JP2001066123A - Shape measuring device and method of three-dimensional shape - Google Patents
Shape measuring device and method of three-dimensional shapeInfo
- Publication number
- JP2001066123A JP2001066123A JP24223799A JP24223799A JP2001066123A JP 2001066123 A JP2001066123 A JP 2001066123A JP 24223799 A JP24223799 A JP 24223799A JP 24223799 A JP24223799 A JP 24223799A JP 2001066123 A JP2001066123 A JP 2001066123A
- Authority
- JP
- Japan
- Prior art keywords
- shape
- frequency
- data
- measured
- shape data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
- Complex Calculations (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、レーザプリンタなどに
搭載する非球面レンズの表面等の3次元形状の形状測定
装置又は方法に関するものであり、ナノメートルオーダ
クラスの高精度測定を達成可能とするものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for measuring the shape of a three-dimensional shape such as the surface of an aspheric lens mounted on a laser printer or the like. Is what you do.
【0002】[0002]
【従来の技術】レーザプリンタの光学系などに用いられ
る非球面fθレンズは、その表面に数mm程度の波長を有
する僅かな振幅のうねり形状があると画像劣化の原因と
なることが知られている。近年、高画質化の要求が非常
に高まっており、画像劣化の原因となる数mm角の範囲の
表面うねり形状をナノメートルの精度で計測評価するこ
とが求められている。2. Description of the Related Art It is known that an aspherical f.theta. Lens used in an optical system of a laser printer or the like has a waviness of a small amplitude having a wavelength of about several mm on its surface, which may cause image deterioration. I have. In recent years, there has been an increasing demand for higher image quality, and it has been required to measure and evaluate the surface undulation shape in a range of several mm square which causes image degradation with nanometer accuracy.
【0003】従来、非球面fθレンズの形状評価には、
機械的触針や光触針を用いて表面を走査して形状を測定
する方法が広く用いられてきた。しかしながらこれら方
法は、比較的広い領域を測定するのに好適である反面、
狭い範囲を高速で走査するのには不適である。例えば、
数mm角の範囲を0.1mm間隔でデータを取得しようとす
ると測定時間がかかり過ぎるため、温度ドリフトに起因
する測定誤差が無視できなくなり、その結果ナノメート
ルの測定精度を達成することは困難であった。Conventionally, in order to evaluate the shape of an aspherical fθ lens,
A method of measuring a shape by scanning a surface using a mechanical stylus or an optical stylus has been widely used. However, while these methods are suitable for measuring a relatively large area,
It is not suitable for scanning a small area at high speed. For example,
When trying to acquire data in a range of several mm square at 0.1 mm intervals, it takes too much measurement time, so that measurement errors due to temperature drift cannot be ignored, and as a result, it is difficult to achieve nanometer measurement accuracy. there were.
【0004】3次元的微細形状を測定する別の方法とし
て、光波干渉を利用した顕微鏡型のレーザ干渉計がよく
知られている。しかしながら、非球面fθレンズのよう
な曲面の形状を測定しようとすると、干渉縞間隔が過密
になり解析不能となってしまう。そのため、高倍率の対
物レンズで測定せざるを得なくなり、結果として、一度
の測定での測定範囲が1mm角以下と非常に狭くなってし
まうという問題があった。As another method for measuring a three-dimensional fine shape, a microscope type laser interferometer utilizing light wave interference is well known. However, if an attempt is made to measure the shape of a curved surface such as an aspherical fθ lens, the interval between interference fringes becomes too dense and analysis becomes impossible. For this reason, measurement must be performed with a high-magnification objective lens, and as a result, there has been a problem that the measurement range in a single measurement is very narrow, not more than 1 mm square.
【0005】これに対して例えば、測定したい領域を、
相互にオーバーラップ領域を有する複数の部分領域に分
割して干渉計で測定し、オーバーラップ領域のデータを
一致させるように繋ぎあわせ処理を施す方法も試みられ
てきた。しかし、繋ぎあわせ処理をする際、S/Nの低
い低周波の形状成分と、S/Nの高い高周波の形状成分
とを分離せずに繋ぎあわせ処理を行なうため、オーバー
ラップ領域の形状や大きさによっては、繋ぎあわせの精
度が十分に得られない欠点があった。On the other hand, for example, an area to be measured is
Attempts have also been made for a method of dividing the data into a plurality of partial regions having mutually overlapping regions, measuring the divided regions with an interferometer, and performing a joining process so that the data of the overlap regions match. However, when the joining process is performed, the joining process is performed without separating the low-frequency shape component having a low S / N and the high-frequency shape component having a high S / N. In some cases, there was a disadvantage that the joining accuracy was not sufficiently obtained.
【0006】また、特開平10−160428号公報に
開示された方法では、オーバーラップ領域の法線方向の
みデータを移動し、それ以外の方向については、面形状
測定時の干渉計の位置および姿勢の測定データを正しい
ものとして仮定して、繋ぎあわせ処理の自由度を減ら
し、形状データだけに頼って繋ぎあわせ処理を行なう際
の精度不足を補おうとしている。しかし、干渉計の位置
および姿勢の測定データに含まれる測定誤差の影響によ
り、ナノメートルオーダの精度を達成することは困難で
あった。In the method disclosed in Japanese Patent Application Laid-Open No. H10-160428, data is moved only in the normal direction of the overlap area, and in other directions, the position and orientation of the interferometer at the time of measuring the surface shape. Assuming that the measured data is correct, the degree of freedom of the joining process is reduced to compensate for the lack of accuracy when the joining process is performed by relying only on the shape data. However, it has been difficult to achieve an accuracy on the order of nanometers due to the influence of measurement errors included in the measurement data of the position and orientation of the interferometer.
