JPH05296745A - Form measuring device - Google Patents

Form measuring device

Info

Publication number
JPH05296745A
JPH05296745A JP4102752A JP10275292A JPH05296745A JP H05296745 A JPH05296745 A JP H05296745A JP 4102752 A JP4102752 A JP 4102752A JP 10275292 A JP10275292 A JP 10275292A JP H05296745 A JPH05296745 A JP H05296745A
Authority
JP
Japan
Prior art keywords
image
solder
shape
light
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4102752A
Other languages
Japanese (ja)
Inventor
Mitsuji Inoue
三津二 井上
Kikuyo Koike
菊代 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4102752A priority Critical patent/JPH05296745A/en
Publication of JPH05296745A publication Critical patent/JPH05296745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To provide a form measuring device that is able to perform a job for form measurement in a short time. CONSTITUTION:A form measuring device illuminates a surface of solder S from different angles as selecting plural pieces of light emitting diodes 2 optionally, photographing a light regularly reflected on the surface of the solder S, and it seeks the position of an image of regular reflected light from the secured image, thereby measuring a three-dimensional form of the solder S. Then, plural pieces of these light emitting diodes 2 are lighted simultaneously, illuminating the solder S zonally, and the secured image is divided into grid form, forming plural pieces of picture domains, and partial inclination information of the solder S predetermined to each image domain is made to correspond thereto, the form of the solder S is operated on the basis of each brightness of these image domains and the inclination information.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、形状の測定方法に係
り、特に基板上に電子部品を接合するはんだ等のように
鏡面を有する被測定対象物を測定する形状測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape measuring method, and more particularly to a shape measuring apparatus for measuring an object to be measured having a mirror surface such as solder for joining electronic parts on a substrate.

【0002】[0002]

【従来の技術】従来、電子部品のはんだ付け状態の検査
は主に目視に頼られていた。近年、このような人手によ
る作業を廃止しようと、自動化のための検査装置や形状
測定装置の開発が行われている。
2. Description of the Related Art Conventionally, the inspection of the soldering state of electronic parts has mainly been based on visual inspection. In recent years, in order to abolish such manual work, an inspection device and a shape measuring device for automation have been developed.

【0003】そして、はんだの形状を測定する装置とし
て、例えば本出願人による特願平2−239009号明
細書に記載されているようなものがある。すなわち、こ
の種の形状測定装置は、例えば多数のLEDを内側に有
するカバ−を用いて電子部品を覆い、LEDを1つずつ
点灯させる。そして、形状測定装置はLEDの光をはん
だの表面で反射させ、正反射光をカメラに取込む。上述
の形状測定装置の形状測定原理を図8(a)、(b)及
び図9(a)、(b)を用いて説明する。
As an apparatus for measuring the shape of solder, there is, for example, one described in Japanese Patent Application No. Hei 2-239909 by the present applicant. That is, in this type of shape measuring apparatus, for example, a cover having a large number of LEDs inside is used to cover the electronic components, and the LEDs are turned on one by one. Then, the shape measuring device reflects the light of the LED on the surface of the solder and takes in the specularly reflected light into the camera. The shape measuring principle of the above-described shape measuring apparatus will be described with reference to FIGS. 8A and 8B and FIGS. 9A and 9B.

【0004】まず、光源(LED)より測定対象物Oに
光が照射され、このときの画像が撮像装置Pによって撮
像される。撮像された画像は、はんだ表面に正反射した
光を撮らえている。そして、この画像で明るい点は光源
と撮像装置との位置関係から傾きの情報として得られ
る。そこで、この傾きの情報とは下式で求められる。 Θi =90−(θj +θi )/2 つまり、予め定まっている光源の測定対象物Oに対する
光の入射角度θi と撮像装置Pの角度θj から、撮像さ
れた画像の明るい点の傾きθが求まる。
First, the light source (LED) irradiates the measuring object O with light, and the image at this time is picked up by the image pickup device P. The captured image captures the light specularly reflected on the solder surface. Then, a bright point in this image is obtained as tilt information from the positional relationship between the light source and the imaging device. Therefore, the information on the inclination is obtained by the following equation. Θ i = 90− (θ j + θ i ) / 2 That is, from the predetermined incident angle θ i of light with respect to the measurement object O of the light source and the angle θ j of the image pickup device P, the bright point of the imaged image is determined. The inclination θ is obtained.

