b)は、部分モールド30について説明する概略上面図である。図4(b)に示すように、部分モールド30は、それぞれが連結して配置されることでタイヤ金型を成す、タイヤ一周部のトレッド面形状を周方向に沿って複数の部分に分割した各部分形状に対応する、複数の部分モールドのうちの1つである。   In the first embodiment, the manufacturing accuracy of the partial mold 30 is inspected using the apparatus 10 having such a configuration. 4A is a schematic top view showing a state in which the partial mold 30 is installed in a vulcanization container 31 of a tire vulcanizer together with other partial molds, and FIG. 4B is a partial mold. FIG. As shown in FIG.4 (b), the partial mold 30 divided | segmented the tread surface shape of the tire surrounding part which comprises a tire metal mold | die by connecting and arrange | positioning into several parts along the circumferential direction. It is one of a plurality of partial molds corresponding to each partial shape.

部分モールド30は、作製するタイヤのトレッド表面に対応するタイヤ面32を有しており、タイヤの加硫成型工程において、このタイヤ面32の形状がタイヤのトレッド面に転写される。部分モールド30のタイヤ面30以外の表面部分は、部分モールド30を加硫機に設置する際の設置状態に影響する。このため、高精度な形状のタイヤを作製するためには、部分モールド30は、タイヤ面32のみならず、タイヤ面32と対向する側のモールド背面34の形状などの部材面の形状精度も、非常に重要である。タイヤ面32およびモールド背面34が、モールド設計データ通りに作製されていれば、図4(a)に示すように加硫機に設置された状態で、部分モールド30のタイヤ面32(ここでは、トレッド溝部分は除く)の断面は、作製されるタイヤのタイヤ軸(図中の点O)を中心とした真円(タイヤの設計半径を半径とした円)と一致する。   The partial mold 30 has a tire surface 32 corresponding to the tread surface of the tire to be manufactured, and the shape of the tire surface 32 is transferred to the tread surface of the tire in the vulcanization molding process of the tire. The surface portion of the partial mold 30 other than the tire surface 30 affects the installation state when the partial mold 30 is installed in the vulcanizer. For this reason, in order to produce a highly accurate tire, the partial mold 30 has not only the tire surface 32 but also the shape accuracy of the member surface such as the shape of the mold back surface 34 on the side facing the tire surface 32. Very important. If the tire surface 32 and the mold back surface 34 are produced according to the mold design data, the tire surface 32 of the partial mold 30 (here, in the state where it is installed in the vulcanizer as shown in FIG. 4A) The cross section of the tire (excluding the tread groove portion) coincides with a perfect circle (a circle with the tire design radius as the radius) centered on the tire axis (point O in the drawing) of the tire to be manufactured.

当然、部分モールド30のタイヤ面32が、モールド設計データ通りに作製されなかった場合、タイヤ面32の断面は、このような真円と一致しなくなってしまう。そして、部分モールド30のモールド背面34が、モールド設計データ通りに作製されなかった場合も、タイヤ面32の断面は、このような真円と一致しなくなってしまう。これは、モールド背面34の形状精度が悪いと、加硫機に設置する際の設置状態も悪くなり、加硫機に設置した状態において、タイヤ面32の設置位置がずれてしまうからである。本実施形態では、部分モールド30のような型部材について、タイヤの形状に対応したタイヤ面の3次元形状のみならず、タイヤ面以外の部材面も含む3次元形状を測定して、作製された型部材全体の形状の、設計データからのずれ量(誤差)を検査する。   Naturally, when the tire surface 32 of the partial mold 30 is not produced according to the mold design data, the cross section of the tire surface 32 does not coincide with such a perfect circle. Even when the mold back surface 34 of the partial mold 30 is not produced according to the mold design data, the cross section of the tire surface 32 does not coincide with such a perfect circle. This is because if the shape accuracy of the mold back surface 34 is poor, the installation state at the time of installation in the vulcanizer is also deteriorated, and the installation position of the tire surface 32 is shifted in the state of being installed in the vulcanizer. In the present embodiment, the mold member such as the partial mold 30 was manufactured by measuring not only the three-dimensional shape of the tire surface corresponding to the shape of the tire but also the three-dimensional shape including the member surfaces other than the tire surface. The amount of deviation (error) from the design data of the shape of the entire mold member is inspected.

図5(a)および(b)は、モールド設計データ(3次元形状データ)60について説明する図であり、モールド設計データ60の示す3次元形状データを示す概略図である。図5(a)は、概略斜視図に対応し、図5(b)は概略上面図に対応する。モールド設計データ60は、作製するタイヤのトレッド表面に対応するタイヤ面部分62を有しており、タイヤ面部分62と対向する側のモールド背面部分64や、作製したいタイヤの赤道面に対応する平面に平行な載置用表面部分66(底面)を備えている。なお、モールド背面部分64には、載置用表面部分66と垂直な垂直表面部65を備えている。なお、当然であるが、図1および図4に示すように、このようなモールド設計データ60に基づいて作製された部分モールド30も、モールド設計データの載置用表面部分66に対応する載置用表面36や、モールド設計データの垂直表面部65に対応する垂直表面35を備えている。   FIGS. 5A and 5B are diagrams for explaining the mold design data (three-dimensional shape data) 60, and are schematic diagrams illustrating the three-dimensional shape data indicated by the mold design data 60. 5A corresponds to a schematic perspective view, and FIG. 5B corresponds to a schematic top view. The mold design data 60 has a tire surface portion 62 corresponding to the tread surface of the tire to be manufactured, and a plane corresponding to the mold back surface portion 64 on the side facing the tire surface portion 62 and the equator surface of the tire to be manufactured. Is provided with a mounting surface portion 66 (bottom surface) parallel to the surface. The mold back surface portion 64 includes a vertical surface portion 65 perpendicular to the mounting surface portion 66. As a matter of course, as shown in FIGS. 1 and 4, the partial mold 30 produced based on such mold design data 60 is also placed on the placement surface portion 66 of the mold design data. And a vertical surface 35 corresponding to the vertical surface portion 65 of the mold design data.

モールド設計データは、理想的な形状を再現したデータであり、タイヤ面部分64の断面形状(図5(b)に対応)は、仮想のタイヤ中心軸O’を中心とした真円の一部である。図5(b)において、タイヤ面62の表面形状をタイヤ周方向に沿って2等分する点C’を通り、垂直表面部65と垂直な平面Y’は、仮想のタイヤ中心軸O’を含んだ平面となる。垂直表面部65は、このモールド部材設計データに基づいて作製されたモールド部材(本実施形態ではモールド部材30)を、加硫機に配置する際の基準となる面に対応しており、特に、この平面Y’と垂直表面部65との交線l’の中点S’は、このような加硫機における配置位置の基準となる点(設計データ基準点)だといえる。ここで、載置用表面部分66を含む平面X’に平行で、この中点S’を通る平面X’(作製するタイヤの赤道面に対応する面である)、垂直表面部65を含む平面をZ’とする。モールド部材設計データは、中点S’を原点とし、平面Z’と平面X’の交線、平面X’と平面のY’交線、平面Y’と平面Z’の交線、を直交する3軸(x軸、y軸、z軸)とした座標系上の座標によって表されている。なお、モールド設計データは、設計段階から、このような座標系上の座標によって表されている必要はない。例えばメモリ40に記憶された後、処理部42において、モールド設計データについて座標系の変換を行なってもよい。 The mold design data is data reproducing an ideal shape, and the cross-sectional shape of the tire surface portion 64 (corresponding to FIG. 5B) is a part of a perfect circle centered on the virtual tire center axis O ′. It is. In FIG. 5B, a plane Y ′ that passes through a point C ′ that bisects the surface shape of the tire surface 62 along the tire circumferential direction, and that is perpendicular to the vertical surface portion 65, has a virtual tire center axis O ′. It is a plane that contains it. The vertical surface portion 65 corresponds to a surface serving as a reference when the mold member (mold member 30 in the present embodiment) produced based on the mold member design data is arranged in the vulcanizer. The midpoint S ′ of the intersection line l ′ between the plane Y ′ and the vertical surface portion 65 can be said to be a point (design data reference point) serving as a reference for the arrangement position in such a vulcanizer. Here, a plane X ′ parallel to the plane X 1 ′ including the mounting surface portion 66 and passing through the midpoint S ′ (a plane corresponding to the equator plane of the tire to be manufactured) and a vertical surface portion 65 are included. Let the plane be Z ′. The mold member design data has the midpoint S ′ as the origin, and intersects the plane Z ′ and the plane X ′, the plane X ′ and the plane Y ′, and the plane Y ′ and the plane Z ′ intersect. It is represented by coordinates on a coordinate system with three axes (x axis, y axis, z axis). Note that the mold design data does not need to be represented by coordinates on such a coordinate system from the design stage. For example, after being stored in the memory 40, the processing unit 42 may convert the coordinate system of the mold design data.

以下、本発明のタイヤ型部材検査方法に対応する、部分モールド30の形状精度検査方法について説明する。図6は、本実施形態の、部分モールド30の形状精度検査方法のフローチャート図である。   Hereinafter, the shape accuracy inspection method of the partial mold 30 corresponding to the tire mold member inspection method of the present invention will be described. FIG. 6 is a flowchart of the shape accuracy inspection method for the partial mold 30 according to the present embodiment.

まず、形状精度の比較対象である測定対象型部材(部分モールド30)を、ステージ14の載置面15に配置する(ステップS102)。部分モールド30をステージに載置する際、ステージ14がどのように回転した状態であっても、3次元スキャナ18の測定対象空間に、部分モールド30と載置面15の少なくとも一部が含まれるような位置に載置しておく。上述のように、部分モールド30は、作製したいタイヤの赤道面に対応する平面に平行な載置用表面36を備えており、載置用表面36とステージ14の載置面15とが当接されて、部分モールド30は載置面15に載置される。なお、上述のように、部分モールド30のモールド背面34には、載置用表面36と垂直な平面である、垂直平面35を有している。   First, a measurement target mold member (partial mold 30), which is a shape accuracy comparison target, is placed on the placement surface 15 of the stage 14 (step S102). When the partial mold 30 is placed on the stage, the measurement target space of the three-dimensional scanner 18 includes at least a part of the partial mold 30 and the placement surface 15 regardless of how the stage 14 is rotated. Place it in such a position. As described above, the partial mold 30 includes the mounting surface 36 parallel to a plane corresponding to the equator plane of the tire to be manufactured, and the mounting surface 36 and the mounting surface 15 of the stage 14 come into contact with each other. Thus, the partial mold 30 is placed on the placement surface 15. As described above, the mold back surface 34 of the partial mold 30 has the vertical plane 35 that is a plane perpendicular to the mounting surface 36.

この状態で、部分モールド30および載置面15の少なくとも一部について、3次元形状の測定が開始される(ステップS104)。3次元形状の測定の際、3次元スキャナ18の位置や受光面の角度は固定されたまま、コンピュータ20の動作制御部43からステージ移動手段16に制御信号が送信されて、ステージ14が所定角度だけ回転し、回転が終了して位置が固定されると、動作制御部43からスキャナ18に制御信号が送信されて、スキャナ18によって3次元形状が測定されるといった処理が繰り返される。3次元形状の測定の度に、測定した3次元形状データはメモリ40に記憶される。ステージ14が360°以上回転し、部分モールド30全体の3次元形状データがメモリ40に記憶されると、コンピュータ20の図示しないデータ合成手段が、メモリ40に記憶された複数の角度から取得した3次元形状データを合成して、モールド30や載置面15の、測定範囲全体におけるモールド測定データおよび載置面測定データを作成する。   In this state, the measurement of the three-dimensional shape is started for at least a part of the partial mold 30 and the mounting surface 15 (step S104). When measuring the three-dimensional shape, the control signal is transmitted from the operation control unit 43 of the computer 20 to the stage moving means 16 while the position of the three-dimensional scanner 18 and the angle of the light receiving surface are fixed, and the stage 14 is set at a predetermined angle. When the rotation is completed and the position is fixed, a control signal is transmitted from the operation control unit 43 to the scanner 18 and the scanner 18 measures the three-dimensional shape. Each time the three-dimensional shape is measured, the measured three-dimensional shape data is stored in the memory 40. When the stage 14 rotates 360 ° or more and the three-dimensional shape data of the entire partial mold 30 is stored in the memory 40, the data synthesizing means (not shown) of the computer 20 is acquired from a plurality of angles stored in the memory 40. The dimensional shape data is synthesized to create mold measurement data and placement surface measurement data for the entire measurement range of the mold 30 and the placement surface 15.