【0007】[0007]
【発明が解決しようとする課題】本発明は、3次元形状
を有する被測定面を、相互にオーバーラップ領域を有す
る複数の部分領域に分割し、それぞれ計測した面形状デ
ータを該データに含まれる周波数成分を考慮した上で繋
ぎあわせ処理を行う構成とすることで、数mm角の範囲を
ナノメートルオーダで評価するのに十分な精度を得るこ
とをその課題とするものである。具体的には、複数の部
分領域に分割した面形状データから低周波の形状成分を
除去し、S/N比の高い高周波成分のみを抽出し、この
抽出した高周波成分に基づき繋ぎ合わせを行い、数mm角
の範囲の表面粗さをナノメートルの精度で評価可能とす
ることをその課題とする。さらに、高周波成分のみなら
ず低周波成分を加味した繋ぎ合わせを行い、ナノメート
ルオーダの精度を保持しつつ、被測定面の全体形状デー
タを得ることをその課題とする。また、繋ぎあわせ処理
を行う際の、演算速度と精度の向上を図ることをその課
題とする。具体的には、高周波形状成分による繋ぎ合わ
せを行う前の概略繋ぎ合わせ処理を施すことにより高速
な演算及び処理精度の向上を達成すること、繋ぎ合わせ
処理を行うのに十分な形状測定精度を確保できる演算処
理方法の実現、及び繋ぎあわせを行なう面形状データの
総数の低減による繋ぎあわせ処理の高速化及び精度の向
上をその課題とする。また、被測定面にアライメントマ
ークを形成することで、更なる繋ぎあわせ処理精度の向
上を図ることをその課題とする。According to the present invention, a surface to be measured having a three-dimensional shape is divided into a plurality of partial regions having mutually overlapping regions, and the measured surface shape data is included in the data. An object of the present invention is to obtain a sufficient accuracy for evaluating a range of several mm square on the order of nanometers by adopting a configuration for performing a joining process in consideration of a frequency component. Specifically, low-frequency shape components are removed from the surface shape data divided into a plurality of partial regions, only high-frequency components having a high S / N ratio are extracted, and joining is performed based on the extracted high-frequency components. The object is to make it possible to evaluate the surface roughness in the range of several mm square with an accuracy of nanometer. It is another object of the present invention to perform joining in consideration of not only high-frequency components but also low-frequency components, and obtain overall shape data of a surface to be measured while maintaining accuracy on the order of nanometers. Another object of the present invention is to improve the calculation speed and accuracy when performing the joining process. Specifically, high-speed calculation and improvement in processing accuracy are achieved by performing rough joining processing before joining by high-frequency shape components, and sufficient shape measurement accuracy for joining processing is ensured. It is an object of the present invention to realize a possible arithmetic processing method and to increase the speed and accuracy of the joining process by reducing the total number of surface shape data to be joined. It is another object of the present invention to form alignment marks on the surface to be measured to further improve the joining processing accuracy.
【0008】[0008]
【手段1】上記課題解決のために講じた手段は、3次元
形状を有する被測定面を、相互にオーバーラップ領域を
有する複数の部分領域に分割して面形状を計測する手段
と、前記面形状データから低周波の形状成分を除去して
高周波の形状成分のみを抽出し、前記オーバーラップ領
域に相当する高周波の形状成分が、互いに最も一致する
ように、高周波形状データを相対移動させて繋ぎ合わせ
るよう演算することで、ナノメートルの精度にて測定可
能としたことである。[Means 1] Means taken for solving the above problems are a means for dividing a surface to be measured having a three-dimensional shape into a plurality of partial regions having mutually overlapping regions, and measuring the surface shape; The low-frequency shape component is removed from the shape data to extract only the high-frequency shape component, and the high-frequency shape data is relatively moved and connected so that the high-frequency shape components corresponding to the overlap area most closely match each other. By calculating to match, it is possible to measure with nanometer accuracy.
【0009】[0009]
【手段2】また、上記課題解決のために講じた別の手段
は、3次元形状を有する被測定面を、相互にオーバーラ
ップ領域を有する複数の部分領域に分割して面形状を計
測する手段と、演算手段と、記憶手段とを備え、前記演
算手段を用いて、前記面形状データから低周波の形状成
分を除去して高周波の形状成分のみを抽出し、前記記憶
手段に、前記面形状データから除去した低周波成分を一
時記憶し、前記演算手段を用いて、前記オーバーラップ
領域に相当する高周波の形状成分が、互いに最も一致す
るように、高周波形状データ同士の繋ぎ合わせ処理を施
し、前記記憶手段に、高周波形状データ同士の繋ぎ合わ
せ処理の際に施した相対移動量を一時記憶し、演算手段
を用いて、前記一時記憶された相対移動を、前記一時記
憶された低周波形状データに対して施した後、これを高
周波形状データに再度加算し、前記高周波形状データが
再度加算されたデータ同士に対して、オーバーラップ領
域における各測定点の面内座標値を変化させない条件
で、再度繋ぎ合わせ処理を行なうことで全体形状データ
を精度良く再現し、かつナノメートルオーダでの評価を
可能としたことである。Another means taken for solving the above problem is a means for dividing a surface to be measured having a three-dimensional shape into a plurality of partial regions having mutually overlapping regions and measuring the surface shape. And arithmetic means, and storage means, using the arithmetic means, removes low-frequency shape components from the surface shape data to extract only high-frequency shape components, and stores the surface shape in the storage means. The low-frequency component removed from the data is temporarily stored, and using the arithmetic means, a high-frequency shape component corresponding to the overlap region is subjected to a joining process between the high-frequency shape data so as to most closely match each other, In the storage means, temporarily store the relative movement amount performed at the time of the joining processing of the high-frequency shape data, using a calculating means, the temporarily stored relative movement, the temporarily stored low-period waveform After applying to the data, this is added again to the high-frequency shape data, and for the data to which the high-frequency shape data has been added again, under the condition that the in-plane coordinate value of each measurement point in the overlap region is not changed. By performing the joining process again, the entire shape data can be accurately reproduced, and the evaluation on the order of nanometers is made possible.
【0010】[0010]
【手段3】また、上記課題解決のために講じた別の手段
は、3次元形状を有する被測定面を、相互にオーバーラ
ップ領域を有する複数の部分領域に分割して面形状を計
測すると同時に、各面形状データの相対姿勢と相対並進
量の少なくとも一方を計測する手段と、前記、相対姿勢
または相対並進量、もしくはそれら両方に基づいて各面
形状データを、あらかじめ概略繋ぎ合わせてこれを初期
状態とし、その後、高周波形状成分を手がかりにして、
精密な繋ぎ合わせ処理を施すようにし演算処理の高速化
を図ったことである。さらに、前記形状計測手段は、干
渉縞画像データを解析することによって3次元形状を計
測するようにしてもよい。また形状計測手段として、触
針または非接触変位計を用い、2次元面内で走査するこ
とによって3次元形状を計測するようにしてもよい。Another means taken to solve the above problem is to measure a surface shape by dividing a surface to be measured having a three-dimensional shape into a plurality of partial regions having mutually overlapping regions. Means for measuring at least one of the relative attitude and the relative translation amount of each surface shape data, and each surface shape data are roughly connected in advance based on the relative posture and / or the relative translation amount, and this is initially initialized. State, and then using the high-frequency shape component as a clue,
That is, a precise joining process is performed to speed up the arithmetic processing. Further, the shape measuring means may measure a three-dimensional shape by analyzing interference fringe image data. Alternatively, a three-dimensional shape may be measured by scanning in a two-dimensional plane using a stylus or a non-contact displacement meter as the shape measuring means.