【0005】次に光源の位置を変更し、変更後の画像を
撮像装置Pにより取込む。このとき光源の位置を変更し
たことで測定対象物Oに対する光の入射角度がθi+1
変更される。すなわち、このとき撮像された画像の明る
い点の傾きθi+1 は下式で求められる。 Θi+1 =90−(θj +θi+1 )/2 以下、同様にΘ3 、Θ4 、…、Θx と求めていく。
Next, the position of the light source is changed, and the changed image is captured by the image pickup device P. At this time, by changing the position of the light source, the incident angle of light with respect to the measuring object O is changed to θ i + 1 . That is, the inclination θ i + 1 of the bright point of the image captured at this time is obtained by the following equation. Θ i + 1 = 90− (θ j + θ i + 1 ) / 2 Hereinafter, similarly, Θ 3 , Θ 4 , ..., Θ x are obtained.

【0006】次に傾きΘ1 、Θ2 、…、Θx を求めた測
定対象物表面Oの形状が求められる。形状を測定する際
には高さ方向の情報が必要である。ここで、測定対象物
の外形形状は、任意の座標(x、y)の高さをzとする
と、z=f(x、y)の式で表される。この式は、傾き
を積分することにより求めることができる。つぎに、は
んだの形状測定のための具体的な作業を図9〜図13に
基づいて説明する。
Next, the shape of the surface O of the object to be measured is obtained by obtaining the inclinations Θ 1 , Θ 2 , ..., Θ x . When measuring the shape, information in the height direction is necessary. Here, the outer shape of the measurement object is expressed by the equation z = f (x, y), where z is the height of an arbitrary coordinate (x, y). This equation can be obtained by integrating the slope. Next, a specific work for measuring the shape of the solder will be described based on FIGS. 9 to 13.

【0007】図9中に、はんだSの表面に生じる明るい
点の例が示されている。図中において、符号A〜Dは明
るい点を示している。この明るい点A〜Dは点灯するL
EDの切換えに伴い、リ−ドRの延びる方向に沿って一
つずつ順に発生する。
FIG. 9 shows an example of bright spots generated on the surface of the solder S. In the figure, symbols A to D indicate bright points. These bright points A to D are lit L
As the EDs are switched, they are generated one by one along the extending direction of the lead R.

【0008】まず、点Aがあらわれた場合、点Aの重心
(代表点)G1 、及び点Aのなす傾きΘ1 を求める。そ
して、他のLEDについての明るい点B〜Dがあらわれ
た場合も同様に、各点の重心G2 〜G4 、及び各点のな
す傾きΘ2 〜Θ4 が求められる。そして、A〜Dの4点
だけではなく5点以上の測定点を設定した場合には、測
定点の数に応じて重心G5 、G6 、…、及び傾きΘ5
Θ6 、…が求められる。なお、傾き0の領域、すなわち
基板表面は、例えば、はんだSと基板との境界位置G0
を基にして判別される。
First, when the point A appears, the center of gravity (representative point) G 1 of the point A and the inclination Θ 1 formed by the point A are obtained. When the bright points B to D of the other LEDs appear, the centers of gravity G 2 to G 4 of the respective points and the inclinations Θ 2 to Θ 4 formed by the respective points are similarly obtained. Then, when not only four points A to D but also five or more measurement points are set, the centers of gravity G 5 , G 6 , ... And the inclination Θ 5 , depending on the number of measurement points.
Θ 6 , ... Is required. In addition, the region where the inclination is 0, that is, the substrate surface is, for example, the boundary position G 0 between the solder S and the substrate
It is determined based on.

【0009】ここで、図9中において、はんだSは基板
表面上に隆起しており、リ−ドRの突出方向に沿って延
びるとともに、リ−ドRの先端から離れるに従って低く
傾斜している。
Here, in FIG. 9, the solder S is raised on the surface of the substrate, extends along the protruding direction of the lead R, and inclines low as it goes away from the tip of the lead R. ..

【0010】図9中のG0 とG1 、G1 とG2 、…はつ
ながりを有していない。そこで、G0 とG1 との中点C
0 、G1 とG2 との中点C1 、G2 とG3 との中点
2 、…を順次算出する。ここでC1 からC2 までの面
の傾きをΘ2 と想定して、はんだSの表面の形状を測定
する。ここでC0 からC1 までの長さをL1 、C1 から
2 までの長さをL2 、…とする。このとき、C1 の高
さZ1 は下式で算出される。 Z1 =L1 × tanΘ1 以下、C2 の高さZ2 は下式で算出される。 Z2 =L2 × tanΘ2 +Z1 結局、Ci の高さZi は下式で算出される。
In FIG. 9, G 0 and G 1 , G 1 and G 2 , ... Are not connected. Therefore, the midpoint C between G 0 and G 1
0, G 1 and the midpoint C 1 of G 2, G 2 and the middle point C 2 with G 3, ... are sequentially calculated. Here, assuming the inclination of the surface from C 1 to C 2 to be Θ 2 , the surface shape of the solder S is measured. Here, the length from C 0 to C 1 is L 1 , the length from C 1 to C 2 is L 2 , .... At this time, the height Z 1 of C 1 is calculated by the following formula. Z 1 = L 1 × tanΘ 1 below, the height Z 2 of C 2 is calculated by the following equation. Z 2 = L 2 × tanΘ 2 + Z 1 Eventually, the height Z i of C i is calculated by the following equation.