なお、このような3次元形状の測定の際、鏡を用いて3次元形状を測定してもよい。部分モールド30の特にタイヤ面32は、タイヤのトレッド部分に対応する形状を有しており、タイヤのトレッド面に設けられるべき縦溝や横溝などに対応する細かい凹凸を有している。このような細かい凹凸に起因して、3次元スキャナ18から照射されたレーザ光が、ステージ14をどのように回転させても届かない領域が生じてしまうこともある。このような領域を測定する際は、ステージ14の載置面15の所望の位置に、鏡を配置することで測定することができる。図7は、このような鏡を利用して型部材の3次元形状を測定する方法について説明する、概略構成図である。   In the measurement of such a three-dimensional shape, the three-dimensional shape may be measured using a mirror. In particular, the tire surface 32 of the partial mold 30 has a shape corresponding to the tread portion of the tire, and has fine irregularities corresponding to vertical grooves and horizontal grooves to be provided on the tread surface of the tire. Due to such fine irregularities, there may be a region where the laser light emitted from the three-dimensional scanner 18 cannot reach no matter how the stage 14 is rotated. When measuring such a region, it can be measured by placing a mirror at a desired position on the mounting surface 15 of the stage 14. FIG. 7 is a schematic configuration diagram for explaining a method of measuring the three-dimensional shape of a mold member using such a mirror.

この場合、図7のように、ステージ14をどのように回転させても届かない領域(影領域)に、鏡17で反射されたレーザ光が照射されるよう、ステージ14の載置面15に鏡17を載置する。これにより、鏡17を介して、影領域にレーザ光が照射され、このレーザ光の影領域からの反射光が3次元スキャナ18で受光される。3次元スキャナ18では、3次元スキャナ18のレーザ出射光から測定点までの距離の情報が求められる。いうなれば、3次元スキャナ18は、鏡17に写る鏡像の形状を測定していることになる。このように得られた情報は、3次元スキャナの配置位置N、鏡17の配置位置N、鏡17の反射面13の配置角度(図では、載置面15に垂直)に応じて定まる反射角αを用いて、実際の空間での位置情報に変換することができる。鏡17を載置面15に配置する場合は、このような情報を取得しておくことが必要である。なお、コンピュータ20による制御情報に応じて、鏡17を、載置面15の所望位置に所望した角度で配置することができる、装置10が、図示しない鏡面配置手段を有していることが好ましい。 In this case, as shown in FIG. 7, the placement surface 15 of the stage 14 is irradiated so that the laser beam reflected by the mirror 17 is irradiated to a region (shadow region) that cannot be reached no matter how the stage 14 is rotated. A mirror 17 is placed. As a result, the shadow area is irradiated with the laser beam via the mirror 17, and the reflected light from the shadow area of the laser beam is received by the three-dimensional scanner 18. In the three-dimensional scanner 18, information on the distance from the laser beam emitted from the three-dimensional scanner 18 to the measurement point is obtained. In other words, the three-dimensional scanner 18 measures the shape of the mirror image reflected on the mirror 17. The information thus obtained is determined according to the arrangement position N 1 of the three-dimensional scanner, the arrangement position N 2 of the mirror 17, and the arrangement angle of the reflection surface 13 of the mirror 17 (perpendicular to the placement surface 15 in the figure). The reflection angle α can be used to convert the position information into actual space. When placing the mirror 17 on the placement surface 15, it is necessary to acquire such information. In addition, it is preferable that the apparatus 10 has mirror surface arrangement means (not shown) that can arrange the mirror 17 at a desired position on the placement surface 15 according to control information from the computer 20. .

次に、このように取得されたモールド測定データ70および載置面測定データ77とを用いて、モールド測定データにおける、設計データ基準点S’と対応する測定データ基準点Sを導出する(ステップS106)。図8(a)および(b)には、モールド測定データにおける測定データ基準点Sの一例の導出について説明する図であり、図8(a)は概略斜視図に、図8(b)は概略上面図にそれぞれ対応している。載置面測定データ77は、載置面15の平面形状を再現する3次元形状データである。モールド測定データ70は、部分モールド部材30の形状を再現する3次元形状データであり、タイヤ面32に対応するタイヤ面部分72、モールド背面34に対応するモールド背面部分74、垂直表面部35に対応する垂直表面部分75を備えている。設計データ基準点S’と対応する測定データ基準点Sは、以下のように導出する。 Next, the measurement data reference point S 1 corresponding to the design data reference point S ′ in the mold measurement data is derived using the mold measurement data 70 and the mounting surface measurement data 77 acquired in this way (step S 1). S106). The FIGS. 8 (a) and 8 (b), a diagram illustrating an example of derivation of the measured data reference point S 1 in the mold measured data, FIGS. 8 (a) in the schematic perspective view, FIG. 8 (b) Each corresponds to a schematic top view. The mounting surface measurement data 77 is three-dimensional shape data that reproduces the planar shape of the mounting surface 15. The mold measurement data 70 is three-dimensional shape data that reproduces the shape of the partial mold member 30, and corresponds to the tire surface portion 72 corresponding to the tire surface 32, the mold back surface portion 74 corresponding to the mold back surface 34, and the vertical surface portion 35. A vertical surface portion 75 is provided. The measurement data reference point S 1 corresponding to the design data reference point S ′ is derived as follows.

まず、載置面測定データ77に基づき、載置面15の平面形状を表す平面Xを設定する。載置面測定データ77が完全に平面を表すデータならば、この平面を平面Xとすればよい。載置面測定データ77が完全に平面を表すデータではない場合は、載置面測定データ77が表す表面形状を平滑化した形状を平面Xとすればよい。次に、平面Xと平行な平面(図示せず)を設定し、この平面とタイヤ面32に対応するタイヤ面部分72との交線Lを規定する。平面Xと平行な平面を設定する際、交線Lが、タイヤ面部分72のうち、タイヤ溝部分に対応する領域ではなくタイヤのトレッド表面に対応する領域であるように設定することが好ましい。次に、交線Lの両端部を通る直線Lを規定する。そして、この交線Lと交わる、直線Lと平行な複数の直線Lを設定し、各直線Lと交線Lとの交点の組み合わせ(図8(b)に示す、AとA、BとB、CとC・・・など)を、複数点抽出する。そして、この交点の組み合わせをそれぞれ結んだ線分上の中点ma、mb、mc・・を求める。 First, based on the placement surface measurement data 77, sets the plane X 1 representing the planar shape of the mounting surface 15. If data placement surface measurement data 77 represents completely plane may be the plane as X 1. If the placement surface measurement data 77 is not the data representing the complete plane, the surface shape mounting surface measurement data 77 represents the smoothed shape may be a plane X 1. Next, a plane (not shown) parallel to the plane X 1 is set, and an intersection line L between the plane and the tire surface portion 72 corresponding to the tire surface 32 is defined. When setting a plane parallel to the plane X 1, the intersection line L is, among the tire surface portion 72, it is preferable to set to be a region corresponding to a tread surface of the tire rather than the regions corresponding to the tire groove portion . Next, define a straight line L 1 passing through both ends of the line of intersection L. Then, it intersects with the intersection line L, to set the straight line L 1 and a plurality of parallel straight lines L 2, shown in combination (FIG. 8 (b) of intersection between the straight line L 2 and the intersection line L, A 1 and A 2 , B 1 and B 2 , C 1 and C 2 . Then, midpoints ma, mb, mc... On line segments connecting the combinations of intersections are obtained.

部分モールド30は、モールドデータ60に基づいて作成されており、モールド設計データ60通りの形状であるならば、中点ma、mb、mc・・は全て同一平面上の点、さらにはすべて同一直線上の点となっているはずである。すなわち、中点ma、mb、mc・・は、図5に示す平面Y’に対応する平面上の点であり、かつ、平面Y’に対応する平面と、交線Lを含む平面との交線上の点であるはずである。しかし、実際の部分モールド30は、作製誤差のため、中点ma、mb、mc・・は、同一直線上になっていない。本実施形態では、モールド測定データにおける、平面Y’に対応する平面Yを規定するため、例えば最小二乗法を用いて中点ma、mb、mc・・の近似直線Nを導出する。そして、この近似直線Nを含み、平面Xに垂直な平面を、平面Y’に対応する平面Yとして規定する。そして、この平面Yと、部材背面である垂直表面部分75との交線lを求める。この交線lは、垂直表面部75上の点となり、この交線lの中点、すなわちX面に垂直方向の高さの1/2の位置を、モールド測定データ上の基準点Sとして規定する。ここで、平面Xに平行で、この基準点Sを通る平面を平面Xとし、基準点Sを通り、平面Yと平面Xの双方に垂直な面を平面Zとする。そして、この基準点Sを原点とし、平面Zと平面Xの交線、平面Xと平面Yの交線、平面Yと平面Zの交線、を直交する3軸(x軸、y軸、z軸)とした座標系上の座標によって、モールド測定データの各測定点の座標を表す。 The partial mold 30 is created on the basis of the mold data 60. If the shape is the same as the mold design data 60, the midpoints ma, mb, mc,. It should be a point on the line. That is, the midpoints ma, mb, mc,... Are points on the plane corresponding to the plane Y ′ shown in FIG. 5 and the intersection of the plane corresponding to the plane Y ′ and the plane including the intersection line L. Should be a point on the line. However, in the actual partial mold 30, the midpoints ma, mb, mc,... Are not on the same straight line due to manufacturing errors. In this embodiment, in order to define the plane Y corresponding to the plane Y ′ in the mold measurement data, an approximate straight line N of the midpoints ma, mb, mc... Is derived using, for example, the least square method. A plane including the approximate straight line N and perpendicular to the plane X is defined as a plane Y corresponding to the plane Y ′. Then, an intersection line l between the plane Y and the vertical surface portion 75 that is the back surface of the member is obtained. The intersection line l becomes a point on the vertical surface portion 75, the midpoint of the intersection line l, i.e. a half of the position in the height direction perpendicular to the X plane, as a reference point S 1 on the mold measured data Stipulate. Here, parallel to the plane X 1, a plane passing through the reference point S 1 as the plane X, passes through the reference point S 1, a planar Z a plane perpendicular to both the plane Y and the plane X. Then, the reference point S 1 as the origin, the intersection line of the plane Z and the plane X, plane X and the plane Y intersection line, three axes (x axis orthogonal line of intersection of the plane Y and the plane Z, the, y-axis, The coordinates of each measurement point of the mold measurement data are expressed by coordinates on the coordinate system (z axis).

そして、上述の座標系で表されたモールド設計データが読み出され(ステップS110)、このような座標系の座標で表されたモールド測定データと、上述の座標系で表されたモールド設計データを比較して、各測定点における座標のずれを導出する(ステップS112)。このように、モールド設計データおよびモールド測定データを、上述の各座標系それぞれにおける座標によって表すことで、モールド設計データにおける設計データ基準点(中点S’)と、モールド測定データにおける、設計データ基準点S’と対応する測定データ基準点Sとを一致させた際の、モールド設計データに対するモールド測定データのずれ量が導出される。基準点Sは、実際に部分モールドを加硫機に設置した際の、設置位置を規定するものであり、このように導出されたずれ量は、部分モールド30を実際に加硫機に設置した際のずれ量を表しているといえる。 Then, the mold design data represented by the above coordinate system is read (step S110), and the mold measurement data represented by the coordinates of such a coordinate system and the mold design data represented by the above coordinate system are obtained. In comparison, a coordinate shift at each measurement point is derived (step S112). Thus, by expressing the mold design data and the mold measurement data by the coordinates in each of the above coordinate systems, the design data reference point (middle point S ′) in the mold design data and the design data reference in the mold measurement data. A deviation amount of the mold measurement data with respect to the mold design data when the point S ′ is matched with the corresponding measurement data reference point S 1 is derived. The reference point S defines the installation position when the partial mold is actually installed in the vulcanizer, and the deviation amount derived in this way is the actual location of the partial mold 30 installed in the vulcanizer. It can be said that it represents the amount of deviation.