【0011】[0011]
【手段4】また、上記課題解決のために講じた別の手段
は、干渉縞画像を形成するための光源として連続スペク
トルを有する光源を用いるようにすることで、一度に広
範囲の形状測定を可能とし、結果として面形状データの
総数を減らすようにしたことである。Another means taken for solving the above problem is to use a light source having a continuous spectrum as a light source for forming an interference fringe image, thereby enabling a wide range of shape measurement at a time. As a result, the total number of surface shape data is reduced.
【0012】[0012]
【手段5】また、上記課題解決のために講じた別の手段
は、面形状データにおける、個々の測定点に対して、前
記測定点を中心とするある特定範囲内の隣接データの平
均値を求め、前記測定点から前記平均値を減算し、前記
平均化処理および減算処理を全測定点について行なうこ
とによって低周波の形状成分を除去するようにし、演算
速度と精度の向上を図ったことである。また、面形状デ
ータを、m×n次の多項式で近似し、個々の測定点から
前記近似多項式を減算することによって低周波の形状成
分を除去するようにしてもよい。また、面形状データを
空間周波数領域データに変換し、空間周波数領域におい
て低周波成分を除去し、再び面形状データに逆変換する
ことによって低周波の形状成分を除去するようにするこ
とも可能である。Another means taken to solve the above problem is that, for each measurement point in the surface shape data, an average value of adjacent data within a certain range around the measurement point is used. Calculated, the average value is subtracted from the measurement points, and the averaging process and the subtraction process are performed for all the measurement points to remove low-frequency shape components, thereby improving the calculation speed and accuracy. is there. Alternatively, the surface shape data may be approximated by an m × n-order polynomial, and the low-frequency shape component may be removed by subtracting the approximate polynomial from each measurement point. It is also possible to convert the surface shape data to spatial frequency domain data, remove low-frequency components in the spatial frequency domain, and remove the low-frequency shape components again by inversely converting them to surface shape data. is there.
【0013】[0013]
【手段6】また、上記課題解決のために講じた別の手段
は、被測定物の被測定面に、一定形状を規則的または不
規則的に配列させた表面構造を形成しアライメントマー
クとすることで繋ぎ合わせ処理精度の向上を図ったこと
である。また、成型用金型表面にアライメントマークを
予め形成するようにして生産コストの低減を図るように
してもよい。Another means taken to solve the above problem is to form an alignment mark by forming a surface structure in which a predetermined shape is regularly or irregularly arranged on a surface to be measured of an object to be measured. This is to improve the joining processing accuracy. Further, the production cost may be reduced by forming an alignment mark on the surface of the molding die in advance.
【0014】[0014]
【作用】上記構成によると、S/N比の高い高周波形状
成分のみにより繋ぎ合わせ処理をするため高精度の演算
処理が可能となる。また、高周波形状成分のみに基づく
繋ぎ合わせ処理を行った際の部分領域毎の相対移動量を
記憶し、低周波形状成分をその相対移動量にて同じ量移
動した後、高周波成分に加算した上で再度繋ぎ合わせ処
理を施すため、全ての周波数形状成分を含んだ正確な全
体形状データを得ることが可能となる。また高周波形状
成分による繋ぎ合わせ処理を行う前に、予め概略繋ぎ合
わせ処理を行うため、演算の高速化及び処理精度の向上
が図られる。また、各面形状データを干渉計、あるいは
触針または非接触変位計を2次元面内で走査して測定す
るので、高精度な測定が可能となる。また、連続スペク
トルを有する光源を有する低コヒーレント干渉の原理を
利用した干渉計にて測定するので、一度の測定で広範囲
の形状測定ができ、結果として繋ぎあわせを行なう面形
状データの総数を減らすことができる。また、局所平均
化処理、多項式近似、空間周波数領域におけるフィルタ
処理を利用して、低周波成分を除去することが可能とな
るので、S/Nの高い高周波成分のみで繋ぎあわせ処理
を行なうことができる。また、被測定面にアライメント
マークを形成したため、形状測定の際、被測定物位置の
基準とすることができ、より高精度な繋ぎ合わせ処理が
可能となる。According to the above construction, since the joining process is performed only with the high-frequency shape component having a high S / N ratio, a high-precision arithmetic process can be performed. Further, the relative movement amount for each partial region when the joining process based on only the high-frequency shape component is performed is stored, and the low-frequency shape component is moved by the same amount by the relative movement amount, and then added to the high-frequency component. Since the joining process is performed again, accurate whole shape data including all frequency shape components can be obtained. In addition, since the general joining process is performed in advance before the joining process using the high-frequency shape component, the calculation can be speeded up and the processing accuracy can be improved. Further, since each surface shape data is measured by scanning with an interferometer or a stylus or a non-contact displacement meter in a two-dimensional plane, highly accurate measurement is possible. In addition, since measurement is performed by an interferometer using the principle of low coherent interference having a light source having a continuous spectrum, a wide range of shape measurement can be performed by one measurement, and as a result, the total number of surface shape data to be joined can be reduced. Can be. In addition, since it is possible to remove low-frequency components using local averaging processing, polynomial approximation, and filtering in the spatial frequency domain, it is possible to perform joining processing using only high-frequency components having a high S / N. it can. In addition, since the alignment mark is formed on the surface to be measured, it can be used as a reference for the position of the object to be measured during shape measurement, and a more accurate joining process can be performed.