【0011】この検出結果を結ぶことにより図10に示
したようにはんだSの断面形状が算出できる。この図1
0では、リ−ドRと同じ方向のLEDの列を順次点灯さ
せていったが、他のLEDの列を点灯させていくこと
で、図11のようにはんだSの全体の形状を検出するこ
ともできる。
By connecting the detection results, the cross-sectional shape of the solder S can be calculated as shown in FIG. This Figure 1
At 0, the LED row in the same direction as the lead R was sequentially turned on, but by turning on the other LED rows, the overall shape of the solder S is detected as shown in FIG. You can also

【0012】また、図12に示すように、画像デ−タを
格子状に分割する場合もある。この場合は、格子状に分
割された領域の光強度を取込んだ画像毎に算出し、最も
明るい点が強い画像に対応するLEDの位置から求まる
傾きΘを、その領域の傾きとする。後はこの傾きのデ−
タより図12に示すように高さ情報を算出し、図13の
ような形状を算出する。
Further, as shown in FIG. 12, the image data may be divided into a grid pattern. In this case, the light intensity of a region divided in a grid pattern is calculated for each image, and the inclination Θ obtained from the position of the LED corresponding to the image with the brightest point is set as the inclination of the region. After that, the data of this inclination
The height information is calculated from the data as shown in FIG. 12, and the shape as shown in FIG. 13 is calculated.

【0013】[0013]

【発明が解決しようとする課題】ところで、上述のよう
な従来の形状測定装置においては、はんだSの部分的な
傾き及び高さが順次合成されてはんだSの全体形状が求
められる。このため、LEDを1つずつ点滅制御する必
要があった。そして、はんだSの形状算出に手間が係
り、その分だけ形状測定に多くの時間を要していた。本
発明の目的とするところは、形状測定を短時間で行うこ
とが可能な形状測定装置を提供することにある。
By the way, in the conventional shape measuring apparatus as described above, the partial shape and the height of the solder S are sequentially synthesized to obtain the overall shape of the solder S. Therefore, it is necessary to control the blinking of the LEDs one by one. Further, it takes much time to calculate the shape of the solder S, and it takes much time to measure the shape. An object of the present invention is to provide a shape measuring device capable of performing shape measurement in a short time.

【0014】[0014]

【課題を解決するための手段および作用】上記目的を達
成するために本発明は、複数の光源を任意に選択しなが
ら測定対象物を異なる角度から照明し、測定対象物の表
面で正反射した光を撮像し、得られた画像から正反射光
の像の位置を求めて測定対象物の3次元形状を測定する
形状測定装置において、光源を複数個同時に点灯させて
測定対象物を帯状に照明し、得られた画像を格子状に分
割して複数の画像領域を形成し、各画像領域に予め決め
られた測定対象物の部分的な傾き情報を対応させ、各画
像領域の明るさと傾き情報とを基に測定対象物の形状を
演算することにある。こうすることによって本発明は、
形状測定を短時間で行えるようにしたことにある。
In order to achieve the above object, the present invention illuminates a measuring object from different angles while arbitrarily selecting a plurality of light sources, and specularly reflects the surface of the measuring object. In a shape measuring device for measuring the three-dimensional shape of an object to be measured by capturing light and determining the position of an image of specularly reflected light from the obtained image, a plurality of light sources are simultaneously turned on to illuminate the object to be measured in a band shape. Then, the obtained image is divided into a grid shape to form a plurality of image areas, and each image area is made to correspond to the partial inclination information of the measurement object that is determined in advance. It is to calculate the shape of the measuring object based on and. By doing so, the present invention provides
The purpose is to enable shape measurement in a short time.