次に、比較結果が出力される(ステップS114)。比較結果としては、モールド測定データの各測定点について、設計データに対するずれ量の絶対値を、各測定点毎に出力してもよい。また、各測定点毎に、設計データに対するずれ量の絶対値と、予め定められた設計公差値とを比較し、この設計公差値と比べてずれ量の絶対値が大きい測定点についてのみ、設計公差値よりもずれ量が大きい旨を表示出力してもよい。また、例えば、モールド測定データに応じた3次元モデルをディスプレイに表示し、予め定められた設計公差値よりもずれ量が大きな測定点について、他の測定点と異なる色で表現して、ディスプレイを見る観察者に対して、設計公差値よりもずれ量が大きい部分を視覚的に示してもよい。また、図示しないマーキング手段を用いて、実際の部分モールド30の、予め定められた設計公差値よりもずれ量が大きな測定点に対応する部分に、マーキングを施してもよい。   Next, the comparison result is output (step S114). As a comparison result, for each measurement point of the mold measurement data, an absolute value of the deviation amount with respect to the design data may be output for each measurement point. Also, for each measurement point, the absolute value of the deviation amount with respect to the design data is compared with a predetermined design tolerance value, and the design is performed only for the measurement point where the absolute value of the deviation amount is larger than this design tolerance value. A message indicating that the deviation amount is larger than the tolerance value may be displayed. In addition, for example, a three-dimensional model corresponding to mold measurement data is displayed on the display, and a measurement point having a deviation larger than a predetermined design tolerance value is expressed in a color different from other measurement points, and the display is displayed. You may visually show the part where the amount of deviation is larger than the design tolerance value to the observer who sees. In addition, using marking means (not shown), marking may be performed on a portion of the actual partial mold 30 corresponding to a measurement point having a larger deviation amount than a predetermined design tolerance value.

なお、上述の実施態様では、部分モールド30を、実際に加硫機に設置した際のずれ量に着目し、ステップS106〜ステップS112において、モールド設計データにおける基準点S’に対応する、モールド測定データにおける基準点Sを導出し、基準点S’と基準点Sとを一致させることで、モールド測定データの各測定点のずれ量を導出した。本願発明において、例えば、部分モールド30におけるタイヤ面32の真円度からのずれ量を、特に知りたい場合などは、以下のように、モールド測定データの真円からのずれ量を導出すればよい。   In the above embodiment, paying attention to the amount of deviation when the partial mold 30 is actually installed in the vulcanizer, in step S106 to step S112, mold measurement corresponding to the reference point S ′ in the mold design data. The reference point S in the data was derived, and the reference point S ′ and the reference point S were made to coincide with each other, thereby deriving the deviation amount of each measurement point in the mold measurement data. In the present invention, for example, when it is particularly desired to know the deviation amount from the roundness of the tire surface 32 in the partial mold 30, the deviation amount from the perfect circle of the mold measurement data may be derived as follows. .

図9は、モールド測定データにおける測定データ基準点の他の例の導出について説明する図であり、概略上面図に対応している。まず、上述の場合と同様、平面Xと平行な平面を設定し、この平面と、タイヤ面32に対応するタイヤ面部分72との交線Lを規定する(図8(a)参照)。平面Xと平行な平面を設定する際、交線Lが、タイヤ面部分72のうち、タイヤ溝部分に対応する領域ではなくタイヤのトレッド表面に対応する領域であるように設定することが好ましい。そして、交線Lから、それぞれ異なる2点の組み合わせ(DとD、EとE、FとF、・・・)を複数抽出し、各組み合わせの2点を結んだ複数の線分それぞれの垂直2等分線T、T、T・・・について、異なる2つの垂直2等分線が交わる複数の交点U、U2、U3、・・・を導出する。そして、これら複数の交点U、U2、U3・・・の重心位置を、基準点Sとして設定する。部分モールド部材30のタイヤ面62が、モールド部材設計データに忠実に作製されている場合、複数の交点U、U2、U3、は全て同一の点、すなわち作製したいタイヤのタイヤ軸に対応する点で交わるはずである。本実施形態では、このような基準点Sを、作製したいタイヤの中心軸に対応する点であると仮定し、この基準点Sを中心として、作製したいタイヤの半径を半径とした真円に対する、各測定データのずれ量を導出する。このような態様は、部分モールド30の形状のうち、特にタイヤ面32の形状の作製精度についてのみ検査したい場合などにおいて、好適に用いればよい。 FIG. 9 is a diagram for explaining derivation of another example of the measurement data reference point in the mold measurement data, and corresponds to a schematic top view. First, as in the case described above, a plane parallel to the plane X is set, and an intersection line L between the plane and the tire surface portion 72 corresponding to the tire surface 32 is defined (see FIG. 8A). When setting a plane parallel to the plane X, it is preferable to set the intersecting line L so that it is not a region corresponding to the tire groove portion of the tire surface portion 72 but a region corresponding to the tire tread surface. Then, a plurality of combinations of two different points (D 1 and D 2 , E 1 and E 2 , F 1 and F 2 ,...) Are extracted from the intersection line L, and a plurality of the two points of each combination are connected. A plurality of intersections U 1 , U 2, U 3,... Where two different vertical bisectors intersect are derived for each of the vertical bisectors T 1 , T 2 , T 3 . The plurality of intersections U 1, U2, U3 position of the center of gravity of ... is set as a reference point S 2. When the tire surface 62 of the partial mold member 30 is produced faithfully to the mold member design data, the plurality of intersection points U 1 , U 2, U 3 are all the same point, that is, the point corresponding to the tire axis of the tire to be produced. Should meet. In the present embodiment, such a reference point S 2, assuming that a point corresponding to the center axis of the tire to be produced, around the reference point S 2, the circularity of the radius of the tire and a radius to be produced The deviation amount of each measurement data with respect to is derived. Such an embodiment may be suitably used in the case where it is desired to inspect only the production accuracy of the shape of the tire surface 32 among the shapes of the partial mold 30.

この場合も、比較結果としては、モールド測定データの各測定点について、設計データの表す上記真円に対するずれ量の絶対値を、各測定点毎に出力してもよい。また、各測定点毎に、設計データの表す上記真円に対するずれ量の絶対値と、予め定められた設計公差値とを比較し、この設計公差値と比べてずれ量の絶対値が大きい測定点についてのみ、設計公差値よりもずれ量が大きい旨を表示出力してもよい。また、例えば、モールド部材測定データに応じた3次元モデルをディスプレイに表示し、予め定められた設計公差値よりもずれ量が大きな測定点について、他の測定点と異なる色で表現して、ディスプレイを見る観察者に対して、設計公差値よりもずれ量が大きい部分を視覚的に示してもよい。また、図示しないマーキング手段を用いて、実際の部分モールド30の、予め定められた設計公差値よりもずれ量が大きな測定点に対応する部分に、マーキングを施してもよい。   Also in this case, as a comparison result, for each measurement point of the mold measurement data, the absolute value of the deviation amount with respect to the perfect circle represented by the design data may be output for each measurement point. Also, for each measurement point, the absolute value of the deviation amount with respect to the perfect circle represented by the design data is compared with a predetermined design tolerance value, and the absolute value of the deviation amount is larger than this design tolerance value. Only for the points, it may be displayed and output that the deviation amount is larger than the design tolerance value. In addition, for example, a three-dimensional model corresponding to mold member measurement data is displayed on a display, and a measurement point having a deviation larger than a predetermined design tolerance value is expressed in a color different from other measurement points. The viewer may visually show a portion where the amount of deviation is larger than the design tolerance value. In addition, using marking means (not shown), marking may be performed on a portion of the actual partial mold 30 corresponding to a measurement point having a larger deviation amount than a predetermined design tolerance value.

次に、本発明の第2の実施態様について説明する。本願発明の第2の実施態様では、作製したいタイヤのトレッド面形状の3次元設計データに応じてマスター型を作製し、作製されたマスター型の形状を順次転写して、転写の度に異なる材質の中間型部材を作製することで、タイヤ作製用のモールドを作製する際における、それぞれ異なる複数の転写工程間での形状転写精度を検査する。本願発明の第2の実施形態では、複数の転写工程のうち、少なくとも形状転写精度を検査したい転写工程直前の中間型部材の3次元形状、および形状転写精度を検査したい転写工程後の中間型部材の3次元形状、をそれぞれ測定しておく。そして、転写工程直前の転写前中間型部材の3次元形状測定データと、1つまたは2つ以上の転写工程後の転写後中間型部材の3次元形状測定データとを比較することで、形状転写精度を検査したい転写工程前後での形状転写精度を導出する。   Next, a second embodiment of the present invention will be described. In the second embodiment of the present invention, a master mold is produced according to the three-dimensional design data of the shape of the tread surface of the tire to be produced, and the shape of the produced master mold is sequentially transferred, and a material that is different for each transfer. By manufacturing the intermediate member, the shape transfer accuracy between a plurality of different transfer processes when a tire mold is manufactured is inspected. In the second embodiment of the present invention, among the plurality of transfer processes, at least the three-dimensional shape of the intermediate mold member just before the transfer process whose shape transfer accuracy is to be inspected, and the intermediate mold member after the transfer process whose shape transfer accuracy is to be inspected Each of the three-dimensional shapes is measured. Then, the shape transfer is performed by comparing the three-dimensional shape measurement data of the intermediate mold member before transfer immediately before the transfer process with the three-dimensional shape measurement data of the intermediate mold member after transfer after one or more transfer processes. Derivation of shape transfer accuracy before and after the transfer process for which accuracy is to be inspected.

図10は、作製されたマスター型の形状を順次転写して、転写の度に異なる材質の中間型部材を作製することで、タイヤ作製用のモールドを作製する、モールドの作製工程について説明するフローチャート図である。図11(a)〜(d)は、図10に示すモールドの作製工程において作製される各種中間型部材のうち、各種の型の概略斜視図である。   FIG. 10 is a flowchart for explaining a mold manufacturing process in which a mold for tire manufacturing is manufactured by sequentially transferring the shape of the manufactured master mold and manufacturing an intermediate mold member of a different material for each transfer. FIG. FIGS. 11A to 11D are schematic perspective views of various molds among various intermediate mold members produced in the mold production process shown in FIG.