【0015】[0015]
【実施例】次に図面を参照しつつ実施例を説明する。第
1図は、本発明の形状測定装置の概略構成を表す図であ
る。1はX軸方向に移動可能なX軸ステージ、2はY軸
方向に移動可能なY軸ステージ、3はZ軸方向に移動可
能なZ軸ステージである。さらにこの形状測定装置は、
X軸を中心に回転可能なθx軸ステージ4、Y軸を中心
に回転可能なθy軸ステージ5を有している。部分面測
定手段として平面参照面を内部に備えた白色干渉計6
は、Z軸ステージ3に取り付けられている。白色干渉計
は、干渉縞を取り込むCCDの各画素に対応する高さ情
報を、隣接画素の情報なしに直接求めることができると
いう特徴を有している(例えば特表平8−502829
号公報)。従って、形状を再構成する際に隣接画素の情
報を必要とするレーザ干渉計と比べると、干渉縞の間隔
が狭くても形状測定が可能なので、曲面形状を測定する
際にはより広い測定範囲を確保できる。一方、被測定物
7はY軸ステージ2、回転ステージ4,5上に載置さ
れ、白色干渉計6に対向するように位置決めされる。直
進ステージ1,2,3と、回転ステージ4,5は、図示
しない制御装置を用いて制御され、白色干渉計6の光軸
と被測定物7の法線とが概略一致するように、白色干渉
計6と被測定物7との相対的な位置姿勢が定められる。Next, an embodiment will be described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a shape measuring apparatus of the present invention. 1 is an X-axis stage movable in the X-axis direction, 2 is a Y-axis stage movable in the Y-axis direction, and 3 is a Z-axis stage movable in the Z-axis direction. Furthermore, this shape measuring device
It has a θx axis stage 4 that can rotate around the X axis and a θy axis stage 5 that can rotate around the Y axis. White interferometer 6 internally provided with a plane reference surface as a partial surface measuring means
Is attached to the Z-axis stage 3. The white light interferometer has a feature that height information corresponding to each pixel of a CCD for capturing interference fringes can be directly obtained without information on adjacent pixels (for example, Japanese Patent Application Laid-Open No. 8-502829).
No.). Therefore, as compared with a laser interferometer that requires information on adjacent pixels when reconstructing a shape, the shape can be measured even when the interval between interference fringes is small, so that a wider measurement range can be measured when measuring a curved surface shape. Can be secured. On the other hand, the DUT 7 is mounted on the Y-axis stage 2 and the rotation stages 4 and 5 and positioned so as to face the white interferometer 6. The rectilinear stages 1, 2 and 3 and the rotary stages 4 and 5 are controlled by using a control device (not shown). The relative position and orientation of the interferometer 6 and the DUT 7 are determined.
【0016】第2図は、被測定物7の表面をZ軸方向か
ら見た図で、被測定面がどのように部分領域に分割され
るのかを示す図である。各部分領域は互いにオーバーラ
ップ領域が生じるように分割設定され、その後それぞれ
の分割領域毎に測定がなされる。FIG. 2 is a view of the surface of the device under test 7 viewed from the Z-axis direction, showing how the surface to be measured is divided into partial areas. Each of the partial areas is divided and set so as to generate an overlapping area, and thereafter, measurement is performed for each of the divided areas.
【0017】次に、本実施の形態による形状測定法の流
れを図3に示すフローチャートを用いて説明する。ま
ず、被測定物7を回転ステージθy上にセットし(ステ
ップS1)、被測定面を適当な大きさの部分領域に分割
する(ステップS2)。次に、各部分領域に対して、被
測定物の設計形状の情報に基づいて干渉計を位置決めし
(ステップS3)、その時の位置決め情報を記憶装置に
記憶(ステップS4)した後、部分領域の形状を測定す
る(ステップS5)。すべての部分領域を測定したら
(ステップS6)、ステップS4で記憶した位置決め情
報に基づいて、各部分領域の測定データを相対移動し
(ステップS7)、概略の繋ぎ合わせを完了する。次に
相互にオーバーラップ領域を有する隣接した部分領域を
選択し、以下に示す流れに沿って、一方の部分領域に対
してもう一方の部分領域を繋ぎあわせる座標変換処理を
施す。まず、選択した2つの部分領域から、各々別々に
低周波形状成分を抽出し(ステップS8)、これを記憶
装置に記憶(ステップS9)した後、元の測定データか
ら低周波形状成分を減算することで、高周波形状成分を
抽出する(ステップS10)。一般に、レンズ面のよう
な鏡面形状の場合、低周波成分を含んだまま繋ぎあわせ
処理を行なうよりも、高周波成分のみを抽出してから繋
ぎあわせる方が、繋ぎあわせの精度は高くなる。よっ
て、ステップS11では、ステップS10で抽出した高
周波成分同士を共有オーバーラップ領域で繋ぎあわせ処
理を行い(ステップS11)、ステップ12にて、その
時の相対移動量を記憶装置に記憶する(ステップS1
2)。次に、ステップ9で記憶装置に記憶した低周波形
状成分に対して、ステップS12で記憶した相対移動量
に相当する座標変換を施し(ステップS13)、これを
高周波成分に加算し(ステップS14)、再度繋ぎあわ
せ処理を行なう(ステップS15)。ただし、ステップ
S15で行なう繋ぎあわせは、共有オーバーラップ領域
の面内座標値、すなわちX,Y座標を変化させないよう
に、θx,θy,Z座標のみ最適化を行なう。全部分領
域を繋ぎ終わったら(ステップS16)、繋ぎあわせ処
理を施された形状データに対して解析処理を行ない(ス
テップS17)、形状誤差などの解析結果を出力する
(ステップS18)。Next, the flow of the shape measuring method according to the present embodiment will be described with reference to the flowchart shown in FIG. First, the device under test 7 is set on the rotating stage θy (step S1), and the surface to be measured is divided into partial regions of an appropriate size (step S2). Next, the interferometer is positioned with respect to each partial area based on the information on the design shape of the device under test (step S3), and the positioning information at that time is stored in a storage device (step S4). The shape is measured (Step S5). When all the partial areas have been measured (Step S6), the measurement data of each partial area is relatively moved based on the positioning information stored in Step S4 (Step S7), and the general joining is completed. Next, adjacent partial areas having mutually overlapping areas are selected, and coordinate conversion processing for joining one partial area to another partial area is performed according to the flow described below. First, a low-frequency shape component is separately extracted from each of the selected two partial regions (step S8) and stored in a storage device (step S9), and then the low-frequency shape component is subtracted from the original measurement data. Thus, high-frequency shape components are extracted (step S10). In general, in the case of a mirror-like surface such as a lens surface, the joining accuracy is higher when the joining process is performed after extracting only the high-frequency components than when the joining process is performed while including the low-frequency components. Therefore, in step S11, the high-frequency components extracted in step S10 are connected to each other in the shared overlap region (step S11), and in step 12, the relative movement amount at that time is stored in the storage device (step S1).