【0015】[0015]

【実施例】以下、本発明の一実施例を図1〜図5に基づ
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0016】図1は第1の実施例の形状測定装置の構成
図である。外乱光を遮る半円球状のカバ−1に光源とし
てのLED2…を経線方向に10度毎、緯度方向に5度
ごとに配置してある。このLED2…は個々に独立して
点灯可能なように制御装置3に接続されている。また、
カバ−1の下方には基板を載置する載置台としてのX−
Yテ−ブル4が設けられている。また、このX−Yテ−
ブル4は制御装置3に制御可能に接続されている。さら
に、カバ−1の垂線方向に撮像手段としてのカメラ5を
配置している。このカメラ5は撮像した画像信号を画像
処理装置6に送信可能に接続されており、さらに画像処
理装置6はその処理結果をモニタ7に表示可能に接続さ
れている。また、画像処理装置6は制御装置3の指令に
より動作するよう接続されている。
FIG. 1 is a block diagram of the shape measuring apparatus of the first embodiment. LEDs 2 as light sources are arranged in a semi-spherical cover 1 that blocks ambient light every 10 degrees in the meridian direction and every 5 degrees in the latitudinal direction. The LEDs 2 ... Are connected to the control device 3 so that they can be turned on independently. Also,
Below the cover-1 is an X- as a mounting table for mounting a substrate.
A Y table 4 is provided. Also, this XY test
The bull 4 is controllably connected to the controller 3. Further, a camera 5 as an image pickup unit is arranged in the direction of the perpendicular of the cover-1. The camera 5 is connected to the image processing device 6 so that the captured image signal can be transmitted, and the image processing device 6 is also connected to the monitor 7 so that the processing result can be displayed on the monitor 7. The image processing device 6 is also connected so as to operate according to a command from the control device 3.

【0017】前記制御装置3は、LED2…の点灯順序
を決定してLED2…を点灯させる光制御機能を備えて
いる。そして、制御装置3は、各緯度毎のLED2…を
組合わせ、緯度方向に一列に並んだLED2…を同時に
点灯させる。また、LED2…の各列毎にリング状に点
灯し、LED2…の点灯は例えばカバ−1の上側から下
側へ順に切換えられる。
The control device 3 has a light control function for deciding the lighting order of the LEDs 2 ... And lighting the LEDs 2. Then, the control device 3 combines the LEDs 2 for each latitude and simultaneously turns on the LEDs 2 arranged in a line in the latitude direction. Further, each row of the LEDs 2 is lit in a ring shape, and the lighting of the LEDs 2 is switched in order from the upper side to the lower side of the cover-1.

【0018】画像処理装置6は、カメラ5から出力され
た画像デ−タを取込んで所定のアドレスに記憶する機能
を有している。さらに、画像処理装置6は、画像デ−タ
を格子状に均等に分割して複数の画像領域を形成する。
また、画像処理装置6は各画像領域に測定対象物の傾き
情報を予め対応させており、各画像領域の明るさと上記
傾き情報とに基づいて測定対象物の形状を演算する。そ
して、この画像処理装置6と前述の制御装置3とによっ
て演算制御手段8が構成されている。
The image processing device 6 has a function of taking in image data output from the camera 5 and storing it at a predetermined address. Further, the image processing device 6 divides the image data evenly in a grid pattern to form a plurality of image areas.
Further, the image processing device 6 associates the inclination information of the measuring object with each image area in advance, and calculates the shape of the measuring object based on the brightness of each image area and the inclination information. The image processing device 6 and the above-mentioned control device 3 constitute the arithmetic control means 8.

【0019】次に、この装置を用いて上述の形状測定装
置の作用を説明する。まず、X−Yテ−ブル4上に測定
対象物である電子部品9をはんだ付けした基板10が載
置される。基板10が載置されると制御装置3はX−Y
テ−ブル4を駆動して、カメラ5が撮像する画面の中心
にはんだ付け部がくるようにする。これは予め基板10
がX−Yテ−ブル4に位置決めされており、その情報か
らX−Yテ−ブル4を駆動することにより行う。
Next, the operation of the above-mentioned shape measuring apparatus using this apparatus will be described. First, the substrate 10 to which the electronic component 9 as the measurement object is soldered is placed on the XY table 4. When the substrate 10 is placed, the control device 3 moves to XY
The table 4 is driven so that the soldering portion comes to the center of the screen imaged by the camera 5. This is the substrate 10 in advance
Are positioned on the XY table 4, and the XY table 4 is driven based on the information.

【0020】このように測定対象物を撮像位置に位置合
せした後に、制御装置3はカバ−1に設けられたLED
2…を、同じ緯度上の列毎に(リング状に)上から順番
に点灯させていく。このとき、各列毎に照明されたはん
だ付け部分の画像がカメラ5により順次撮像される。
After the object to be measured is aligned with the image pickup position in this way, the control device 3 causes the LED provided on the cover-1.
2 ... are lit in sequence from the top (in a ring shape) for each row on the same latitude. At this time, the images of the soldered portions illuminated for each row are sequentially captured by the camera 5.