モールドの作製の際、まずは、作製したいタイヤのトレッド面形状に基づいて、CADやCAMデータである型部材設計データを作成する(ステップS202)。そして、この、CADやCAMデータである型部材設計データに応じて樹脂材を切削して、図11(a)に示すようなマスター型82を作製する(ステップS204)。そして、このマスター型82を、マスター型82の周囲を囲うように配置された壁面で囲まれた型枠にセットして、マスター型82が型枠にセットされた状態のマスター型部材を構成する(ステップS206)。そして、このマスター型部材の型枠内面の空間(マスター型82の表面と上記壁面の内面とで囲まれた空間)にゴム部材を流し込み、このマスター型部材の型枠内面の空間形状が転写された、図11(b)に示すようなゴム型84が作製される(ステップS208)。後に詳述するが、ゴム型84は、金属製の蓋体83の表面に、マスター型82の表面と上記壁面の内面とで囲まれた空間形状が転写されて設けられている。次に、ゴム型84を、ゴム型84の周囲を囲うように配置された壁面で囲まれた型枠にセットして、ゴム型84が型枠にセットされた状態のゴム型部材を構成する(ステップS210)。そして、ゴム型部材の型枠内面の空間(ゴム型84の表面と上記壁面の内面とで囲まれた空間の空間)に未硬化の石膏部材を流し込み、このゴム型部材の型枠内面の空間形状が転写された、図11(c)に示すような石膏型86が作製される(ステップS212)。そして、この石膏型86を乾燥処理して十分に硬化させ(ステップS214)、石膏型86を型枠にセットして、石膏型86が型枠にセットされた状態の石膏型部材を構成する(ステップS216)。この石膏型部材の型枠内面の空間(石膏型86の表面と上記壁面の内面とで囲まれた空間)に金属部材を流し込み、この石膏型部材の型枠内面の空間形状が転写された、図11(d)に示すようなモールド88を作製する(ステップS218)。   When producing a mold, first, mold member design data, which is CAD or CAM data, is created based on the tread surface shape of a tire to be produced (step S202). Then, the resin material is cut according to the mold member design data, which is CAD or CAM data, to produce a master mold 82 as shown in FIG. 11A (step S204). And this master type | mold 82 is set to the formwork enclosed by the wall surface arrange | positioned so that the circumference | surroundings of the master type | mold 82 may be enclosed, and the master type | mold member of the state by which the master type | mold 82 was set to the formwork is comprised. (Step S206). Then, a rubber member is poured into the space on the inner surface of the mold of the master mold member (the space surrounded by the surface of the master mold 82 and the inner surface of the wall surface), and the space shape of the inner surface of the mold of the master mold member is transferred. Further, a rubber mold 84 as shown in FIG. 11B is produced (step S208). As will be described in detail later, the rubber mold 84 is provided by transferring a space shape surrounded by the surface of the master mold 82 and the inner surface of the wall surface to the surface of the metal lid 83. Next, the rubber mold 84 is set in a mold frame surrounded by wall surfaces arranged so as to surround the rubber mold 84, thereby constituting a rubber mold member in a state where the rubber mold 84 is set in the mold frame. (Step S210). Then, an uncured gypsum member is poured into the space on the inner surface of the mold of the rubber mold member (the space surrounded by the surface of the rubber mold 84 and the inner surface of the wall surface), and the space on the inner surface of the mold of the rubber mold member A gypsum mold 86 as shown in FIG. 11C to which the shape has been transferred is produced (step S212). Then, the gypsum mold 86 is dried and sufficiently cured (step S214), and the gypsum mold 86 is set on the mold to constitute a gypsum mold member in a state where the gypsum mold 86 is set on the mold ( Step S216). The metal member was poured into the space on the inner surface of the mold frame of this gypsum mold member (the space surrounded by the surface of the gypsum mold 86 and the inner surface of the wall surface), and the space shape of the inner surface of the mold frame of this gypsum mold member was transferred. A mold 88 as shown in FIG. 11D is produced (step S218).

第2の実施態様では、これら各種の中間型部材(各型や各型部材)について、少なくとも形状転写精度を検査したい転写工程後の中間型部材の3次元形状、をそれぞれ測定しておく。そして、転写工程前の転写前中間型部材の3次元形状測定データと、転写工程後の転写後中間型部材の3次元形状測定データとを比較することで、形状転写精度を検査したい転写工程前後での形状転写精度を導出する。   In the second embodiment, for each of these various intermediate mold members (each mold and each mold member), at least the three-dimensional shape of the intermediate mold member after the transfer process whose shape transfer accuracy is to be inspected is measured. Then, by comparing the three-dimensional shape measurement data of the pre-transfer intermediate mold member before the transfer process with the three-dimensional shape measurement data of the post-transfer intermediate mold member after the transfer process, before and after the transfer process to inspect the shape transfer accuracy Deriving the shape transfer accuracy at.

以降、一例として、ステップS208の、マスター型部材の型枠内面の空間(マスター型82の表面と上記壁面の内面とで囲まれた空間)にゴム部材を流し込み、このマスター型部材の型枠内面の空間形状が転写されたゴム型84を作製する工程における、転写精度を導出する例について説明する。すなわち、図10に矢印IIで示す、ステップS206およびステップS208の各工程で作製された中間型部材それぞれの比較について説明する。   Thereafter, as an example, a rubber member is poured into the space on the inner surface of the mold of the master mold member (the space surrounded by the surface of the master mold 82 and the inner surface of the wall surface) in step S208, and the inner surface of the mold of the master mold member An example of deriving the transfer accuracy in the process of producing the rubber mold 84 to which the space shape is transferred will be described. That is, a description will be given of a comparison between the intermediate mold members produced in steps S206 and S208 indicated by an arrow II in FIG.

図12は、ステップS206の工程直後の状態について説明する図である。図12(a)は、マスター型82を、マスター型82の周囲を囲うように配置された壁面92で囲う型枠94にセットして、マスター型82が型枠94にセットされた状態のマスター型部材90の概略斜視上面図である。図12(b)は、型枠94の四方の壁面92のうち一方の壁面(図12(a)中の下側の壁面)を除去した状態で、この除去した側からマスター型部材90の内部空間を観察した状態を示す概略側面図である。図12(c)は、マスター型部材90の上面の側の開放面に蓋体83を配置し、かつ、型枠94の四方の壁面92のうち一方の壁面を除去した状態で、この除去した側からマスター型部材90の内部空間を観察した状態を示す概略側面図である。蓋体83には、蓋体83を貫通する図示しないゴム部材流入孔が設けられており、このゴム部材流入孔から、図12(c)に示すマスター型部材90の内部空間95に、未硬化のゴム部材が流し込む構成になっている。ステップS208では、マスター型部材90の内部空間95に、ゴム部材流入孔から未硬化のゴム部材が流し込まれることで、金属製の蓋体83の表面に、マスター型82の表面と壁面92の内面とで囲まれた空間形状が転写されたゴム型84が作製される。   FIG. 12 is a diagram illustrating a state immediately after the process of step S206. FIG. 12A shows that the master mold 82 is set in a mold 94 surrounded by a wall 92 arranged so as to surround the master mold 82, and the master mold 82 is set in the mold 94. 3 is a schematic perspective top view of a mold member 90. FIG. FIG. 12B shows a state in which one of the four wall surfaces 92 of the mold 94 is removed (the lower wall surface in FIG. 12A), and the inside of the master mold member 90 is removed from the removed side. It is a schematic side view which shows the state which observed space. In FIG. 12C, the lid 83 is disposed on the open surface on the upper surface side of the master mold member 90, and one of the four wall surfaces 92 of the mold 94 is removed. It is a schematic side view which shows the state which observed the internal space of the master type | mold member 90 from the side. The lid 83 is provided with a rubber member inflow hole (not shown) penetrating the lid 83, and from this rubber member inflow hole, an uncured portion is provided in the internal space 95 of the master mold member 90 shown in FIG. The rubber member is poured. In step S208, an uncured rubber member is poured into the internal space 95 of the master mold member 90 from the rubber member inflow hole, so that the surface of the master mold 82 and the inner surface of the wall surface 92 are placed on the surface of the metal lid 83. A rubber mold 84 to which the space shape surrounded by is transferred is produced.

このようなゴム型84の作製においては、マスター型82や壁面92の硬度に対して硬化後のゴムの硬度が低いので、ゴムが内部に歪をもった状態で硬化されると、ゴム型基板84がマスター型部材90から取り外された状態(ゴム型の完成状態)で、ゴム型84の表面形状に歪みを生じる場合もある。このような歪みは、実際に作製したタイヤ形状の形状誤差に繋がる。また、ゴム型84の作製においては、マスター型部材90の内部空間95に、未硬化のゴム部材を流し込む際、マスター型部材90の内部空間95のマスター型82の表面部分に空気溜まりが発生し、この空気溜まりが残ったままゴムが硬化されることもある。このような空気溜まりは、当然、ゴム型84の形状結果となる。ゴム型の作製工程で生じる、すなわちステップS208の工程で生じる、このような歪みや欠陥の程度を正確に把握することは、ゴム型の作製工程(ステップS208の工程)自体の形状転写精度を向上させるうえで非常に重要である。本願第2の実施態様では、このような各工程における転写精度をそれぞれ正確に把握するため、少なくとも形状転写精度を検査したい転写工程後の中間型部材の3次元形状、をそれぞれ測定し、転写工程前の転写前中間型部材の3次元形状測定データと、転写工程後の転写後中間型部材の3次元形状測定データとを比較する。   In the production of such a rubber mold 84, the hardness of the rubber after curing is lower than the hardness of the master mold 82 and the wall surface 92. Therefore, when the rubber is cured in a state of being distorted inside, the rubber mold substrate In a state where 84 is removed from the master mold member 90 (completed state of the rubber mold), the surface shape of the rubber mold 84 may be distorted. Such distortion leads to a shape error of the actually produced tire shape. In the production of the rubber mold 84, when an uncured rubber member is poured into the internal space 95 of the master mold member 90, an air pocket is generated on the surface portion of the master mold 82 in the internal space 95 of the master mold member 90. In some cases, the rubber is cured while the air pocket remains. Such an air pocket naturally results in the shape of the rubber mold 84. Accurately grasping the degree of such distortion and defects that occur in the rubber mold manufacturing process, that is, in the process of step S208, improves the shape transfer accuracy of the rubber mold manufacturing process itself (step S208). It is very important in making it happen. In the second embodiment of the present application, in order to accurately grasp the transfer accuracy in each of these processes, at least the three-dimensional shape of the intermediate mold member after the transfer process whose shape transfer accuracy is desired to be inspected is measured. The three-dimensional shape measurement data of the previous pre-transfer intermediate mold member is compared with the three-dimensional shape measurement data of the post-transfer intermediate mold member after the transfer process.

ステップS208のゴム型基板の作製工程における形状転写精度を求めるには、ゴム型84特にゴムの表面形状と、マスター型部材90の内部空間95の表面形状とを比較すればよい。そのために、まず、マスター型部材90の内部空間95の表面形状を測定する。このような形状の測定および評価には、第1の実施形態で用いた3次元スキャナ18およびコンピュータ20を用いればよい。   In order to obtain the shape transfer accuracy in the rubber mold substrate manufacturing process in step S208, the surface shape of the rubber mold 84, particularly the rubber, may be compared with the surface shape of the internal space 95 of the master mold member 90. For this purpose, first, the surface shape of the internal space 95 of the master mold member 90 is measured. For such shape measurement and evaluation, the three-dimensional scanner 18 and the computer 20 used in the first embodiment may be used.

マスター型部材90の内部空間95の表面形状を測定するには、まず、枠体94に蓋体83が配置されていない状態で、蓋体83が配置されるべき上面の側から、マスター型部材90の内部空間の形状を測定する。すなわち、図12(a)に示すような測定範囲の3次元形状が測定される測定角度で、マスター型部材90の内部空間の3次元形状を測定する。そして、型枠94の四方の壁面92のうち一方の壁面を除去した状態で、この除去した側面の側からマスター型部材90の内部空間の形状を測定する。すなわち、図12(b)に示すような測定範囲の3次元形状が測定される測定角度で、マスター型部材90の内部空間の3次元形状を測定する。この側面の側からの測定は、マスター型基板82の四方を囲む壁面92のそれぞれの側から行なうことが好ましい。これらの測定によって得られた3次元測定データを合成することで、マスター型部材90の内部空間の、詳細な3次元形状の測定データが得られる。このような、マスター型部材90の内部空間の詳細な3次元形状の測定データは、例えば、コンピュータ20のメモリ40に記憶しておく。   In order to measure the surface shape of the internal space 95 of the master mold member 90, first, in a state where the lid body 83 is not disposed on the frame body 94, the master mold member is viewed from the upper surface side where the lid body 83 is to be disposed. The shape of 90 internal spaces is measured. That is, the three-dimensional shape of the internal space of the master mold member 90 is measured at a measurement angle at which the three-dimensional shape in the measurement range as shown in FIG. The shape of the internal space of the master mold member 90 is measured from the side of the removed side surface in a state where one of the four wall surfaces 92 of the mold 94 is removed. That is, the three-dimensional shape of the internal space of the master mold member 90 is measured at a measurement angle at which the three-dimensional shape in the measurement range as shown in FIG. The measurement from the side surface side is preferably performed from each side of the wall surface 92 surrounding the four sides of the master-type substrate 82. By combining the three-dimensional measurement data obtained by these measurements, detailed three-dimensional shape measurement data of the internal space of the master mold member 90 can be obtained. Such detailed measurement data of the three-dimensional shape of the internal space of the master mold member 90 is stored in the memory 40 of the computer 20, for example.