2). Next, the low frequency shape component stored in the storage device in step 9 is subjected to coordinate transformation corresponding to the relative movement amount stored in step S12 (step S13), and is added to the high frequency component (step S14). Then, the joining process is performed again (step S15). However, the joining performed in step S15 optimizes only the θx, θy, and Z coordinates so as not to change the in-plane coordinate values of the common overlap area, that is, the X and Y coordinates. When all the partial regions have been connected (step S16), an analysis process is performed on the connected shape data (step S17), and an analysis result such as a shape error is output (step S18).
【0018】次に、第3図のステップS8に示した低周
波成分抽出方法について、いくつかの例を挙げて説明す
る。第一は、局所平均化処理による抽出方法である。こ
れは隣接データ間で局所平均値を計算し、それを低周波
形状成分とするもので、詳細には、ある特定のデータ点
に対しその点を中心にm×nのマトリックス領域を定
め、m×n個の平均値を中心のデータ点の低周波形状成
分とする方法である。第二は、多項式近似による抽出方
法である。これは、測定した面形状データをm×n次の
多項式に近似し、それを低周波形状成分とするものであ
る。第三は、空間周波数領域におけるフィルタ処理を用
いた抽出方法である。これは、測定した面形状データの
周波数解析を行い、空間周波数領域において高周波成分
を除去した後、再び面形状データへ逆変換を行なったも
のを低周波形状成分とする方法である。実際に低周波形
状成分を除去する処理を行う際には、測定した面形状デ
ータを空間周波数領域データに変換し、そのデータから
低周波成分を除去した後、再び面形状データへの逆変換
を行なうようにすれば、高周波形状成分のみの面形状デ
ータとなる。Next, the low frequency component extraction method shown in step S8 of FIG. 3 will be described with some examples. The first is an extraction method using a local averaging process. This is to calculate a local average value between adjacent data and use it as a low-frequency shape component. Specifically, for a specific data point, an m × n matrix area is defined around that point, and m This is a method in which the average value of × n is used as the low-frequency shape component of the center data point. The second is an extraction method based on polynomial approximation. In this method, measured surface shape data is approximated to an m × n-order polynomial, and is used as a low-frequency shape component. The third is an extraction method using filter processing in the spatial frequency domain. This is a method in which the frequency analysis of the measured surface shape data is performed, high-frequency components are removed in the spatial frequency domain, and the result of inverse conversion to the surface shape data again is used as a low-frequency shape component. When actually performing the process of removing the low-frequency shape component, the measured surface shape data is converted into spatial frequency domain data, the low-frequency component is removed from the data, and the inverse conversion to the surface shape data is performed again. If it is performed, it becomes the surface shape data of only the high frequency shape component.
【0019】以上が本発明の一実施形態であるが、本発
明はこれに限定されるものではない。例えば、第1図の
実施例では、形状測定手段として白色干渉計を用いた
が、レーザ等の単色光を光源とする干渉計を用いてもよ
い。また、機械式触針や光学式変位計のようなプローブ
であって、比較的狭い領域内を高速で走査するのに適し
ている微細形状測定用高速走査ヘッドを備えたものを白
色干渉計の代わりに用いることも可能である。The above is one embodiment of the present invention, but the present invention is not limited to this. For example, in the embodiment of FIG. 1, a white light interferometer is used as the shape measuring means, but an interferometer using monochromatic light such as a laser as a light source may be used. In addition, a probe such as a mechanical stylus or an optical displacement meter equipped with a high-speed scanning head for measuring a fine shape, which is suitable for scanning a relatively narrow area at high speed, is used for a white interferometer. It is also possible to use it instead.
【0020】さらに、繋ぎあわせ処理を高精度に行なう
ためには、被測定面にアライメントマークをつける方法
がある。例えば被測定物としてプラスチックレンズを想
定した場合、表面に凸または凹形状の規則的、または不
規則的配列を形成し、それをアライメントマークとする
ことが考えられる。レンズ本来の光学性能を劣化させな
いためには、アライメントマークの大きさは、直径、深
さあるいは高さが数十μm以下、できれば数μm以下にす
ることが望ましい。また、アライメントマークは成形レ
ンズ表面に直接形成してもよいが、成形用金型表面に予
め形成しておくことが生産コストの面で有利である。Further, in order to perform the joining process with high accuracy, there is a method of making an alignment mark on the surface to be measured. For example, when a plastic lens is assumed as the object to be measured, it is conceivable to form a regular or irregular arrangement of convex or concave shapes on the surface and use it as an alignment mark. In order not to degrade the original optical performance of the lens, it is desirable that the size of the alignment mark has a diameter, depth or height of several tens μm or less, and preferably several μm or less. Although the alignment mark may be formed directly on the surface of the molded lens, it is advantageous in terms of production cost to form the alignment mark on the surface of the molding die in advance.
【0021】[0021]
【発明の効果】本発明は、計測した面形状データの高周
波成分のみを用いて繋ぎあわせ処理を行うので、すなわ
ち表面粗さ成分が最も重なり合うよう繋ぎあわせ処理を
行うようにしたため、数mm角範囲の表面粗さをナノメー
トル精度の評価が可能となる。また、高周波成分が最も
重なり合うように繋ぎあわせた後、低周波成分を加算し
て、再度繋ぎあわせ処理を行なうので、繋ぎ合わせ処理
の精度が向上し、低周波成分も含めた全体形状データを
精度良く再現できる。また各面形状データの相対姿勢、
相対並進量を計測し、この情報をもとに始めに概略繋ぎ
あわせを行なうので、処理速度の高速化が図られるとと
もに繋ぎあわせの精度も同時に向上する。また、各面形
状データを干渉計、あるいは触針または非接触変位計を
2次元面内で走査して測定するので、高精度な測定が可
能となり繋ぎあわせ処理の精度も向上する。また、低コ
ヒーレント干渉の原理を利用した干渉計で測定すること
で、一度に広範囲の形状を測定可能としたため、繋ぎあ
わせを行なう面形状データの総数が減少し、繋ぎあわせ
処理の精度及び演算速度が向上する。また、局所平均化
処理、多項式近似、空間周波数領域におけるフィルタ処
理を利用して、低周波成分を除去するようにしたので、
S/Nの高い高周波成分のみで繋ぎあわせ処理を行なう
ことが可能となり、処理精度が向上する。また、レンズ
やレンズ成形用金型の表面に、本来の光学性能に事実上
影響を与えない程度の微細な一定形状を規則的または不
規則的に形成し、これを繋ぎあわせ処理を行なう際のア
ライメントマークとしたため、より一層繋ぎあわせ処理
精度の向上が図られる。According to the present invention, since the joining process is performed using only the high-frequency components of the measured surface shape data, that is, the joining process is performed so that the surface roughness components are most overlapped, the range of several mm square is obtained. It is possible to evaluate the surface roughness with nanometer accuracy. In addition, since the high-frequency components are joined so as to overlap the most, the low-frequency components are added and the joining process is performed again, so the joining process accuracy is improved, and the entire shape data including the low-frequency components can be accurately analyzed. Can be reproduced well. Also, the relative attitude of each surface shape data,
Since the relative translation amount is measured and the rough joining is first performed based on this information, the processing speed is increased and the joining accuracy is also improved at the same time. In addition, since each surface shape data is measured by scanning an interferometer or a stylus or a non-contact displacement meter in a two-dimensional plane, high-precision measurement is possible and the accuracy of the joining process is improved. In addition, by measuring with an interferometer based on the principle of low coherent interference, it is possible to measure a wide range of shapes at once, so the total number of surface shape data to be joined is reduced, and the accuracy and calculation speed of the joining process Is improved. Also, low-frequency components are removed by using local averaging, polynomial approximation, and filtering in the spatial frequency domain.