【0021】このときの画面が図2(a)〜(d)に示
されている。図2(a)は例えば最上段のLED2…の
列を点灯させた時の画像である。光源角度と撮像角度と
の関係に応じて照明光が正反射し、はんだSの表面の外
縁部に明るい部分Aが生じる。同様にLED2…を切換
えて点灯させると、図2(b)〜(d)に示すように、
はんだSの傾きに応じて明るい部分B〜Dが発生する。
これらの明るい部分B〜Dのあらわれる位置は、点灯す
るLED2…の列が下へ移るほど、はんだSの内側で且
つリ−ドRの軸心に近い部分に変化する。
The screens at this time are shown in FIGS. 2 (a) to 2 (d). FIG. 2A shows an image when, for example, the uppermost row of LEDs 2 ... Is lit. Illumination light is specularly reflected according to the relationship between the light source angle and the imaging angle, and a bright portion A is generated at the outer edge portion of the surface of the solder S. Similarly, when the LEDs 2 are switched and turned on, as shown in FIGS. 2 (b) to 2 (d),
Bright portions B to D occur depending on the inclination of the solder S.
The positions where these bright portions B to D appear change to a portion inside the solder S and closer to the axis of the lead R as the row of LEDs 2 ...

【0022】つぎにこうして撮像された画像は画像デ−
タとして画像処理装置6へ送信され記憶される。画像処
理装置6では、この記憶された画像デ−タに基づいて形
状が測定される。
Next, the image thus picked up is the image data.
Data is transmitted to the image processing device 6 and stored therein. The image processing device 6 measures the shape based on the stored image data.

【0023】ここで記憶した画像デ−タは図3に示すよ
うに格子状に分割され、複数の画像領域(以下、領域と
称する)Hn (n=1〜k)が形成される。これら領域Hn
いに均等な大きさに設定され、複数の画素により構成さ
れている。そして、図3において、領域Hn の全体の大
きさは、領域Hn の全体にはんだSの全体と、基板10
及びリ−ドRの一部が含まれるよう設定されている。
The image data stored here is divided into a grid pattern as shown in FIG. 3 to form a plurality of image regions (hereinafter referred to as regions) H n (n = 1 to k). The areas H n are set to have equal sizes and are composed of a plurality of pixels. Then, in FIG. 3, the overall size of the area H n is a whole solder S in the entire region H n, the substrate 10
And a part of the lead R are set to be included.

【0024】つぎに各領域Hn 内の画素の持つ明るさの
平均値をもとめ、所定値以上の明るさを持つ領域を選
ぶ。この所定値以上の明るさを持つ領域は、上述のよう
に光源角度と撮像角度の関係に基づいて光が正反射して
いる部分であり、その傾きは下式で求められる。 θn =90−(θj +θi )/2 つまり、予め定まっている光源の測定対象物に対する光
の入射角度θi と撮像角度θj から、所定値以上の明る
さを持つ領域の傾きΘn が求まる。
Next, the average value of the brightness of the pixels in each area H n is obtained, and the area having the brightness equal to or higher than a predetermined value is selected. The area having the brightness equal to or higher than the predetermined value is a portion where light is specularly reflected based on the relationship between the light source angle and the imaging angle as described above, and the inclination thereof is calculated by the following formula. θ n = 90− (θ j + θ i ) / 2 That is, from the angle of incidence θ i of the light to the measurement object of the light source and the imaging angle θ j , the inclination Θ of the region having the brightness equal to or more than the predetermined value n is obtained.

【0025】つぎに、図3(b)で示すように、光源角
度を変えて撮像した画像デ−タを先の場合と同じ位置で
格子状に分割し、各領域内の画素の持つ明るさの平均値
をもとめ、所定値以上の明るさを持つ領域を選ぶ。光源
の角度を変更したことで測定対象物に対する光の入射角
度がθi+1 に変更される。すなわち、この領域の傾きは
下式で求められる。 θn+1 =90−(θj +θn+1 )/2
Next, as shown in FIG. 3B, the image data captured by changing the light source angle is divided into a grid pattern at the same positions as in the previous case, and the brightness of the pixels in each region is divided. The average value of is calculated and the area having the brightness equal to or higher than a predetermined value is selected. By changing the angle of the light source, the incident angle of light on the measurement object is changed to θ i + 1 . That is, the inclination of this area is obtained by the following equation. θ n + 1 = 90− (θ j + θ n + 1 ) / 2

【0026】以下、同様にθ3 、θ4 、…、θx と求め
ていく。図4は、上述のように求められた各領域Hi
傾き情報の一例を示している。なお、カメラ5に内蔵さ
れた落射照明機構を用いてはんだSと基板aとの境界が
求められており、傾き0°の領域はこの境界を基にして
判別されている。
Hereinafter, similarly, θ 3 , θ 4 , ..., θ x will be obtained. FIG. 4 shows an example of the tilt information of each area H i obtained as described above. The boundary between the solder S and the substrate a is obtained by using the epi-illumination mechanism built in the camera 5, and the region having the inclination of 0 ° is determined based on this boundary.