そして、ステップS208の処理が行われた後、作製されたゴム型84の3次元形状を測定する。この際、例えば、図11(b)に示すような測定範囲の3次元形状が測定される測定角度で3次元形状を測定した後、この上面と略垂直な四方の側面の側それぞれから3次元形状測定して、得られた3次元形状データを合成することで、ゴム型84の3次元形状測定データとしてもよい。このような、ゴム型部材84の内部空間の詳細な3次元形状の測定データは、例えば、コンピュータ20のメモリ40に記憶する。   And after the process of step S208 is performed, the three-dimensional shape of the produced rubber mold 84 is measured. At this time, for example, after measuring the three-dimensional shape at a measurement angle at which the three-dimensional shape in the measurement range as shown in FIG. 11B is measured, the three-dimensional shape is measured from each of the four side surfaces substantially perpendicular to the upper surface. The three-dimensional shape measurement data of the rubber mold 84 may be obtained by measuring the shape and synthesizing the obtained three-dimensional shape data. The detailed measurement data of the three-dimensional shape of the internal space of the rubber mold member 84 is stored in the memory 40 of the computer 20, for example.

そして、例えば、コンピュータ20の基準点導出部45が、マスター型部材90の内部空間の3次元形状測定データ、およびゴム型部材84の3次元形状測定データをそれぞれ読み出し、それぞれの3次元形状測定データからそれぞれ基準点を導出する。この際、基準点としては、3次元形状のうち、タイヤの形状に対応していない部分を基準点とすることが好ましい。これは、タイヤの形状に対応する部分の形状は比較的単調であり(詳細なタイヤ溝部分は除くが)、基準点を導出するのは困難であり、また、複雑な形状を有するタイヤ溝部分は、最も詳細に転写精度を評価したい対象部分そのものであり、このような部分を基準点として比較することは好ましくないからである。   Then, for example, the reference point deriving unit 45 of the computer 20 reads out the three-dimensional shape measurement data of the internal space of the master mold member 90 and the three-dimensional shape measurement data of the rubber mold member 84, respectively. A reference point is derived from each. At this time, as a reference point, it is preferable to use a portion of the three-dimensional shape that does not correspond to the tire shape as the reference point. This is because the shape of the portion corresponding to the shape of the tire is relatively monotonous (except for the detailed tire groove portion), it is difficult to derive the reference point, and the tire groove portion having a complicated shape This is because it is the target portion itself for which the transfer accuracy is to be evaluated in the most detail, and it is not preferable to compare such a portion as a reference point.

本例では、基準点として、マスター型82における、タイヤ形状部分と周囲部分との境界部分にある角部91に対応する点(図11および図12参照)を基準点とする。このような基準点は測定も容易であり、また、形状も特徴的であるので、3次元形状測定データから抽出することも容易である。   In this example, the reference point is a point (see FIGS. 11 and 12) corresponding to the corner 91 in the boundary portion between the tire shape portion and the surrounding portion in the master die 82. Such a reference point can be easily measured, and the shape is also characteristic, so that it can be easily extracted from the three-dimensional shape measurement data.

そして、例えばコンピュータ20の比較部46において、マスター型部材90の内部空間の3次元形状測定データ、およびゴム型部材84の3次元形状測定データそれぞれの基準点を一致させた状態で、2つの3次元形状測定データの各測定それぞれのずれ量を導出する。このようにして導出されたずれ量は、ステップS208のゴム型の作製工程自体の形状転写精度を、良好に表しているといえる。   Then, for example, in the comparison unit 46 of the computer 20, the three three-dimensional shape measurement data of the internal space of the master mold member 90 and the three-dimensional shape measurement data of the rubber mold member 84 are matched with each other. A deviation amount of each measurement of the dimensional shape measurement data is derived. It can be said that the amount of deviation derived in this way well represents the shape transfer accuracy of the rubber mold manufacturing process itself in step S208.

そして、例えば、コンピュータ20に接続されたディスプレイ24などに、このような比較結果を表示する。比較結果としては、ゴム型84の各測定点について、マスター型部材90の内部空間の3次元形状測定データに対するずれ量の絶対値を、各測定点毎に出力してもよい。また、各測定点毎に、マスター型部材90の内部空間の3次元形状測定データに対するずれ量の絶対値と、予め定められた設計公差値とを比較し、この設計公差値と比べてずれ量の絶対値が大きい測定点についてのみ、設計公差値よりもずれ量が大きい旨を表示出力してもよい。また、例えば、ゴム型84の3次元形状測定データに応じた3次元モデルをディスプレイに表示し、予め定められた設計公差値よりもずれ量が大きな測定点について、他の測定点と異なる色で表現して、ディスプレイを見る観察者に対して、設計公差値よりもずれ量が大きい部分を視覚的に示してもよい。また、図示しないマーキング手段を用いて、実際のゴム型84の、予め定められた設計公差値よりもずれ量が大きな測定点に対応する部分のみを、マーキングしてもよい。   Then, for example, such a comparison result is displayed on the display 24 connected to the computer 20 or the like. As a comparison result, for each measurement point of the rubber mold 84, an absolute value of a deviation amount with respect to the three-dimensional shape measurement data of the internal space of the master mold member 90 may be output for each measurement point. Further, for each measurement point, the absolute value of the deviation amount with respect to the three-dimensional shape measurement data of the internal space of the master mold member 90 is compared with a predetermined design tolerance value, and the deviation amount is compared with this design tolerance value. Only a measurement point having a large absolute value may be displayed and output indicating that the deviation amount is larger than the design tolerance value. Further, for example, a three-dimensional model corresponding to the three-dimensional shape measurement data of the rubber mold 84 is displayed on the display, and a measurement point whose deviation amount is larger than a predetermined design tolerance value is different in color from other measurement points. It is also possible to visually represent a portion where the amount of deviation is larger than the design tolerance value for the observer who views the display. Further, by using marking means (not shown), only a portion of the actual rubber mold 84 corresponding to a measurement point having a larger deviation amount than a predetermined design tolerance value may be marked.

上述の実施例では、ステップS208のゴム型84を作製する工程における、転写精度を導出する例、すなわち、図10に矢印IIで示す、ステップS206およびステップS208の各工程で作製された中間型部材それぞれの比較について説明した。本願第2の実施形態で、転写精度を導出する工程は、このような工程に限定されない。例えば、マスター型82の表面形状と、ゴム型84の表面形状とを比較することで、図10のステップS206〜ステップS208の2つの工程を経た際の、形状転写精度を導出してもよい(図10中の矢印I)。これは、例えば、マスター型82を型枠94にセットする段階の、マスター型82に対する型枠94の設置位置ずれも加味して、転写精度を評価したい場合などにおいて有効である。また、同様に、ゴム型84と石膏型86の表面形状とを比較することで、図10のステップS210〜ステップS212の2つの工程を経た際の、形状転写精度を導出してもよい(図10中の矢印III)。また、ステップS212の石膏型基板86を作製する工程における、転写精度を導出する場合など、図10に矢印IVで示す、ステップS210およびステップS212の各工程で作製された中間型部材それぞれを比較すればよい。また、同様に、石膏型86とモールド88の表面形状とを比較することで、図10のステップS212〜ステップS218の工程を経た際の、形状転写精度を導出してもよい(図10中の矢印V)。また、ステップS218の、鋳造によりモールド88を作製する工程における、転写精度を導出する場合など、図10に矢印VIで示す、ステップS216およびステップS218の各工程で作製された中間型部材それぞれを比較すればよい。なお、本願第2の実施態様で、転写精度を検査する各工程は、図10のフローチャートの右側に矢印で示されている工程間であることに限定されず、例えば、マスター型と石膏型を比較したり、ゴム型とモールドとを比較することもできる。また、図10のフローチャートの左側に矢印は、本願発明の第1の実施態様で比較する3次元形状データの組み合わせの例を示していることは、いうまでもない。   In the above-described embodiment, an example of deriving the transfer accuracy in the process of producing the rubber mold 84 in step S208, that is, the intermediate mold member produced in each process of step S206 and step S208 indicated by an arrow II in FIG. Each comparison was explained. In the second embodiment of the present application, the process of deriving the transfer accuracy is not limited to such a process. For example, by comparing the surface shape of the master mold 82 and the surface shape of the rubber mold 84, the shape transfer accuracy when the two processes of Step S206 to Step S208 in FIG. Arrow I) in FIG. This is effective when, for example, it is desired to evaluate the transfer accuracy in consideration of the installation position shift of the mold 94 with respect to the master mold 82 when the master mold 82 is set on the mold 94. Similarly, by comparing the surface shapes of the rubber mold 84 and the plaster mold 86, the shape transfer accuracy when the two processes of Step S210 to Step S212 of FIG. 10 are performed may be derived (FIG. Arrow III in 10). Further, in the case of deriving the transfer accuracy in the process of manufacturing the gypsum mold substrate 86 in step S212, the intermediate mold members manufactured in each process of step S210 and step S212 indicated by arrow IV in FIG. 10 are compared. That's fine. Similarly, by comparing the surface shapes of the plaster mold 86 and the mold 88, the shape transfer accuracy when the steps S212 to S218 in FIG. 10 are performed may be derived (in FIG. 10). Arrow V). Further, in the case of deriving the transfer accuracy in the step of producing the mold 88 by casting in step S218, the intermediate mold members produced in the steps S216 and S218 shown by the arrow VI in FIG. 10 are compared. do it. In the second embodiment of the present application, each process for inspecting the transfer accuracy is not limited to the process indicated by an arrow on the right side of the flowchart in FIG. 10. For example, a master mold and a plaster mold are used. It is also possible to compare the rubber mold and the mold. Needless to say, the arrow on the left side of the flowchart of FIG. 10 shows an example of a combination of three-dimensional shape data to be compared in the first embodiment of the present invention.

なお、上述のように石膏型86は、ステップS216に示す型枠のセットが行なわれるに先がけて、乾燥処理が長時間行われる。本願第2の実施形態では、ステップS216の乾燥処理における各段階で、石膏型86の3次元形状を測定し、乾燥処理における形状の経時変化の程度(いうなれば、形状維持精度)を導出してもよい。3次元スキャナ18は、短時間で3次元形状を測定することができるので、ステップS216の乾燥処理における石膏型基板86の経時変化を、細かい時間単位で詳細に導出することができる。上述の各場合それぞれにおいても、基準点として、マスター型82における、タイヤ形状部分と周囲部分との境界部分にある角部91に対応する点(図10および図11参照)を基準点とすればよい。   As described above, the gypsum mold 86 is subjected to a drying process for a long time prior to the setting of the form shown in step S216. In the second embodiment of the present application, the three-dimensional shape of the gypsum mold 86 is measured at each stage in the drying process in step S216, and the degree of change with time in the drying process (in other words, the shape maintenance accuracy) is derived. Good. Since the three-dimensional scanner 18 can measure the three-dimensional shape in a short time, the change with time of the gypsum-type substrate 86 in the drying process in step S216 can be derived in detail in fine time units. In each of the above cases, if the reference point is a point (see FIGS. 10 and 11) corresponding to the corner 91 in the boundary portion between the tire shape portion and the surrounding portion in the master die 82, as the reference point. Good.

以上、本発明のタイヤ型部材検査方法、タイヤ型部材検査装置、および型部材作製工程精度検査方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。   As described above, the tire mold member inspection method, the tire mold member inspection apparatus, and the mold member manufacturing process accuracy inspection method of the present invention have been described in detail. However, the present invention is not limited to the above embodiment and does not depart from the gist of the present invention. Of course, various improvements and changes may be made in the range.