The joining process can be performed only with the high-frequency component having a high S / N, and the processing accuracy is improved. In addition, when forming a regular or irregular minute fine shape on the surface of a lens or a lens molding die that does not substantially affect the original optical performance, and performing the joining process. Since the alignment mark is used, the joining processing accuracy is further improved.
【図1】形状測定装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a shape measuring device.
【図2】被測定面を複数の部分領域に分割した状態図で
ある。FIG. 2 is a state diagram in which a surface to be measured is divided into a plurality of partial regions.
【図3】形状測定法を表すフローチャートである。 図1〜図3における符号の説明 1・・・・・・X軸ステージ 2・・・・・・Y軸ステージ 3・・・・・・Z軸ステージ 4・・・・・・θx軸ステージ 5・・・・・・θy軸ステージ 6・・・・・・白色干渉計 7・・・・・・被測定物FIG. 3 is a flowchart illustrating a shape measuring method. 1 to 3... X-axis stage 2... Y-axis stage 3... Z-axis stage 4. ... Θy-axis stage 6... White interferometer 7.
フロントページの続き Fターム(参考) 2F065 AA45 AA53 BB05 BB27 CC22 FF01 FF04 FF52 GG04 GG24 JJ03 JJ26 PP12 QQ00 QQ17 QQ23 QQ25 QQ27 QQ33 QQ42 TT02 2F069 AA51 AA66 GG01 GG04 GG07 GG45 GG68 GG71 HH30 NN02 NN18 NN26 PP02 2G086 FF01 5B056 AA04 BB28 BB62 BB74 FF05 HH00 Continued on the front page F term (reference) 2F065 AA45 AA53 BB05 BB27 CC22 FF01 FF04 FF52 GG04 GG24 JJ03 JJ26 PP12 QQ00 QQ17 QQ23 QQ25 QQ27 QQ33 QQ42 TT02 2F069 AA51 AA66 GG01 GG04 GG07 GG07 GG07 GG04 BB62 BB74 FF05 HH00
Claims (14)
ーバーラップ領域を有する複数の部分領域に分割して面
形状を計測する手段と、 前記面形状データから低周波の形状成分を除去して高周
波の形状成分のみを抽出し、前記オーバーラップ領域に
相当する高周波の形状成分が、互いに最も一致するよう
に、高周波形状データを相対移動させて繋ぎ合わせるた
めの演算手段とを備えることを特徴とする形状測定装
置。1. A means for measuring a surface shape by dividing a surface to be measured having a three-dimensional shape into a plurality of partial regions having mutually overlapping regions, and removing a low-frequency shape component from the surface shape data. And computing means for relatively moving and joining the high-frequency shape data so that the high-frequency shape components corresponding to the overlap region most closely match each other. Characteristic shape measuring device.
ーバーラップ領域を有する複数の部分領域に分割して面
形状を計測する手段と、演算手段と、記憶手段とを備
え、 前記演算手段を用いて、前記面形状データから低周波の
形状成分を除去して高周波の形状成分のみを抽出し、 前記記憶手段に、前記面形状データから除去した低周波
成分を一時記憶し、 前記演算手段を用いて、前記オーバーラップ領域に相当
する高周波の形状成分が、互いに最も一致するように、
高周波形状データ同士の繋ぎ合わせ処理を施し、 前記記憶手段に、高周波形状データ同士の繋ぎ合わせ処
理の際に施した相対移動量を一時記憶し、 演算手段を用いて、前記一時記憶された相対移動を、前
記一時記憶された低周波形状データに対して施した後、
これを高周波形状データに再度加算し、 前記高周波形状データが再度加算されたデータ同士に対
して、オーバーラップ領域における各測定点の面内座標
値を変化させない条件で、再度繋ぎ合わせ処理を行なう
ことを特徴とする、請求項1の形状測定装置。2. The apparatus according to claim 1, further comprising: means for dividing a surface to be measured having a three-dimensional shape into a plurality of partial regions having mutually overlapping regions to measure the surface shape; calculating means; Means for removing low-frequency shape components from the surface shape data to extract only high-frequency shape components; temporarily storing the low-frequency components removed from the surface shape data in the storage means; By using the means, so that the high-frequency shape components corresponding to the overlap region best match each other,
Performing a joining process between the high-frequency shape data; temporarily storing, in the storage unit, a relative movement amount performed during the joining process between the high-frequency shape data; Is performed on the temporarily stored low-frequency shape data,
This is again added to the high-frequency shape data, and the data to which the high-frequency shape data has been added again are subjected to the joining process again under the condition that the in-plane coordinate value of each measurement point in the overlap region is not changed. The shape measuring device according to claim 1, wherein:
ーバーラップ領域を有する複数の部分領域に分割して面
形状を計測すると同時に、各面形状データの相対姿勢と
相対並進量の少なくとも一方を計測する手段と、 前記、相対姿勢または相対並進量、もしくはそれら両方
に基づいて各面形状データを、あらかじめ概略繋ぎ合わ
せてこれを初期状態とし、その後、高周波形状成分を手
がかりにして、精密な繋ぎ合わせ処理を施すことを特徴
とする、請求項1又は請求項2の形状測定装置。3. A surface to be measured having a three-dimensional shape is divided into a plurality of partial regions having mutually overlapping regions to measure a surface shape, and at least a relative attitude and a relative translation amount of each surface shape data are measured. Means for measuring one of the above, the respective surface shape data based on the relative attitude or relative translation amount, or both, are roughly connected in advance to an initial state, and then, using the high-frequency shape component as a clue, The shape measuring apparatus according to claim 1, wherein a joining process is performed.