【0027】さて、上記傾き情報から高さ情報を求める
ために、まず、Y方向列の各領域の中心Wx がそれぞれ
算出される。傾きのある領域の手前の傾き0°の領域
(基準領域)を基準として、領域H1 までの距離を
1 、その傾きをθ1 とすれば領域H1 の高さZ1 は下
式で算出できる。 Z1 =L1 × tanθ1 以下同様に、傾き情報のある領域の高さZm を求める。
さらに、Y方向に領域列を変えて上記方法により高さ情
報を求める。
In order to obtain the height information from the tilt information, first, the center W x of each area in the Y-direction row is calculated. Relative to the front of the inclination 0 ° in the region of a slope area (reference area), the distance to the area H 1 L 1, the inclination theta 1 Tosureba height Z 1 region H 1 under formula Can be calculated. Z 1 = L 1 × tan θ 1 and below Similarly, the height Z m of the area having the tilt information is obtained.
Further, the height information is obtained by changing the region row in the Y direction by the above method.

【0028】この様にして求めた各領域の高さ情報か
ら、図5のような形状が算出される。上記各領域の高さ
情報は、値の低い高さ情報にその領域の高さを重ねるこ
とにより作成される。つまり、例えば、傾き情報が20
°である領域の高さ情報は、傾き情報が10°である領
域の高さ情報に、θi =20°とした場合の高さZi
値を加えた値となる。
A shape as shown in FIG. 5 is calculated from the height information of each area thus obtained. The height information of each area is created by superimposing the height of the area on the height information having a low value. That is, for example, the tilt information is 20
The height information of the area of 0 ° is a value obtained by adding the value of the height Z i when θ i = 20 ° to the height information of the area of which the inclination information is 10 °.

【0029】すなわち、上述のような形状測定装置にお
いては、LED2…が同じ緯度上の列毎に纏めて点灯制
御され、上から順番にリング状に点灯する。さらに、画
像処理装置6において記憶された画像デ−タは図3に示
すように格子状に分割され、各領域Hn 内の画素の持つ
明るさの平均値が求められる。そして、所定値以上の明
るさを持つ領域が選ばれ、光が正反射している部分の傾
き及び高さが求められる。
That is, in the shape measuring apparatus as described above, the LEDs 2 are controlled to be turned on collectively for each row on the same latitude, and are turned on in a ring shape in order from the top. Further, the image data stored in the image processing device 6 is divided into a lattice shape as shown in FIG. 3, and the average value of the brightness of the pixels in each area H n is obtained. Then, an area having a brightness equal to or higher than a predetermined value is selected, and the inclination and height of the portion where light is regularly reflected are obtained.

【0030】したがって、LED2…の個別の点滅制御
が不要になり、LED2…の点滅制御が簡略化され、は
んだSの3次元形状を短時間で算出することが可能にな
る。なお、本実施例においてはカメラ5が1つのみ備え
られているが、例えば図6に示すように複数のカメラ5
…を適宜配置すれば、測定範囲に死角が生じることを防
止できる。
Therefore, the individual blinking control of the LEDs 2 is not required, the blinking control of the LEDs 2 is simplified, and the three-dimensional shape of the solder S can be calculated in a short time. Although only one camera 5 is provided in this embodiment, for example, as shown in FIG.
By appropriately arranging ..., it is possible to prevent the occurrence of a blind spot in the measurement range.

【0031】また、本実施例では形状測定の対象を一つ
しか述べていないが、これは作用の説明の簡略化のため
である。実際にははんだ付け形状を測定するような場合
には、複数の対象物に対して(例えば電子部品のリ−ド
部分)ウインドウを設定して、一度にそれぞれの形状を
測定することができる。このように一度に複数の形状の
測定ができることにより測定速度の高速化もできるもの
である。
Further, although only one object of shape measurement is described in this embodiment, this is for the purpose of simplifying the explanation of the operation. When actually measuring the soldering shape, windows can be set for a plurality of objects (for example, the lead portion of an electronic component), and the respective shapes can be measured at once. Since a plurality of shapes can be measured at once in this way, the measurement speed can be increased.