本発明のタイヤ型部材検査装置の一例について説明する概略構成図である。It is a schematic block diagram explaining an example of the tire type | mold member test | inspection apparatus of this invention. 図1に示すタイヤ型部材検査装置における、コンピュータについて説明する概略構成図である。It is a schematic block diagram explaining the computer in the tire type | mold member test | inspection apparatus shown in FIG. 図1に示すタイヤ型部材検査装置における、3次元スキャナについて説明する概略構成図である。It is a schematic block diagram explaining the three-dimensional scanner in the tire type | mold member test | inspection apparatus shown in FIG. (a)は、図1に示すタイヤ型部材検査装置で3次元形状を測定する対象型部材である部分モールドが、他の複数の部分モールドとともにタイヤ加硫機に設置された状態を示す概略上面図であり、(b)は、部分モールドについて説明する概略上面図である。(A) is a schematic top view showing a state where a partial mold, which is a target mold member for measuring a three-dimensional shape by the tire mold member inspection apparatus shown in FIG. 1, is installed in a tire vulcanizer together with other partial molds. It is a figure and (b) is a schematic top view explaining a partial mold. (a)および(b)は、モールド部材設計データの示す3次元形状データを示す概略図であり、(a)は概略斜視図に対応し、(b)は概略上面図に対応する図である。(A) And (b) is the schematic which shows the three-dimensional shape data which mold member design data shows, (a) is equivalent to a schematic perspective view, (b) is a figure corresponding to a schematic top view. . 本発明のタイヤ型部材検査方法の一例のフローチャート図である。It is a flowchart figure of an example of the tire type | mold member inspection method of this invention. 鏡を利用して型部材の3次元形状を測定する方法について説明する、概略構成図である。It is a schematic block diagram explaining the method to measure the three-dimensional shape of a type | mold member using a mirror. モールド測定データにおける測定データ基準点の一例の導出について説明する図であり、図8(a)はモールド測定データが示す3次元形状の概略斜視図に対応する図であり、図8(b)はモールド測定データが示す3次元形状の概略上面図に対応する図である。It is a figure explaining derivation | leading-out of an example of the measurement data reference point in mold measurement data, FIG.8 (a) is a figure corresponding to the schematic perspective view of the three-dimensional shape which mold measurement data shows, FIG.8 (b) is FIG. It is a figure corresponding to the schematic top view of the three-dimensional shape which mold measurement data shows. モールド測定データにおける測定データ基準点の他の例の導出について説明する図であり、モールド測定データが示す3次元形状の概略上面図に対応する図である。It is a figure explaining derivation | leading-out of the other example of the measurement data reference point in mold measurement data, and is a figure corresponding to the schematic top view of the three-dimensional shape which mold measurement data shows. 各種型部材の形状を順次転写してタイヤ作製用のモールド金型を作製する、モールドの作製工程の一例について説明するフローチャート図である。It is a flowchart figure explaining an example of the production process of a mold which transfers the shape of various mold members sequentially, and produces the mold metal mold for tire preparation. 図10に示すモールド金型の作製工程において作製される各種中間型部材のうち、各種の型基板の概略斜視図である。It is a schematic perspective view of various type | mold board | substrates among the various intermediate mold members produced in the production process of the mold die shown in FIG. (a)〜(c)は、マスター型が型枠にセットされた状態のマスター型部材について説明する図である、(a)は、マスター型部材の概略上面図、(b)は、マスター型部材を囲う壁面の一部を除去した状態におけるマスター型部材の概略側面図、(c)は、マスター型部材の上面の側の開放面に蓋体を配置した状態での概略側面図をそれぞれ示している。(A)-(c) is a figure explaining the master type | mold member of the state by which the master type | mold was set to the formwork, (a) is a schematic top view of a master type | mold member, (b) is a master type | mold. The schematic side view of the master mold member in a state in which a part of the wall surface surrounding the member is removed, (c) shows a schematic side view in a state where a lid is disposed on the open surface on the upper surface side of the master mold member. ing.

符号の説明Explanation of symbols

10 3次元形状測定装置
12 載置台
14 ステージ
15 載置面
16 ステージ移動手段
18 3次元スキャナ
20 コンピュータ
22 入力手段
24 ディスプレイ
30 部分モールド部材
31 加硫コンテナ
32 タイヤ面
35 垂直表面
36 載置用表面
40 メモリ
41 CPU
42 処理手段
43 動作制御部
44 データ取得部
45 基準点導出部
46 比較部
47 CPU
48 ドライバー回路
49 レーザダイオード
50 ガルバノミラー
51,52 光学系
53 CCD素子
54 AD変換器
55 FIFO
56 信号処理プロセッサ
57 フレームメモリ
60 モールド設計データ
62 タイヤ面部分
64 モールド背面部分
65 垂直表面部
66 載置用表面部分
70 モールド測定データ
72 タイヤ面部分
74 モールド背面部分
75 垂直表面部分
77 載置面測定データ
82 マスター型
83 蓋体
84 ゴム型
86 石膏型
88 モールド
90 マスター型部材
92 壁面
94 型枠
95 内部空間
DESCRIPTION OF SYMBOLS 10 3D shape measuring apparatus 12 Mounting stand 14 Stage 15 Mounting surface 16 Stage moving means 18 3D scanner 20 Computer 22 Input means 24 Display 30 Partial molding member 31 Vulcanization container 32 Tire surface 35 Vertical surface 36 Mounting surface 40 Memory 41 CPU
42 processing means 43 operation control unit 44 data acquisition unit 45 reference point derivation unit 46 comparison unit 47 CPU
48 Driver circuit 49 Laser diode 50 Galvano mirror 51,52 Optical system 53 CCD element 54 AD converter 55 FIFO
56 signal processor 57 frame memory 60 mold design data 62 tire surface portion 64 mold back surface portion 65 vertical surface portion 66 mounting surface portion 70 mold measurement data 72 tire surface portion 74 mold back surface portion 75 vertical surface portion 77 mounting surface measurement Data 82 Master mold 83 Cover body 84 Rubber mold 86 Plaster mold 88 Mold 90 Master mold member 92 Wall surface 94 Mold frame 95 Internal space

Claims (13)