解析することによって3次元形状を計測することを特徴
とする、請求項1、請求項2又は請求項3の形状測定装
置。4. The shape measuring apparatus according to claim 1, wherein said shape measuring means measures a three-dimensional shape by analyzing interference fringe image data.
連続スペクトルを有する光源を用いることを特徴とする
請求項4の形状測定装置。5. A light source for forming an interference fringe image,
5. The shape measuring apparatus according to claim 4, wherein a light source having a continuous spectrum is used.
位計を2次元面内で走査することによって3次元形状を
計測することを特徴とする、請求項1、請求項2又は請
求項3の形状測定装置。6. The apparatus according to claim 1, wherein said shape measuring means measures a three-dimensional shape by scanning a stylus or a non-contact displacement meter in a two-dimensional plane. 3. Shape measuring device.
して、前記測定点を中心とするある特定範囲内の隣接デ
ータの平均値を求め、前記測定点から前記平均値を減算
し、前記平均化処理および減算処理を全測定点について
行なうことによって低周波の形状成分を除去することを
特徴とする、請求項1、請求項2、請求項3、請求項
4、請求項5又は請求項6の形状測定装置。7. An average value of adjacent data within a specific range around the measurement point is obtained for each measurement point in the surface shape data, and the average value is subtracted from the measurement point. The averaging process and the subtraction process are performed on all measurement points to remove low-frequency shape components. 6. Shape measuring device.
し、個々の測定点から前記近似多項式を減算することに
よって低周波の形状成分を除去することを特徴とする、
請求項1、請求項2、請求項3、請求項4、請求項5又
は請求項6の形状測定装置。8. The method according to claim 1, wherein the surface shape data is approximated by an m × n-order polynomial, and a low-frequency shape component is removed by subtracting the approximate polynomial from each measurement point.
The shape measuring apparatus according to claim 1, 2, 3, 4, 5, or 6.
換し、空間周波数領域において低周波成分を除去し、再
び面形状データに逆変換することによって低周波の形状
成分を除去することを特徴とする、請求項1、請求項
2、請求項3、請求項4、請求項5又は請求項6の形状
測定装置。9. A method of converting surface shape data to spatial frequency domain data, removing low-frequency components in the spatial frequency domain, and removing the low-frequency shape components by inversely converting the data back to surface shape data. The shape measuring device according to claim 1, 2, 3, 4, 5, or 6.
いずれかにより測定される被測定物において、該被測定
物の被測定面に、一定形状を規則的または不規則的に配
列させた表面構造を形成しアライメントマークとするこ
とを特徴とする被測定物。10. An object to be measured by any one of the shape measuring devices according to claim 1, wherein a predetermined shape is regularly or irregularly arranged on a surface to be measured of the object to be measured. An object to be measured, characterized by forming an aligned mark by forming a bent surface structure.
成型用金型。11. A molding die for forming the object to be measured according to claim 10.
型用金型。12. The molding die according to claim 10, wherein the object to be measured is a lens.
オーバーラップ領域を有する複数の部分領域に分割して
面形状を計測し、その面形状デ−タ−から低周波の形状
成分を演算手段を用いて除去して高周波の形状成分のみ
を抽出し、 前記面形状データから除去した低周波成分を記憶手段に
一時記憶させ、 前記演算手段を用いて、前記オーバーラップ領域に相当
する高周波の形状成分が、互いに最も一致するように、
高周波形状データ同士の繋ぎ合わせ処理を施し、 前記記憶手段に、高周波形状データ同士の繋ぎ合わせ処
理の際に施した相対移動量を一時記憶させ、 演算手段を用いて、前記一時記憶された相対移動を、前
記一時記憶された低周波形状データに対して施した後、
これを高周波形状データに再度加算し、 前記高周波形状データが再度加算されたデータ同士に対
して、オーバーラップ領域における各測定点の面内座標
値を変化させない条件で、再度繋ぎ合わせせ処理を行な
う、3次元形状の形状測定方法。13. A surface to be measured having a three-dimensional shape is divided into a plurality of partial regions having mutually overlapping regions and the surface shape is measured, and a low-frequency shape component is obtained from the surface shape data. Using a computing means to remove only high-frequency shape components, temporarily storing low-frequency components removed from the surface shape data in a storage means, using the computing means to remove a high-frequency component corresponding to the overlap region So that the shape components of
Performing a joining process between the high-frequency shape data, temporarily storing the relative movement amount performed during the joining process between the high-frequency shape data in the storage unit, and using the arithmetic unit, the temporarily stored relative movement. Is performed on the temporarily stored low-frequency shape data,
This is again added to the high-frequency shape data, and the data to which the high-frequency shape data has been added again are subjected to a joining process again under the condition that the in-plane coordinate value of each measurement point in the overlap region is not changed. A method for measuring a three-dimensional shape.
オーバーラップ領域を有する複数の部分領域に分割して
面形状を計測すると同時に、各面形状データの相対姿勢
と相対並進量の少なくとも一方を計測し、 前記、相対姿勢または相対並進量、もしくはそれら両方
に基づいて各面形状データを、あらかじめ概略繋ぎ合わ
せてこれを初期状態とし、その後、高周波形状成分を手
がかりにして、精密な繋ぎ合わせ処理を施す、請求項1
3の形状測定方法。14. A surface to be measured having a three-dimensional shape is divided into a plurality of partial regions having mutually overlapping regions to measure a surface shape, and at least a relative attitude and a relative translation amount of each surface shape data are measured. One surface is measured, and the respective surface shape data are roughly connected in advance based on the relative posture or the relative translation amount, or both, to an initial state, and thereafter, using the high-frequency shape component as a clue, precise connection is performed. 2. A combination process is performed.
3. Shape measuring method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24223799A JP2001066123A (en) | 1999-08-27 | 1999-08-27 | Shape measuring device and method of three-dimensional shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24223799A JP2001066123A (en) | 1999-08-27 | 1999-08-27 | Shape measuring device and method of three-dimensional shape |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001066123A true JP2001066123A (en) | 2001-03-16 |
Family
ID=17086288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24223799A Pending JP2001066123A (en) | 1999-08-27 | 1999-08-27 | Shape measuring device and method of three-dimensional shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001066123A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011085492A (en) * | 2009-10-15 | 2011-04-28 | Canon Inc | Measurement method and measuring system |
JP2011117766A (en) * | 2009-12-01 | 2011-06-16 | Canon Inc | Interference measuring method |
JP2013504762A (en) * | 2009-09-18 | 2013-02-07 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Method for measuring shape of optical surface and interference measuring device |
US8762099B2 (en) | 2009-03-03 | 2014-06-24 | Canon Kabushiki Kaisha | Measurement method and measurement apparatus |
CN106030241A (en) * | 2014-01-09 | 2016-10-12 | 齐戈股份有限公司 | Measuring topography of aspheric and other non-flat surfaces |
JP2017078641A (en) * | 2015-10-20 | 2017-04-27 | キヤノン株式会社 | Shape measurement method and shape measurement device |
US9719773B2 (en) | 2009-11-12 | 2017-08-01 | Canon Kabushiki Kaisha | Measuring method and measuring apparatus |
JP2019035736A (en) * | 2017-07-10 | 2019-03-07 | オーロラ フライト サイエンシズ コーポレーション | System and method for laser speckle for aircraft |
US10845190B2 (en) | 2018-03-05 | 2020-11-24 | Toshiba Memory Corporation | Measurement apparatus for measuring height or shape of a surface of a material |
-
1999
- 1999-08-27 JP JP24223799A patent/JP2001066123A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8762099B2 (en) | 2009-03-03 | 2014-06-24 | Canon Kabushiki Kaisha | Measurement method and measurement apparatus |
JP2013504762A (en) * | 2009-09-18 | 2013-02-07 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Method for measuring shape of optical surface and interference measuring device |
US8593642B2 (en) | 2009-09-18 | 2013-11-26 | Carl Zeiss Smt Gmbh | Method of measuring a shape of an optical surface based on computationally combined surface region measurements and interferometric measuring device |
US8868366B2 (en) | 2009-10-15 | 2014-10-21 | Canon Kabushiki Kaisha | Calculation method and calculation apparatus |
JP2011085492A (en) * | 2009-10-15 | 2011-04-28 | Canon Inc | Measurement method and measuring system |
US9719773B2 (en) | 2009-11-12 | 2017-08-01 | Canon Kabushiki Kaisha | Measuring method and measuring apparatus |
JP2011117766A (en) * | 2009-12-01 | 2011-06-16 | Canon Inc | Interference measuring method |
CN106030241A (en) * | 2014-01-09 | 2016-10-12 | 齐戈股份有限公司 | Measuring topography of aspheric and other non-flat surfaces |
JP2017505434A (en) * | 2014-01-09 | 2017-02-16 | ザイゴ コーポレーションZygo Corporation | Measuring topography of aspheric and other non-planar surfaces |
US9798130B2 (en) | 2014-01-09 | 2017-10-24 | Zygo Corporation | Measuring topography of aspheric and other non-flat surfaces |
JP2017078641A (en) * | 2015-10-20 | 2017-04-27 | キヤノン株式会社 | Shape measurement method and shape measurement device |
JP2019035736A (en) * | 2017-07-10 | 2019-03-07 | オーロラ フライト サイエンシズ コーポレーション | System and method for laser speckle for aircraft |
US11327149B2 (en) | 2017-07-10 | 2022-05-10 | Aurora Flight Sciences Corporation | Laser speckle system and method for an aircraft |
JP7175652B2 (en) | 2017-07-10 | 2022-11-21 | オーロラ フライト サイエンシズ コーポレーション | Aircraft laser speckle system and method |
US10845190B2 (en) | 2018-03-05 | 2020-11-24 | Toshiba Memory Corporation | Measurement apparatus for measuring height or shape of a surface of a material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105783775B (en) | A kind of minute surface and class minute surface object surface appearance measuring device and method | |
CN109163672B (en) | Micro-topography measuring method based on white light interference zero-optical-path-difference position pickup algorithm | |
CN108759709B (en) | White light interference three-dimensional reconstruction method suitable for surface morphology detection | |
US20060072122A1 (en) | Method and apparatus for measuring shape of an object | |
CN103727891A (en) | Synchronous three-dimensional speckle interferometric measurement system and method | |
JPH09507293A (en) | Shape measuring system | |
Jiao et al. | Review of optical measurement techniques for measuring three-dimensional topography of inner-wall-shaped parts | |
JP2001066123A (en) | Shape measuring device and method of three-dimensional shape | |
CN113916154A (en) | Self-calibration structured light measuring method based on constant half width of modulation degree | |
Yang et al. | 3D surface profile measurement of unsymmetrical microstructure using Fizeau interferometric microscope | |
Jian et al. | Task-Specific Near-Field Photometric Stereo for Measuring Metal Surface Texture | |
JP2000263391A (en) | Surface shape evaluation method and high accuracy flatness polishing method using it | |
JP4578674B2 (en) | Analysis method of fringe image with separated region | |
JP2000205822A (en) | Image measurement system and its image correcting method | |
JPH08240417A (en) | Shape measuring method and shape measuring device using the method | |
JP3228436B2 (en) | How to increase the number of interference fringes | |
JP4125074B2 (en) | Three-dimensional shape measurement method | |
Zhang et al. | A method for inspecting near-right-angle V-groove surfaces based on dual-probe wavelength scanning interferometry | |
Jiang et al. | On-Machine Metrology for Hybrid Machining | |
Zhao et al. | Sub-microscale precision repeatability position measurement using integrated polar microstructure and feature extraction method | |
Kuhmstedt et al. | Phasogrammetric optical 3D sensor for the measurement of large objects | |
KR102526978B1 (en) | System and Method for real-time 3D measurement of freeform surfaces using single diagonal fringe pattern | |
JP4220768B2 (en) | Three-dimensional shape measuring method and apparatus | |
JP2000111322A (en) | Three dimensional data processor and method therefor | |
WO2023236298A1 (en) | Six-degrees-of-freedom displacement measurement method and apparatus |