【0032】また、本実施例では光源としてLED2…
が設けられているが、他の照明を光源として用いてもよ
い。さらに、例えば、一つ或いは複数の光源の光束を分
割し、分割された光束を光ファイバでカバ−1に導くこ
とも可能である。そして、本発明は要旨を逸脱しない範
囲で種々に変形することが可能である。
Further, in this embodiment, as the light source, the LEDs 2 ...
However, other illumination may be used as the light source. Further, for example, it is possible to divide the light flux of one or a plurality of light sources and guide the divided light flux to the cover-1 with the optical fiber. The present invention can be variously modified without departing from the scope of the invention.

【0033】[0033]

【発明の効果】以上説明したように本発明は、複数の光
源を任意に選択しながら測定対象物を異なる角度から照
明し、測定対象物の表面で正反射した光を撮像し、得ら
れた画像から正反射光の像の位置を求めて測定対象物の
3次元形状を測定する形状測定装置において、光源を複
数個同時に点灯させて測定対象物を帯状に照明し、得ら
れた画像を格子状に分割して複数の画像領域を形成し、
各画像領域に予め決められた測定対象物の部分的な傾き
情報を対応させ、各画像領域の明るさと傾き情報とを基
に測定対象物の形状を演算するものである。したがって
本発明は、形状測定を短時間で行えるという効果があ
る。
As described above, the present invention is obtained by illuminating the measuring object from different angles while arbitrarily selecting a plurality of light sources and imaging the light specularly reflected on the surface of the measuring object. In a shape measuring device for measuring a three-dimensional shape of a measurement target by obtaining a position of an image of specularly reflected light from an image, a plurality of light sources are simultaneously turned on to illuminate the measurement target in a band shape, and the obtained image is gridded. To form multiple image areas,
The shape information of the measurement target is calculated based on the brightness and the tilt information of each image region by associating the partial tilt information of the measurement target determined in advance with each image region. Therefore, the present invention has an effect that shape measurement can be performed in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】(a)〜(d)はLEDの照明角度を順次変化
させた場合の正反射光を示す説明図。
2A to 2D are explanatory views showing specularly reflected light when the illumination angle of an LED is sequentially changed.

【図3】(a)〜(d)は画像デ−タが格子状に分割さ
れた状態を示す説明図。
3A to 3D are explanatory views showing a state in which image data is divided into a grid pattern.

【図4】格子と傾き情報との対応を示す説明図。FIG. 4 is an explanatory diagram showing a correspondence between a grid and inclination information.

【図5】測定結果の一例を示す説明図。FIG. 5 is an explanatory diagram showing an example of measurement results.

【図6】変形例を示す説明図。FIG. 6 is an explanatory diagram showing a modified example.

【図7】他の変形例を示す説明図。FIG. 7 is an explanatory diagram showing another modification.

【図8】(a)及び(b)は測定原理を示す説明図。8A and 8B are explanatory views showing the measurement principle.

【図9】作用を示す説明図。FIG. 9 is an explanatory diagram showing an operation.

【図10】作用を示す説明図。FIG. 10 is an explanatory diagram showing an operation.

【図11】作用を示す説明図。FIG. 11 is an explanatory diagram showing an operation.

【図12】作用を示す説明図。FIG. 12 is an explanatory diagram showing an operation.

【図13】測定結果の一例を示す説明図。FIG. 13 is an explanatory diagram showing an example of measurement results.

【符号の説明】[Explanation of symbols]

1…カバ−、2…LED(光源)、3…制御装置、4…
X−Yテ−ブル、5…カメラ(撮像手段)、6…画像処
理装置、S…はんだ(測定対象物)。
1 ... Cover, 2 ... LED (light source), 3 ... Control device, 4 ...
XY table, 5 ... Camera (imaging means), 6 ... Image processing device, S ... Solder (measurement object).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の光源を任意に選択しながら測定対
象物を異なる角度から照明し、上記測定対象物の表面で
正反射した光を撮像し、得られた画像から正反射光の像
の位置を求めて上記測定対象物の3次元形状を測定する
形状測定装置において、上記光源を複数個同時に点灯さ
せて上記測定対象物を帯状に照明し、得られた画像を格
子状に分割して複数の画像領域を形成し、各画像領域に
予め決められた上記測定対象物の部分的な傾き情報を対
応させ、上記各画像領域の明るさと上記傾き情報とを基
に上記測定対象物の形状を演算することを特徴とする形
状測定装置。
1. An object to be measured is illuminated from different angles while arbitrarily selecting a plurality of light sources, the light specularly reflected on the surface of the object to be measured is imaged, and an image of specularly reflected light is obtained from the obtained image. In a shape measuring device for determining a position and measuring a three-dimensional shape of the measurement object, a plurality of the light sources are simultaneously turned on to illuminate the measurement object in a strip shape, and the obtained image is divided into a grid shape. A plurality of image areas are formed, and each image area is made to correspond to partial inclination information of the measurement object determined in advance, and the shape of the measurement object is determined based on the brightness of each image area and the inclination information. A shape measuring device characterized by calculating.
JP4102752A 1992-04-22 1992-04-22 Form measuring device Pending JPH05296745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4102752A JPH05296745A (en) 1992-04-22 1992-04-22 Form measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4102752A JPH05296745A (en) 1992-04-22 1992-04-22 Form measuring device