作製したいタイヤのトレッド面形状に応じた3次元形状設計データに基づいて作製された、タイヤ作製用の型部材の形状精度を検査する方法であって、
前記3次元形状設計データを取得し、
前記型部材の3次元形状を計測し、
計測によって取得された型部材3次元測定データと、前記型部材の3次元設計データとを比較することで、作製された前記型部材の形状の、前記3次元設計データからのずれ量を導出するものであり、
前記型部材は、タイヤ一周分のトレッド面形状をタイヤ周方向に沿って複数の部分に分割した部分形状の1つに対応すると共にそれぞれが連結して配置されることでタイヤ金型をなす複数の部分モールド、または、前記部分モールドを作製するためのマスター型であり
前記型部材の3次元形状を測定する際、載置平面を有する基板の前記載置平面に前記型部材が載置された状態で、少なくとも、前記載置平面の少なくとも一部の表面形状と、前記型部材のうち前記トレッド面形状に対応する表面部分であるタイヤ面と、前記型部材の前記タイヤ面と対向する側の表面である部材背面の少なくとも一部と、の3次元形状を測定し、
比較の際、前記載置平面の3次元測定データ、前記型部材の前記タイヤ面の3次元測定データ、および前記型部材の前記部材背面の3次元測定データに基づき、前記型部材3次元測定データにおける測定データ基準点を設定し、
前記測定データ基準点と、前記測定データ基準点に対応する前記3次元設計データにおける設計データ基準点とを一致させて、前記型部材3次元測定データと前記3次元設計データとを同一座標空間上に配置し、この配置状態で、前記型部材の前記3次元測定データと前記3次元設計データとのずれ量を導出することを特徴とするタイヤ型部材検査方法。
A method for inspecting the shape accuracy of a mold member for tire production, which is produced based on the three-dimensional shape design data corresponding to the tread surface shape of a tire to be produced,
Obtaining the three-dimensional shape design data;
Measure the three-dimensional shape of the mold member,
By comparing the three-dimensional measurement data of the mold member acquired by measurement and the three-dimensional design data of the mold member, a deviation amount of the shape of the produced mold member from the three-dimensional design data is derived. Is,
The mold member corresponds to one of the partial shapes obtained by dividing the tread surface shape for one round of the tire into a plurality of portions along the tire circumferential direction, and a plurality of the mold members are connected to each other to form a tire mold. Or a master mold for producing the partial mold ,
When measuring the three-dimensional shape of the mold member, in a state where the mold member is mounted on the mounting plane of the substrate having a mounting plane, at least a surface shape of at least a part of the mounting plane; A three-dimensional shape of a tire surface which is a surface portion corresponding to the tread surface shape of the mold member and at least a part of a member back surface which is a surface of the mold member facing the tire surface is measured. ,
At the time of comparison, based on the three-dimensional measurement data of the mounting plane, the three-dimensional measurement data of the tire surface of the mold member, and the three-dimensional measurement data of the rear surface of the mold member, the mold member three-dimensional measurement data Set the measurement data reference point at
By matching the measurement data reference point with the design data reference point in the three-dimensional design data corresponding to the measurement data reference point, the mold member three-dimensional measurement data and the three-dimensional design data are placed in the same coordinate space. And in this arrangement state, a deviation amount between the three-dimensional measurement data and the three-dimensional design data of the mold member is derived.
前記部材背面の前記一部は、前記部分モールドをタイヤ作製のための加硫機に配置した際の、前記部分モールドの配置位置の基準となる配置基準点を少なくとも含み、
前記比較の際、前記型部材3次元測定データから前記配置基準点に対応する点を抽出し、この抽出した点を前記測定データ基準点として設定することを特徴とする請求項記載のタイヤ型部材検査方法。
The part of the rear surface of the member includes at least an arrangement reference point serving as a reference for an arrangement position of the partial mold when the partial mold is arranged in a vulcanizer for manufacturing a tire.
During the comparison, the type wherein the member 3 dimensional measurement data extracting a point corresponding to the arrangement reference point, tire type according to claim 1, wherein setting the point that the extracted as the measurement data reference point Member inspection method.
前記型部材は、作製したい前記タイヤの赤道面に対応する前記タイヤ面を通る平面に平行な載置用表面を備え、
前記型部材の3次元形状を測定する際、前記載置用表面と前記基板の前記載置面とが当接されて、前記型部材が前記載置平面に載置された状態で、少なくとも、前記載置平面の一部の表面形状と、前記型部材の前記タイヤ面と、前記部材背面の前記一部との3次元形状を測定し、
測定した前記載置平面の一部の表面形状と、前記型部材の前記タイヤ面と、前記部材背面の前記一部との3次元測定データを用いて、前記測定データ基準点を設定することを特徴とする請求項記載のタイヤ型部材検査方法。
The mold member includes a mounting surface parallel to a plane passing through the tire surface corresponding to the equator plane of the tire to be manufactured,
When measuring the three-dimensional shape of the mold member, the mounting surface is in contact with the mounting surface of the substrate, and the mold member is placed on the mounting plane, at least, Measuring the three-dimensional shape of the surface shape of a part of the mounting plane, the tire surface of the mold member, and the part of the back surface of the member;
The measurement data reference point is set using the three-dimensional measurement data of the measured surface shape of a part of the mounting plane, the tire surface of the mold member, and the part of the member back surface. The tire mold member inspection method according to claim 2 , wherein the tire mold member is inspected.
前記型部材の前記部材背面は、前記載置用表面と略垂直な垂直表面部分を少なくとも含み、
前記型部材の3次元形状を測定する際、前記載置用表面と前記載置面とが当接されて前記型部材が前記載置平面に載置されて、前記垂直表面部分が前記載置面に垂直となった状態で、
少なくとも、前記載置平面の一部の表面形状と、前記型部材の前記タイヤ面と、前記垂直表面部分と、の3次元形状を測定することを特徴とする、請求項記載のタイヤ型部材検査方法。
The member back surface of the mold member includes at least a vertical surface portion substantially perpendicular to the mounting surface,
When measuring the three-dimensional shape of the mold member, the mounting surface and the mounting surface are brought into contact with each other, the mold member is mounted on the mounting plane, and the vertical surface portion is mounted on the mounting surface. In a state perpendicular to the surface,
The tire mold member according to claim 3 , wherein at least a three-dimensional shape of the surface shape of a part of the mounting plane, the tire surface of the mold member, and the vertical surface portion is measured. Inspection method.
前記比較の際、前記載置平面の3次元測定データに基づき、前記載置平面に対応する第1の平面を設定し、前記タイヤ面の3次元測定データを用いて、前記第1の平面と平行な前記タイヤ面を通る第2の平面を設定し、
前記タイヤ面の3次元測定データの表す面と前記第2の平面との交線と、この交線の両端部を結ぶ直線に平行なそれぞれ異なる複数の直線それぞれと、のそれぞれ異なる2つの交点の組み合わせを複数抽出し、
各組み合わせにおける2交点を結んだ複数の線分それぞれの中点を導出し、
導出した複数の中点に基づいて、この中点を同一直線上の点として近似する近似直線を導出し、
この近似直線を含む前記第1の平面に垂直な第3の平面を設定し、設定した前記第3の平面と前記部材背面との交線を導出し、
この交線の中点を、前記基準点として設定することを特徴とする請求項記載のタイヤ型部材検査方法。
In the comparison, based on the three-dimensional measurement data of the mounting plane, a first plane corresponding to the mounting plane is set, and the first plane is determined using the three-dimensional measurement data of the tire surface. Set a second plane through the parallel tire surfaces;
The intersection of the surface represented by the three-dimensional measurement data of the tire surface and the second plane, and each of a plurality of different straight lines parallel to a straight line connecting both ends of the intersection, Extract multiple combinations,
Deriving the midpoint of each of multiple line segments connecting two intersections in each combination,
Based on the derived midpoints, an approximate straight line that approximates the midpoint as a point on the same straight line is derived,
Setting a third plane perpendicular to the first plane including the approximate straight line, and deriving a line of intersection between the set third plane and the back of the member;
The tire mold member inspection method according to claim 4 , wherein a midpoint of the intersection line is set as the reference point.
前記型部材の3次元形状測定データは、3次元スキャナを用いて取得され、
前記3次元スキャナは、前記型部材に投射光を照射して、前記投射光の前記型部材の表面からの反射光を検知することで、前記型部材の3次元測定データを得るものであり、
前記型部材の少なくとも一部の表面に光を照射する際、鏡を介して前記型部材に前記投射光を照射し、前記投射光の前記型部材の前記表面からの反射光を、前記鏡を介して検知することを特徴とする請求項2〜5のいずれかに記載のタイヤ型部材検査方法。
The three-dimensional shape measurement data of the mold member is acquired using a three-dimensional scanner,
The three-dimensional scanner obtains three-dimensional measurement data of the mold member by irradiating the mold member with projection light and detecting reflected light from the surface of the mold member of the projection light,
When irradiating at least a part of the surface of the mold member with light, the mold member is irradiated with the projection light through a mirror, and the reflected light from the surface of the mold member is reflected on the mirror. The tire mold member inspection method according to claim 2 , wherein the tire mold member inspection method is performed.
さらに、前記3次元形状測定データ測定データが表す形状および前記3次元形状設計データが表す形状の少なくともいずれか一方を、表示画面上に表示する表示出力ステップを有し、
前記表示出力ステップでは、前記ずれ量が、予め定められた設計公差値よりも大きいと判定された測定点については、他の測定点と異なる表示形態で表示することを特徴とする請求項〜6のいずれかに記載のタイヤ型部材検査方法。
And a display output step for displaying on the display screen at least one of the shape represented by the three-dimensional shape measurement data measurement data and the shape represented by the three-dimensional shape design data,
Wherein the display output step, the deviation amount is, for the measurement points is determined to be greater than the predetermined design tolerance value, claims 2 to which and displaying in a different display form and the other measurement points The tire mold member inspection method according to any one of claims 6 to 10.
さらに、前記ずれ量が前記設計公差値よりも大きいと判定された測定点に対応する位置に、マーキングするステップを有することを特徴とする請求項記載のタイヤ型部材検査方法。 The tire mold member inspection method according to claim 7 , further comprising a step of marking a position corresponding to a measurement point at which the deviation amount is determined to be larger than the design tolerance value. 作製したいタイヤのトレッド面形状に応じた3次元形状設計データに基づいて作製された、タイヤ作製用の型部材の形状精度を検査する方法であって、
前記3次元形状設計データを取得し、
前記型部材の3次元形状を計測し、
計測によって取得された型部材3次元測定データと、前記型部材の3次元設計データとを比較することで、作製された前記型部材の形状の、前記3次元設計データからのずれ量を導出するものであり、
前記型部材は、タイヤ一周分のトレッド面形状をタイヤ周方向に沿って複数の部分に分割した部分形状の1つに対応すると共にそれぞれが連結して配置されることでタイヤ金型をなす複数の部分モールド、または、前記部分モールドを作製するためのマスター型であり、
前記型部材の3次元形状を測定する際、載置平面を有する基板の前記載置平面に前記型部材が載置された状態で、少なくとも、前記載置平面の少なくとも一部の表面形状と、前記型部材のうち前記トレッド面形状に対応する表面部分であるタイヤ面と、の3次元形状を測定し、
比較の際、前記載置平面の3次元測定データ、および前記型部材の前記タイヤ面の3次元測定データに基づき、作製したい前記タイヤの中心軸に対応する設計中心軸線上の少なくとも一点を導出して、導出した前記一点を、前記型部材3次元測定データにおける測定データ基準点として設定測定データ基準点を設定し、
前記測定データ基準点と、前記測定データ基準点に対応する前記3次元設計データにおける設計データ基準点とを一致させて、前記型部材3次元測定データと前記3次元設計データとを同一座標空間上に配置し、この配置状態で、前記型部材の前記3次元測定データと前記3次元設計データとのずれ量を導出し、
前記比較の際、前記載置平面の3次元測定データに基づき、前記載置平面に対応する第1の平面を設定し、前記タイヤ面の3次元測定データを用いて、前記第1の平面と平行な前記タイヤ面を通る第2の平面を設定し、
前記タイヤ面の3次元測定データの表す面と前記第2の平面との交線から、それぞれ異なる2点の組み合わせを複数抽出し、各組み合わせの2点を結んだ複数の線分それぞれの垂直2等分線のうち、異なる2つの垂直2等分線の交点の全てを導出し、導出した複数の交点に基づいて、前記設計中心軸線上の点を近似して表す軸心点を規定し、
この軸心点を通り前記第1の平面と垂直な線と、作製したい前記タイヤの中心軸に対応する、前記型部材の3次元設計データにおける設計中心軸線と、を一致させて、前記3次元測定データの前記測定データ基準点以外の位置の前記ずれ量を導出することを特徴とするタイヤ型部材検査方法。
A method for inspecting the shape accuracy of a mold member for tire production, which is produced based on the three-dimensional shape design data corresponding to the tread surface shape of a tire to be produced,
Obtaining the three-dimensional shape design data;
Measure the three-dimensional shape of the mold member,
By comparing the three-dimensional measurement data of the mold member acquired by measurement and the three-dimensional design data of the mold member, a deviation amount of the shape of the produced mold member from the three-dimensional design data is derived. Is,
The mold member corresponds to one of the partial shapes obtained by dividing the tread surface shape for one round of the tire into a plurality of portions along the tire circumferential direction, and a plurality of the mold members are connected to each other to form a tire mold. Or a master mold for producing the partial mold,
When measuring the three-dimensional shape of the mold member, in a state where the mold member is mounted on the mounting plane of the substrate having a mounting plane, at least a surface shape of at least a part of the mounting plane; Measure the three-dimensional shape of the mold member and the tire surface, which is the surface portion corresponding to the tread surface shape,
At the time of comparison, at least one point on the design central axis corresponding to the central axis of the tire to be produced is derived based on the three-dimensional measurement data on the mounting plane and the three-dimensional measurement data on the tire surface of the mold member. And setting the derived one point as a measurement data reference point in the mold member three-dimensional measurement data, setting a measurement data reference point ,
By matching the measurement data reference point with the design data reference point in the three-dimensional design data corresponding to the measurement data reference point, the mold member three-dimensional measurement data and the three-dimensional design data are placed in the same coordinate space. In this arrangement state, a deviation amount between the three-dimensional measurement data of the mold member and the three-dimensional design data is derived,
In the comparison, based on the three-dimensional measurement data of the mounting plane, a first plane corresponding to the mounting plane is set, and the first plane is determined using the three-dimensional measurement data of the tire surface. Set a second plane through the parallel tire surfaces;
A plurality of combinations of two different points are extracted from the intersection line between the surface represented by the three-dimensional measurement data of the tire surface and the second plane, and each of a plurality of line segments connecting the two points of each combination 2 Deriving all of the intersections of two different perpendicular bisectors of the bisectors, and defining an axial center point representing the points on the design center axis based on the plurality of derived intersections,
A line passing through this axial center point and perpendicular to the first plane and a design center axis in the three-dimensional design data of the mold member corresponding to the center axis of the tire to be manufactured are matched, and the three-dimensional features and to filter ear type member inspection method that derives the deviation amount of the position other than the measurement data reference point of the measurement data.
前記軸心点として、導出した複数の交点の重心点を導出することを特徴とする請求項記載のタイヤ型部材検査方法。 The tire mold member inspection method according to claim 9 , wherein a barycentric point of a plurality of derived intersections is derived as the axial point. 前記型部材の前記3次元設計データは、前記設計中心軸線と、作製したいタイヤの半径のデータとで表された、断面が真円状の3次元形状データであり、
前記比較の際、前記近似中心軸線と前記設計中心軸線とを一致させて、
前記3次元測定データと、断面が真円状の前記3次元設計データとのずれ量を導出することを特徴とする請求項または10記載のタイヤ型部材検査方法。
The three-dimensional design data of the mold member is three-dimensional shape data having a perfect cross section represented by the design center axis and data of a radius of a tire to be manufactured.
In the comparison, the approximate center axis and the design center axis are matched,
The tire type member inspection method according to claim 9 or 10 , wherein a deviation amount between the three-dimensional measurement data and the three-dimensional design data having a perfect circular cross section is derived.
作製したいタイヤのトレッド面形状に応じた3次元形状設計データに基づいて作製された、タイヤ作製用の型部材の形状精度を検査する装置であって、
前記3次元形状設計データを取得する手段と、
前記型部材の3次元形状を計測する手段と、
計測によって取得された型部材3次元測定データと、前記型部材の3次元設計データとを比較することで、作製された前記型部材の形状の、前記3次元設計データからのずれ量を導出する手段と、を有し、
前記型部材は、タイヤ一周分のトレッド面形状をタイヤ周方向に沿って複数の部分に分割した部分形状の1つに対応すると共にそれぞれが連結して配置されることでタイヤ金型をなす複数の部分モールド、または、前記部分モールドを作製するためのマスター型であり
前記型部材の3次元形状を計測する手段は、載置平面を有する基板の前記載置平面に前記型部材が載置された状態で、少なくとも、前記載置平面の少なくとも一部の表面形状と、前記型部材のうち前記トレッド面形状に対応する表面部分であるタイヤ面と、前記型部材の前記タイヤ面と対向する側の表面である部材背面の少なくとも一部と、の3次元形状を測定し、
前記導出する手段では、比較の際、前記載置平面の3次元測定データ、前記型部材の前記タイヤ面の3次元測定データ、および前記型部材の前記部材背面の3次元測定データに基づき、前記型部材3次元測定データにおける測定データ基準点を設定し、前記測定データ基準点と、前記測定データ基準点に対応する前記3次元設計データにおける設計データ基準点とを一致させて、前記型部材3次元測定データと前記3次元設計データとを同一座標空間上に配置し、この配置状態で、前記型部材の前記3次元測定データと前記3次元設計データとのずれ量を導出することを特徴とする、タイヤ型部材検査装置。
An apparatus for inspecting the shape accuracy of a mold member for tire production, which is produced based on three-dimensional shape design data corresponding to the tread surface shape of a tire to be produced,
Means for acquiring the three-dimensional shape design data;
Means for measuring the three-dimensional shape of the mold member;
By comparing the three-dimensional measurement data of the mold member acquired by measurement and the three-dimensional design data of the mold member, a deviation amount of the shape of the produced mold member from the three-dimensional design data is derived. Means,
The mold member corresponds to one of the partial shapes obtained by dividing the tread surface shape for one round of the tire into a plurality of portions along the tire circumferential direction, and a plurality of the mold members are connected to each other to form a tire mold. Or a master mold for producing the partial mold ,
The means for measuring the three-dimensional shape of the mold member includes at least a surface shape of at least a part of the placement plane in a state where the mold member is placed on the placement plane of the substrate having the placement plane. Measure a three-dimensional shape of a tire surface which is a surface portion corresponding to the tread surface shape of the mold member and at least a part of a member back surface which is a surface of the mold member facing the tire surface. And
In the means for deriving, in the comparison, based on the three-dimensional measurement data of the mounting plane, the three-dimensional measurement data of the tire surface of the mold member, and the three-dimensional measurement data of the rear surface of the mold member , A measurement data reference point in the mold member three-dimensional measurement data is set, and the measurement data reference point is matched with a design data reference point in the three-dimensional design data corresponding to the measurement data reference point. Dimensional measurement data and the three-dimensional design data are arranged on the same coordinate space, and in this arrangement state, a deviation amount between the three-dimensional measurement data and the three-dimensional design data of the mold member is derived. A tire mold member inspection device.
作製したいタイヤのトレッド面形状に応じた3次元形状設計データに基づいて作製された、タイヤ作製用の型部材の形状精度を検査する装置であって、An apparatus for inspecting the shape accuracy of a mold member for tire production, which is produced based on three-dimensional shape design data corresponding to the tread surface shape of a tire to be produced,
前記3次元形状設計データを取得する手段と、Means for acquiring the three-dimensional shape design data;
前記型部材の3次元形状を計測する手段と、Means for measuring the three-dimensional shape of the mold member;
計測によって取得された型部材3次元測定データと、前記型部材の3次元設計データとを比較することで、作製された前記型部材の形状の、前記3次元設計データからのずれ量を導出する手段と、を有し、By comparing the three-dimensional measurement data of the mold member acquired by measurement and the three-dimensional design data of the mold member, a deviation amount of the shape of the produced mold member from the three-dimensional design data is derived. Means,
前記型部材は、タイヤ一周分のトレッド面形状をタイヤ周方向に沿って複数の部分に分割した部分形状の1つに対応すると共にそれぞれが連結して配置されることでタイヤ金型をなす複数の部分モールド、または、前記部分モールドを作製するためのマスター型であり、The mold member corresponds to one of the partial shapes obtained by dividing the tread surface shape for one round of the tire into a plurality of portions along the tire circumferential direction, and a plurality of the mold members are connected to each other to form a tire mold. Or a master mold for producing the partial mold,
前記型部材の3次元形状を計測する手段は、載置平面を有する基板の前記載置平面に前記型部材が載置された状態で、少なくとも、前記載置平面の少なくとも一部の表面形状と、前記型部材のうち前記トレッド面形状に対応する表面部分であるタイヤ面と、の3次元形状を測定し、The means for measuring the three-dimensional shape of the mold member includes at least a surface shape of at least a part of the placement plane in a state where the mold member is placed on the placement plane of the substrate having the placement plane. , Measuring the three-dimensional shape of the mold member and the tire surface which is a surface portion corresponding to the tread surface shape;
前記導出する手段では、比較の際、前記載置平面の3次元測定データ、および前記型部材の前記タイヤ面の3次元測定データに基づき、作製したい前記タイヤの中心軸に対応する設計中心軸線上の少なくとも一点を導出して、導出した前記一点を、前記型部材3次元測定データにおける測定データ基準点として設定測定データ基準点を設定し、In the means for deriving, on the basis of the design center axis corresponding to the center axis of the tire to be produced based on the three-dimensional measurement data of the mounting plane and the three-dimensional measurement data of the tire surface of the mold member at the time of comparison. Deriving at least one point, and setting the derived one point as a measurement data reference point in the mold member three-dimensional measurement data, and setting a measurement data reference point,
前記測定データ基準点と、前記測定データ基準点に対応する前記3次元設計データにおける設計データ基準点とを一致させて、前記型部材3次元測定データと前記3次元設計データとを同一座標空間上に配置し、この配置状態で、前記型部材の前記3次元測定データと前記3次元設計データとのずれ量を導出し、By matching the measurement data reference point with the design data reference point in the three-dimensional design data corresponding to the measurement data reference point, the mold member three-dimensional measurement data and the three-dimensional design data are placed in the same coordinate space. In this arrangement state, a deviation amount between the three-dimensional measurement data of the mold member and the three-dimensional design data is derived,
前記比較の際、前記載置平面の3次元測定データに基づき、前記載置平面に対応する第1の平面を設定し、前記タイヤ面の3次元測定データを用いて、前記第1の平面と平行な前記タイヤ面を通る第2の平面を設定し、In the comparison, based on the three-dimensional measurement data of the mounting plane, a first plane corresponding to the mounting plane is set, and the first plane is determined using the three-dimensional measurement data of the tire surface. Set a second plane through the parallel tire surfaces;
前記タイヤ面の3次元測定データの表す面と前記第2の平面との交線から、それぞれ異なる2点の組み合わせを複数抽出し、各組み合わせの2点を結んだ複数の線分それぞれの垂直2等分線のうち、異なる2つの垂直2等分線の交点の全てを導出し、導出した複数の交点に基づいて、前記設計中心軸線上の点を近似して表す軸心点を規定し、A plurality of combinations of two different points are extracted from the intersection line between the surface represented by the three-dimensional measurement data of the tire surface and the second plane, and each of a plurality of line segments connecting the two points of each combination 2 Deriving all of the intersections of two different perpendicular bisectors of the bisectors, and defining an axial center point representing the points on the design center axis based on the plurality of derived intersections,
この軸心点を通り前記第1の平面と垂直な線と、作製したい前記タイヤの中心軸に対応する、前記型部材の3次元設計データにおける設計中心軸線と、を一致させて、前記3次元測定データの前記測定データ基準点以外の位置の前記ずれ量を導出することを特徴とする、タイヤ型部材検査装置。A line passing through this axial center point and perpendicular to the first plane and a design center axis in the three-dimensional design data of the mold member corresponding to the center axis of the tire to be manufactured are matched, and the three-dimensional A tire mold member inspection apparatus, wherein the deviation amount of a position other than the measurement data reference point of measurement data is derived.
JP2006163353A 2006-06-13 2006-06-13 Tire mold member inspection method, tire mold member inspection apparatus, and mold member manufacturing process accuracy inspection method Expired - Fee Related JP4887919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006163353A JP4887919B2 (en) 2006-06-13 2006-06-13 Tire mold member inspection method, tire mold member inspection apparatus, and mold member manufacturing process accuracy inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163353A JP4887919B2 (en) 2006-06-13 2006-06-13 Tire mold member inspection method, tire mold member inspection apparatus, and mold member manufacturing process accuracy inspection method