Publications (1)

Publication Number Publication Date
JPH05296745A true JPH05296745A (en) 1993-11-09

Family

ID=14335950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4102752A Pending JPH05296745A (en) 1992-04-22 1992-04-22 Form measuring device

Country Status (1)

Country Link
JP (1) JPH05296745A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033593A (en) * 2009-10-30 2010-02-12 Renesas Technology Corp Manufacturing method for semiconductor integrated circuit device
JP2011232087A (en) * 2010-04-26 2011-11-17 Omron Corp Shape measurement device and calibration method
US8125632B2 (en) 2004-01-23 2012-02-28 Renesas Electronics Corporation Fabrication method of semiconductor integrated circuit device
JP2013054011A (en) * 2011-09-06 2013-03-21 Nippon Hoso Kyokai <Nhk> Surface normal measurement device, surface normal measurement system, and surface normal measurement program
JP2014206388A (en) * 2013-04-10 2014-10-30 オリンパス株式会社 Imaging device, image process device and image process method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125632B2 (en) 2004-01-23 2012-02-28 Renesas Electronics Corporation Fabrication method of semiconductor integrated circuit device
US8259295B2 (en) 2004-01-23 2012-09-04 Renesas Electronics Corporation Fabrication method of semiconductor integrated circuit device
JP2010033593A (en) * 2009-10-30 2010-02-12 Renesas Technology Corp Manufacturing method for semiconductor integrated circuit device
JP2011232087A (en) * 2010-04-26 2011-11-17 Omron Corp Shape measurement device and calibration method
US8363929B2 (en) 2010-04-26 2013-01-29 Omron Corporation Shape measurement apparatus and calibration method
JP2013054011A (en) * 2011-09-06 2013-03-21 Nippon Hoso Kyokai <Nhk> Surface normal measurement device, surface normal measurement system, and surface normal measurement program
JP2014206388A (en) * 2013-04-10 2014-10-30 オリンパス株式会社 Imaging device, image process device and image process method

Similar Documents

Publication Publication Date Title
JP2711042B2 (en) Cream solder printing condition inspection device
CN103134446B (en) 3 d shape measuring apparatus and measuring method
US6362877B1 (en) Visual inspection supporting apparatus and printed circuit board inspecting apparatus, and methods of soldering inspection and correction using the apparatuses
TWI422800B (en) Board inspection apparatus and method
JP4166587B2 (en) Appearance inspection apparatus and volume inspection method
KR20110119531A (en) Shape measuring device and calibration method
JP5432864B2 (en) Inspection apparatus and inspection method
JP2009168582A (en) Appearance inspecting equipment
JP6791631B2 (en) Image generation method and inspection equipment
JPH10300448A (en) Device and method for inspection of printed circuit board assembly
JP2011095226A (en) Inspection device of material to be inspected, and position correction device of electronic substrate
JPH07307599A (en) Inspection device and product manufacture
JP5580121B2 (en) Board inspection equipment
JPH0797022B2 (en) Shape measuring device, shape measuring method, and calibration method of shape measuring device
JP3140462U (en) Board inspection equipment
JP2002107126A (en) Apparatus and method for inspecting substrate
JP4051568B2 (en) Component mounting board inspection equipment
JPH05296745A (en) Form measuring device
JP2000131037A (en) Apparatus for inspecting shape of body
JP4130895B2 (en) Appearance inspection device
JP2006266685A (en) Inspection method and inspection device for mounted substrate
JP2000304520A (en) Shape measuring apparatus and shape measuring method of solder fillet
JPH08128963A (en) Soldered appearance inspection device
JP4162132B2 (en) Scanning head and visual inspection apparatus using the same
JPH05288527A (en) Appearance inspecting method for mounted board and its device