Publications (2)

Publication Number Publication Date
JP2007333462A JP2007333462A (en) 2007-12-27
JP4887919B2 true JP4887919B2 (en) 2012-02-29

Family

ID=38933083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163353A Expired - Fee Related JP4887919B2 (en) 2006-06-13 2006-06-13 Tire mold member inspection method, tire mold member inspection apparatus, and mold member manufacturing process accuracy inspection method

Country Status (1)

Country Link
JP (1) JP4887919B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313050B2 (en) * 2009-05-29 2013-10-09 株式会社ブリヂストン Tire molding die piece processing apparatus and processing method
JP5994787B2 (en) * 2011-10-11 2016-09-21 株式会社ニコン Shape measuring device, structure manufacturing system, shape measuring method, structure manufacturing method, shape measuring program
JP2013186100A (en) * 2012-03-12 2013-09-19 Hitachi Ltd Shape inspection method and device
CN104024793B (en) * 2011-10-24 2017-02-15 株式会社日立制作所 Shape inspection method and device
JP5913903B2 (en) * 2011-10-24 2016-04-27 株式会社日立製作所 Shape inspection method and apparatus
US20150096707A1 (en) * 2012-03-12 2015-04-09 Actech Gmbh Method for positioning and fixing mold parts in casting molds
US8942837B2 (en) 2012-03-12 2015-01-27 United Technologies Corporation Method for inspecting a manufacturing device
JP5844438B2 (en) * 2014-07-25 2016-01-20 富士設計株式会社 Method for investigating the form of a three-dimensional measurement object
JP6347215B2 (en) * 2015-01-16 2018-06-27 スズキ株式会社 Shape inspection apparatus, shape inspection method and program
KR101538724B1 (en) * 2015-01-30 2015-07-23 강동수 Construction Method of Sculpture and Architecture by Dividing the Cross-Section Of Miniature
JP6482435B2 (en) * 2015-08-28 2019-03-13 住重アテックス株式会社 In-container inspection method and in-container inspection system
FR3054970B1 (en) * 2016-08-09 2018-07-27 Safran Aircraft Engines METHOD FOR POSITIONING A CORE IN A MOLD
US10121237B1 (en) 2017-04-17 2018-11-06 Rohr, Inc. Component inspection method
JP6539798B1 (en) * 2019-02-18 2019-07-03 新興金型工業株式会社 Method of photographing thermal deformation of tire vulcanizing mold

Also Published As

Publication number Publication date
JP2007333462A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP4887919B2 (en) Tire mold member inspection method, tire mold member inspection apparatus, and mold member manufacturing process accuracy inspection method
JP4977415B2 (en) Apparatus and method for creating reference shape data for tire inspection
JP5124997B2 (en) Tire mold side plate inspection method and inspection apparatus, tire mold side plate type determination method and determination apparatus, tire mold processing step inspection method and inspection apparatus
Tóth et al. A comparison of the outputs of 3D scanners
Sansoni et al. Three-dimensional optical measurements and reverse engineering for automotive applications
CN105393081B (en) System and method for the mold used in model casting and the nondestructive evaluation of crucible
JP4784555B2 (en) Shape evaluation method, shape evaluation apparatus, and three-dimensional inspection apparatus
US20120242824A1 (en) Device and method for inspecting tyre shape
US20180197285A1 (en) Optimised method for analysing the conformity of the surface of a tire
JP2007132807A (en) Three-dimensional shape measuring device and method
JP5923054B2 (en) Shape inspection device
JP2007303828A (en) Cross-sectional data acquisition method and system, and cross-sectional inspection method
Son et al. Path planning of multi-patched freeform surfaces for laser scanning
JP5963614B2 (en) Cam groove measuring method and manufacturing method of lens barrel cam barrel
JP7058170B2 (en) Tire mold side plate inspection method
JP2015096808A (en) Method of measuring plate thickness
US8265372B2 (en) Test procedure for measuring the geometric features of a test specimen
JP2003196326A (en) Device and method for creating shape model
JP5321357B2 (en) Three-dimensional shape data processing apparatus, three-dimensional shape data processing system, and three-dimensional shape measurement system
JP6884077B2 (en) Surface inspection equipment and surface inspection method
Lin et al. Fringe projection measurement system in reverse engineering
JP2001066123A (en) Shape measuring device and method of three-dimensional shape
Karczewski et al. Application of reverse engineering for identification of damage and support the reparation of the vehicles
Matache et al. A comparison between 3D scanning and CMM dimensional inspection of small size gas turbine
JPH11153585A (en) Method for measuring three-dimensional orientation of fibers in fiber reinforced plastic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Ref document number: 4887919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees