JPS59209110A - Reinforced shape - Google Patents

Reinforced shape

Info

Publication number
JPS59209110A
JPS59209110A JP8440083A JP8440083A JPS59209110A JP S59209110 A JPS59209110 A JP S59209110A JP 8440083 A JP8440083 A JP 8440083A JP 8440083 A JP8440083 A JP 8440083A JP S59209110 A JPS59209110 A JP S59209110A
Authority
JP
Japan
Prior art keywords
aggregate
reinforced molded
weight
molded body
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8440083A
Other languages
Japanese (ja)
Other versions
JPH0122219B2 (en
Inventor
谷地 秀則
正記 三羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP8440083A priority Critical patent/JPS59209110A/en
Publication of JPS59209110A publication Critical patent/JPS59209110A/en
Publication of JPH0122219B2 publication Critical patent/JPH0122219B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明に、連続補強材を埋設した窯業製品の成形体に開
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a molded article of a ceramic product in which a continuous reinforcing material is embedded.

連続補強材を埋設した窯業製品の成形体(以下、補強成
形体という)は、生体的部分が混練されたモルタル原料
よシなシ、その内部に金属線、金属メツシュ、金属帯材
、ガラス繊維その他の長尺の連続補強材を埋設すること
によって、窯業製品が有する脆さを補強したものであり
、従来から卸られている。補強成形体の生体的部分をな
すモルタル原料は、普通ポルトランドセメント、早強セ
メント、アルミナセメント等(以下、これら全総称して
セメントという)と、珪砂、川砂、砕石等(以下、骨材
という)とを混合し、必要に応じて可塑剤、減水剤、膨
張剤、繊維等(以下、添加材という)を添加し、これに
水を加えて混練調製したものが用いられる。このような
モルタル原料は、プレス酸形、押出成形、流し込み成形
等適宜の成形方法によって所定の形状に成形されるが、
その際には、前記の連続補強材を所定の被覆厚さでモル
タル原料の内部に包み込み、表向に露出する部分がない
ように成形する必要がある。補強成形体は、成形後に乾
燥、施釉、焼成及び再水和等の処理會施丁ことによって
、表面が美麗でかつ耐久性に優れた窯業製品としての建
築用材料となる。ところが補強成形体は、その表向に釉
薬膜を設ける場合、焼成時にクラックが多発し、美塊な
釉薬面を得ることが困難であるという欠点?有していた
A ceramic product molded body with a continuous reinforcing material embedded therein (hereinafter referred to as a reinforced molded body) is made of a mortar raw material mixed with biological parts, and has metal wires, metal meshes, metal strips, and glass fibers inside. The brittleness of ceramic products is reinforced by embedding other long continuous reinforcing materials, and this product has been commercially available for a long time. Mortar raw materials that form the biological part of the reinforced molded body include ordinary Portland cement, early strength cement, alumina cement, etc. (hereinafter collectively referred to as cement), and silica sand, river sand, crushed stone, etc. (hereinafter referred to as aggregate). A plasticizer, a water reducing agent, a swelling agent, fibers, etc. (hereinafter referred to as additives) are added as necessary, and water is added to the mixture to prepare a kneaded product. Such mortar raw materials are molded into a predetermined shape by an appropriate molding method such as press acid molding, extrusion molding, and cast molding.
In this case, it is necessary to wrap the continuous reinforcing material inside the mortar raw material with a predetermined coating thickness and mold it so that no part is exposed on the surface. By subjecting the reinforced molded body to treatments such as drying, glazing, firing, and rehydration after molding, it becomes a building material as a ceramic product with a beautiful surface and excellent durability. However, when a glaze film is provided on the surface of a reinforced molded product, cracks occur frequently during firing, making it difficult to obtain a beautiful glazed surface. had.

クラック発生の原因は、焼成時に、連続補強材とセメン
トを主材とするモルタル原料とが、モルタル原料の硬化
に伴なう自己接着力によシ互に拘束状態となるが、また
同時に、モルタル原料は収縮し、反対に連続補強材に膨
張するという現象によるものでめる0すなわち焼成時に
は、未固化の状態から脱していないモルタル原料の部分
に大きな引張り応力が作用することになり、しかも、焼
成段階である一足の温度以上に達するとセメントが盛ん
な脱水現象を呈し、この脱水現象中にモルタル原料の強
度が一時的に低下する。これらの現象が相乗的に作用し
て、補強成形体の表面にクラックを多発させるのである
The cause of cracks is that during firing, the continuous reinforcing material and the cement-based mortar raw material are bound to each other by the self-adhesive force that accompanies the hardening of the mortar raw material, but at the same time, the mortar This is due to the phenomenon that the raw material contracts and conversely expands into a continuous reinforcing material.In other words, at the time of firing, a large tensile stress acts on the part of the mortar raw material that has not escaped from its unsolidified state. When the temperature exceeds the firing stage, the cement undergoes extensive dehydration, and during this dehydration, the strength of the mortar raw material temporarily decreases. These phenomena act synergistically to cause frequent cracks on the surface of the reinforced molded body.

上記の欠点を屏消するため、不発明の出願人等は、先に
出願の特願昭57−334り2号により、モルタル原料
の骨材としてシリカを用いることによって焼成時のクラ
ック発生を防止する方法を提案した。該先願の発F3A
は、クラック発生の防止に一応の効果を奏し得たもので
あるが、その後の夫験の結果、美麗な釉薬面を得るには
未だ不十分であることが判明したO″jfxわち、美麗
な釉薬面を得るには、釉薬を完全にガラス化すると共に
、モルタル原料の部分は勿論のこと、釉薬面自体にもク
ランクやピンホールがないようにすることか必要でらる
0このようにするには、焼成処惺時の昇温速度や降温速
庭を可成緩慢にして、急減な熱応力?与えないようにし
なけれはならない0ところが、そのようにすると補強成
形体の受熱量か必然的に増大し、従ってモルタル原料の
S分の収縮量も増大し、結局、骨材としてシリカを添加
する程度では、モルタル原料の加熱収縮賃を十分補償し
得るには至らないことがわかった0 本発明者等は、上記の事情に鑑み、鋭意#F究含重ねぇ
結果、モルタル原料に含まれる骨材の全部または一部と
して、線膨張率が所定の値以上のものt選定して使用す
れば、焼成時の大きな受熱にも拘らずモルタル原料の収
縮量を少なくすることができ、モルタル原料に対する過
大な引張シ応力の作用を避けて、クラックが発生するこ
とのない美麗な釉薬面tもつ几補強成形体が得られるこ
とを見出した0以下に、上記知見に基づいてなされた不
発明の詳細な説明する。
In order to eliminate the above-mentioned drawbacks, the applicant of the invention previously filed Japanese Patent Application No. 334/1983 to prevent the occurrence of cracks during firing by using silica as an aggregate for mortar raw materials. proposed a method to do so. Issue F3A of the prior application
was somewhat effective in preventing the occurrence of cracks, but as a result of subsequent experience, it was found that it was still insufficient to obtain a beautiful glaze surface. In order to obtain a good glazed surface, it is necessary to completely vitrify the glaze and to make sure that there are no cranks or pinholes not only in the mortar material but also in the glazed surface itself. In order to do this, it is necessary to keep the temperature increase rate and temperature decrease rate during the firing process fairly slow so as not to cause a sudden decrease in thermal stress. As a result, the shrinkage amount of the S component of the mortar raw material also increased, and it was found that the addition of silica as an aggregate was not enough to compensate for the heat shrinkage of the mortar raw material. In view of the above-mentioned circumstances, the inventors of the present invention have carried out extensive research and have selected and used aggregates with a coefficient of linear expansion equal to or higher than a predetermined value as all or part of the aggregate contained in mortar raw materials. By doing so, it is possible to reduce the amount of shrinkage of the mortar raw material despite receiving a large amount of heat during firing, avoid the action of excessive tensile stress on the mortar raw material, and create a beautiful glazed surface without cracks. It was discovered that a reinforced molded product with a strong structure can be obtained.The invention based on the above findings will be described in detail below.

不発l1ll14は、セメント及び骨材を主材とし、必
要に応じて可塑剤、減水剤、膨張剤、繊維等の添加材の
一種まfcは二株以上を添加してなる混線モルタル原料
と、該モルタル原料によ!l埋設状態に包み込筐れた金
属線、金属メツシュ、金属帯材、ガラスロービング等の
連続補強材とから成る補強成形体において、前記骨材の
全部または一部として、最高焼成温度以下の温度におけ
る線膨張率か15X 10’−’以上のものt用いた補
強成形体を要旨とするものである。もし、線膨張率がl
 5 X 10−6未満の骨材だけ音用いるときは、モ
ルタル原料の熱収量ttカバーし得す、クラックの発生
を防止することはできずミ本発明の目的を達することは
困難となる。
Unexploded l1ll14 is a mixed wire mortar raw material whose main materials are cement and aggregate, and if necessary, one or more additives such as plasticizers, water reducing agents, swelling agents, and fibers are added. Depends on mortar raw materials! l In a reinforced molded body consisting of a continuous reinforcing material such as a metal wire, metal mesh, metal strip, glass roving, etc., which is enclosed in a buried state, all or part of the aggregate is heated at a temperature below the maximum firing temperature. The gist is a reinforced molded body using a material having a linear expansion coefficient of 15X 10'-' or more. If the coefficient of linear expansion is l
When using only aggregate of less than 5 x 10-6, the heat yield tt of the mortar raw material can be covered, but the occurrence of cracks cannot be prevented, making it difficult to achieve the object of the present invention.

本発明において、上記線膨張特性をもった骨材としては
、例えはC!aP1やC!a003 k主成分とするも
のが挙けられる。このような骨材を用いてモルタル原料
を調製する場合のセメントと骨材の混合割合は、セメン
ト100重量部に対して上記線膨張特性の骨材25重t
S以上、好ましくは50重量部以上とし、もし同時に併
用する他の骨材がある場合には全骨材の合計を50重量
部以上、好ましくは100重量部以上とすることが望ま
しい。
In the present invention, for example, C! aP1 and C! Examples include those with a003 k principal component. When preparing a mortar raw material using such aggregate, the mixing ratio of cement and aggregate is 25 parts by weight of aggregate with the above linear expansion characteristics per 100 parts by weight of cement.
S or more, preferably 50 parts by weight or more, and if other aggregates are used at the same time, it is desirable that the total amount of all aggregates be 50 parts by weight or more, preferably 100 parts by weight or more.

いずれの場合にも規定の混合割合を下まわるときは、焼
成時のクラック発生防止効果を期待することに難しい。
In any case, if the mixing ratio is less than the specified ratio, it is difficult to expect the effect of preventing crack generation during firing.

併用する他の骨材については、最高焼灰温度以下の温度
で膨張性を示すものであることを要する0これが収縮性
を示すものであれは、上記線膨張特性の骨材全使用する
効果が希薄となる。上記の混合割合でモルタル原料を混
練する場合、通常量の水が加えられ、必要に応じて可塑
剤や繊維等の如く慣用されている添加材がiM賞添加さ
れるものであることに勿論でめる〇 上記のモルタル原料を用い、連続補強材を埋設した所定
形状の補強成形体を成形するには、従来と同様に加圧酸
形や流し込み成形によってもよいが、第11に概略図示
した押出成形によるのが最も実用的である。第1図にお
いて、lは押出機であシ、2は押出似1の先端に取付け
られた湾曲状の吐出管である。吐出管2の背後には、鋼
線7を吐出管2内に導入するガイド休3が取付けられて
いる。吐出管2以降の製這ラインには、rJrJ段コン
ベア4、後段コンベア5等か適亙に連続設置されており
、Mi1段コシコンベア4段コンベア5との間には切断
機6が設置されている。前記混合割合のもとに混線調製
されたモルタル原料は、投入口la力・ら押出機1内へ
装入され、吐出管2から押し出される。そのとき同時に
鋼線7がカイト体3へ導入され、導入された銅線7は吐
出管2の内部においてその周囲をモルタル原料によって
包囲される。
Other aggregates to be used in combination must exhibit expandability at a temperature below the maximum incineration ash temperature.If this aggregate exhibits shrinkage, the effect of using all the aggregates with the above linear expansion characteristics will be reduced. It becomes diluted. Of course, when kneading mortar raw materials at the above mixing ratio, a normal amount of water is added, and if necessary, commonly used additives such as plasticizers and fibers are added. 〇 To form a reinforced molded body of a predetermined shape with continuous reinforcing material embedded using the above mortar raw material, pressurized acid molding or pour molding may be used as in the conventional method, but the method shown schematically in No. 11 The most practical method is extrusion molding. In FIG. 1, 1 is an extruder, and 2 is a curved discharge pipe attached to the tip of the extruder 1. A guide hole 3 for introducing the steel wire 7 into the discharge pipe 2 is attached behind the discharge pipe 2. In the manufacturing line after the discharge pipe 2, an rJrJ stage conveyor 4, a rear stage conveyor 5, etc. are installed in succession in an appropriate manner, and a cutting machine 6 is installed between the Mi 1 stage stiff conveyor and the 4 stage conveyor 5. . The mortar raw material mixed according to the above-mentioned mixing ratio is charged into the extruder 1 through the input port and extruded from the discharge pipe 2. At the same time, the steel wire 7 is introduced into the kite body 3, and the introduced copper wire 7 is surrounded by mortar raw material inside the discharge pipe 2.

従って吐出管2から押出される長尺補強成形体8の内部
には銅線7が埋設された状態となっている。
Therefore, the copper wire 7 is buried inside the elongated reinforced molded body 8 extruded from the discharge pipe 2.

押出楓1によって成形されfc長尺桶強我形休体は、固
化した後に所定長さ毎に切断して単位成形体9とする。
The fc long tub-shaped body formed by extrusion maple 1 is solidified and then cut into predetermined lengths to form unit molded bodies 9.

第1図には図示しなかったが、同化を促進させるため、
前段コンベア4の設置領域に同化促進用の熱処理炉等を
設置しておくのが好ましい。
Although not shown in Figure 1, in order to promote assimilation,
It is preferable to install a heat treatment furnace or the like for promoting assimilation in the installation area of the front-stage conveyor 4.

このようにしておけば、長尺補強成形体8が所定*さ押
し出される毎に、前段コンベア4と後段コンベア5との
間に設置された切1fii6の動作により、容易に切断
することができ、コンベア移送の過程中で能率よく単位
成形体9を得ることができるO 第2図は、第1図の押出成形方法によって得られた単位
成形体9を拡大して示した斜視図である。
By doing this, each time the long reinforced molded body 8 is pushed out a predetermined distance, it can be easily cut by the operation of the cutter 1fii6 installed between the front conveyor 4 and the rear conveyor 5. The unit molded bodies 9 can be efficiently obtained during the conveyor transfer process. FIG. 2 is an enlarged perspective view of the unit molded bodies 9 obtained by the extrusion molding method shown in FIG.

この図は単位成形体9の中に5本の鋼線7を埋設したも
のを示したが、鋼線7を埋設する場合において重要なこ
とは、施釉しない状態におけるモルタル原料の被覆厚さ
tlどの程度に丁べきかの問題と、モルタル原料の中に
混入される骨材の粒径會どの程度に丁べきかの問題でお
る。これらは、鋼線7の直径と深い関係がある0丁なわ
ち、被覆厚さtは鋼線7の直径φの2倍以上であると共
に、骨材の粒径は鋼線7の直径φの2分の1以下である
ことが望ましい。被覆厚さtが鋼線7の直径φの2倍よ
シも小であると、焼成時の鋼線7とモルタル原料との接
着面で、モルタル原料に作用する引張シ応力が単位成形
体90表曲まで伝播し易く、表向にクラックが生ずるお
それがあシ、また骨材の粒径が鋼線7の直径φの2分の
1を越えると焼成時のクラック発生防止効果が乏しくな
る。上記の被覆厚さtは、連続補強材として鋼線を用い
た場合について説明したが、金属メツシを連続補強材と
した場合はメツシュの編組に用いられる金楓線の直径と
の関係に置換すればよく、金属帯材を連続補強材とした
場合は該金属帯材の肉厚との関係に置換すればよい。な
お、゛ガラスロービングを連続補強材として用いる場合
も同様である。
This figure shows five steel wires 7 buried in a unit molded body 9, but what is important when burying the steel wires 7 is the coating thickness tl of the mortar raw material in the unglazed state. There are two issues: how much should be ground and how much should the particle size of the aggregate mixed into the mortar raw material be ground. These are closely related to the diameter of the steel wire 7, that is, the coating thickness t is more than twice the diameter φ of the steel wire 7, and the grain size of the aggregate is the diameter φ of the steel wire 7. It is desirable that it be 1/2 or less. When the coating thickness t is smaller than twice the diameter φ of the steel wire 7, the tensile stress acting on the mortar raw material at the bonding surface between the steel wire 7 and the mortar raw material during firing becomes the unit molded body 90. It is easy to propagate to the surface curve, and there is a risk that cracks will occur on the surface.If the grain size of the aggregate exceeds one half of the diameter φ of the steel wire 7, the effect of preventing crack generation during firing will be poor. The above coating thickness t has been explained for the case where steel wire is used as the continuous reinforcing material, but when metal mesh is used as the continuous reinforcing material, it can be replaced by the relationship with the diameter of the gold maple wire used for braiding the mesh. If the metal strip is used as a continuous reinforcing material, it may be replaced by the relationship with the thickness of the metal strip. The same applies when glass roving is used as a continuous reinforcing material.

上記の如くにして得られた単位補強成形体は、従来のも
のと同様に乾燥、施釉、焼成、再水利等の処理工程を経
て、建築材料たる窯業製品とされるO 次に本発明の具体的実施例を列挙し、比較例との対比に
おいて本発明の効果につき検討することとする0 〔実施例1〕 普通ポルトランドセメント100重量部、骨材として螢
石(主成分CaF!、線膨張率19 X 10−’、最
大粒径590μm)25重量部、珪砂(主成分Sin、
、線膨張率13X10−’、最大粒径500μm325
重量部、水28重量部、可塑剤(信越化学工業株式会社
製の商品名 h1メトローズ90. SR−15000
)1.6重量部、石綿(LACr;Ay工ANTE D
U QUE’BEC。
The unit-reinforced molded body obtained as described above is processed into a ceramic product as a building material through processing steps such as drying, glazing, firing, and water reuse in the same manner as conventional ones. [Example 1] 100 parts by weight of ordinary Portland cement, fluorite as aggregate (main component CaF!, coefficient of linear expansion) 19 x 10-', maximum particle size 590 μm) 25 parts by weight, silica sand (main component Sin,
, linear expansion coefficient 13X10-', maximum particle size 500μm325
parts by weight, 28 parts by weight of water, plasticizer (trade name: h1 Metrose 90, manufactured by Shin-Etsu Chemical Co., Ltd. SR-15000)
) 1.6 parts by weight, asbestos (LACr)
U QUE'BEC.

LTI’Fi社製の商品名 6D−5FiX ) 5重
量部を、オムニミキサー(千代田技研工業株式会社製の
部品名 0M−30)により混合した後、混練a(本田
鉄工株式会社製の商品名 PMD−3)によシ混線して
モルタル原料を調製したO得られたモルタル原料は押出
機(本田鉄工株式会社製の商品名DB−100)により
第1図に示す方法で押出成形し、所定の長さに切断して
第3図に略示する形状の単位補強成形体10t−得た0
連続補強材11としては、1.2φmm、l−4φm*
1−6φ箇の各硬鋼線と、1.0φ■。
After mixing 5 parts by weight of LTI'Fi (product name: 6D-5FiX) with an omnimixer (part name: 0M-30, manufactured by Chiyoda Giken Co., Ltd.), kneading a (product name: PMD, manufactured by Honda Iron Works Co., Ltd.) -3) The obtained mortar raw material was extruded by the method shown in Figure 1 using an extruder (product name DB-100 manufactured by Honda Iron Works Co., Ltd.), and the predetermined A unit reinforced molded body 10t having the shape schematically shown in FIG. 3 was obtained by cutting it into lengths.
The continuous reinforcing material 11 is 1.2φmm, l-4φm*
Each hard steel wire of 1-6φ and 1.0φ■.

1.6−の各SUS鋼線とによる計5種の連続補強材を
各別に用いた。単位補強成形体lOの寸法は、その断面
につき幅Wが25咽、高さHが12胴とし、被覆厚さは
表面、裏面、側面の各被覆厚さto。
A total of five types of continuous reinforcing materials each made of SUS steel wire of 1.6- were used separately. The dimensions of the unit reinforced molded body IO are as follows: width W is 25mm, height H is 12mm, and the coating thickness is to on the front surface, back surface, and side surface.

ちpt3につき1いずれも4mとし、長さLについては
15CWLと75Cs+sとし、15cmのものを3本
75Gのもの’k1本説形した。そしてこれらの単位補
強体1111、成形後いずれも1日の気中養生と6日間
の水中養生を行ない、その後慣用の釉薬を用いてスプレ
ー法により施釉し、シャツトル窯により焼成した。焼成
時の加熱パターンは、常温から850℃までの昇温に約
2.5時間をかけ、850℃で30分間保持した後、そ
の11、窯内で徐々に降温させた。焼成ずみの単位補強
成形体10は、焼成後1日を経て窯から取り出し、直ち
に水に浸漬して21日間の再養生を行なった。以上のよ
うな処理を経た単位補強成形体10を表面クラック発生
状況の目視観察に供した。
Each pt3 was 4m, and the length L was 15CWL and 75Cs+s, and three 15cm pieces and one 75G piece were modeled. After molding, these unit reinforcing bodies 1111 were cured in air for one day and in water for six days, and then glazed with a conventional glaze by a spray method and fired in a Schottl kiln. The heating pattern during firing was to raise the temperature from room temperature to 850°C over about 2.5 hours, hold it at 850°C for 30 minutes, and then gradually lower the temperature in the kiln. The fired unit reinforced molded bodies 10 were taken out of the kiln one day after firing, and immediately immersed in water for re-curing for 21 days. The unit reinforced molded body 10 subjected to the above-described treatment was subjected to visual observation of the occurrence of surface cracks.

〔実施例2〕 骨材として螢石25電量都及び珪砂75重fl:都を用
い、水を32重量部、可塑剤を1.9−重量部添加し、
その他については実施例1の場合と全く同一の混合割合
と同一の混線工程を経てモルタル原料を調製し、実施例
1と同一の連続補強材を用い同一の押出成形によシロ−
形状寸法の単位補強成形体を得、その後の処理も実施例
1の場合と同一条件で行なったものについて、表面のク
ラック発生状況全目視観察した。なお、以下の実施例及
び比較例についても、王として骨材の混合割合を変えた
だけで、他は殆んど実施例1と同−条件のもとに%施し
たので、以下では普通ポルトランドセメン)100重量
部に対する骨材の混合割合について記載し、処理条件を
異にしたものはそのS度付記することとする0 〔実施例3〕 骨材は、螢石50重量部の混合割合で、セメント原料を
調製した。
[Example 2] As aggregates, 25 parts by weight of fluorite and 75 parts by weight of silica sand were used, 32 parts by weight of water and 1.9 parts by weight of a plasticizer were added,
In other respects, a mortar raw material was prepared using the same mixing ratio and the same mixing process as in Example 1, and the same continuous reinforcing material and the same extrusion molding as in Example 1 were used.
A unit reinforced molded body having the same shape and dimensions was obtained, and the subsequent treatment was performed under the same conditions as in Example 1, and the occurrence of cracks on the surface was visually observed. In addition, in the following Examples and Comparative Examples, only the mixing ratio of aggregate was changed, and most other conditions were applied under the same conditions as Example 1, so in the following, ordinary Portland cement was used. ) The mixing ratio of aggregate to 100 parts by weight shall be described, and if the processing conditions are different, the S degree shall be added. , the cement raw material was prepared.

〔実施例4〕 骨材は、螢石50重量部及び珪砂50重量部の混合割合
で、モルタル原料を調製した。
[Example 4] A mortar raw material was prepared using a mixing ratio of 50 parts by weight of fluorite and 50 parts by weight of silica sand as aggregates.

〔実施例5〕 骨材は、螢石50重量都及びシェルペン(衛生陶器破砕
物、線膨張率6.7 X 10””、最大粒径1.19
0μm)50重量部の混合割合で、モルタル原料を調製
した。
[Example 5] The aggregates were fluorite 50% by weight and Sherpen (crushed sanitary ware, linear expansion coefficient 6.7 x 10'', maximum particle size 1.19).
A mortar raw material was prepared at a mixing ratio of 50 parts by weight (0 μm).

〔実施例6〕 骨材は、螢石100重量部の混合割合で、モルタル原料
を調製した。
[Example 6] A mortar raw material was prepared by mixing 100 parts by weight of fluorite as aggregate.

〔実施例7〕 骨材は、寒水石(主成分CaO03、線膨張率26×1
0’−’、最大粒径500μm)50重量部、珪砂50
重量部の混合割合で、モルタル原料全調製した。
[Example 7] The aggregate was kansuiseki (main component CaO03, linear expansion coefficient 26 x 1
0'-', maximum particle size 500 μm) 50 parts by weight, silica sand 50
All mortar raw materials were prepared at a mixing ratio of parts by weight.

単位補強成形体の最高焼成温度は700°Cとした0〔
実施例8〕 骨材は、寒水石50重ii都、シェルベン50重量部の
混合割合で、モルタル原料全調製した。単位補強成形体
の最高焼成温Wに700℃とした。
The maximum firing temperature of the unit reinforced molded body was 700°C.
Example 8 All mortar raw materials were prepared as aggregates at a mixing ratio of 50 parts by weight of Kansuiseki and 50 parts by weight of Shelben. The maximum firing temperature W of the unit reinforced molded body was set to 700°C.

〔比較例1〕 骨材は、珪砂100重量部の混合割合で、モルタル原料
を調製した。
[Comparative Example 1] A mortar raw material was prepared using 100 parts by weight of silica sand as the aggregate.

〔比較例2〕 骨材は、7工ルベン100重量部の混合割合で、毎ルタ
ル原料を調製した0 第1表は上記した芙施例と比較例とを目視観察し之結果
を示したものである。この結果から明らかなように、本
発明に係る単位補強成形体は、従来の比較例と対比して
、施釉、焼肌したものにおいてもクラックの発生が少な
く、特に連続補強材の直径が小さく、かつ短尺のものに
ついてはクラックが殆んど見られないoしかも、本発明
の単位補強成形体は表面が釉薬層、生体的部分かモルタ
ル原料となっておシ、いずれも無機組成物で構成されて
いることと相俟ち、美麗かつ耐久性のある建築材料とし
て極めて優れ次ものである0(以下余白、α6)頁に絖
く)
[Comparative Example 2] A raw material for rutal was prepared using the aggregate at a mixing ratio of 100 parts by weight of 7-day rubene.Table 1 shows the results of visual observation of the above-mentioned Example and Comparative Example. It is. As is clear from these results, the unit-reinforced molded product according to the present invention has fewer cracks even when glazed and baked than the conventional comparative example, and in particular, the diameter of the continuous reinforcing material is small. Moreover, there are almost no cracks in the case of short pieces.Moreover, the unit-reinforced molded bodies of the present invention have a glaze layer on the surface, a biological part, or a mortar raw material, and both of them are composed of inorganic compositions. Coupled with this, it is extremely excellent as a beautiful and durable building material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不発FIA1’i:係る補強成形体の成形に使
用した押出成形装置の概略斜視図、第2図に第1図の押
出成形装置で得らfl、た単位補強成形体の拡大斜視図
、第3図はクラック発生の目視観察に供した単位補強成
形体の拡大斜視図である。 1・・・押出機 2・・・吐出管 3・・・ガイド体4
・・・前段コンベア 5・・・後段コンベア6・・・切
断機 7・・・鋼線 8・・・長尺補強成形体9.10
・・・単位補強成形体 11・・・連続補強材特許出願
人  伊奈製陶株式会社 代理人 弁理士内田敏彦
Fig. 1 is a schematic perspective view of the extrusion molding device used to form the unexploded FIA1'i reinforced molded product, and Fig. 2 is an enlarged perspective view of the unit reinforced molded product obtained with the extrusion molding device of Fig. 1. 3 are enlarged perspective views of unit reinforced molded bodies subjected to visual observation of crack occurrence. 1... Extruder 2... Discharge pipe 3... Guide body 4
... Front stage conveyor 5 ... Back stage conveyor 6 ... Cutting machine 7 ... Steel wire 8 ... Long reinforced molded body 9.10
... Unit reinforced molded body 11 ... Continuous reinforcement material patent applicant Ina Seito Co., Ltd. agent Patent attorney Toshihiko Uchida

Claims (1)

【特許請求の範囲】 1、セメント及び骨材を主材とし必要に応じて可塑剤、
減水剤、繊維その他の添加材の一種または二種以上を添
加して混線調製されたモルタル原料と、該モルタル原料
により埋設状態におかれた金属線、金属メツシュ、金属
帯材、カラスロービングその他の連続補強材とからなる
補強成形体において、前記骨材の全部まfcは一部とし
て最高節vLs匿以下のS度における線膨張率が1 5
 X l O−’以上のものt用いたことを特徴とする
補強成形体0 2、骨材の全部に、最高焼成温度以下の湿度における線
膨張率が1 5 、X 1 0−’以上のものを用いる
場合は、七メンl−100重量部に対して該線膨張特性
tもった骨材25重量部以上の混合割合でモルタル原料
が調製されている特′ff請求の範囲第1項記載の補強
成形体。 3、 骨材の一部として、最高焼成温度以下の温度にお
ける線膨張率が1 5 X 1 0−6以上のものを用
い5場合に、セメン)100重:t*に対して該線膨張
特性をもつ次骨材と他の骨材との合計が50重量部以上
の混合割合でモルタル原料が調製されている特許請求の
範囲第1項記載の補強成形体。 4、 補強成形体の内部には、連続補強材が該連続補強
材の直径−jiたは肉厚の2倍以上の被覆厚さで埋設さ
れている特iff−請求の範囲第1項記載の補強成形体
。 5、 骨材の粒径は、連続補強材が埋設された被覆厚さ
の2分の1以下である特許請求の範囲第1項記載の補強
成形体。 6、 補強成形体は、成形後に乾燥、施釉、焼成、再水
和等の処理が施されている特許請求の範囲第1項記載の
補強成形体。
[Claims] 1. Main materials are cement and aggregate, and if necessary, a plasticizer,
Mortar raw materials prepared by adding one or more types of water reducing agents, fibers and other additives, and metal wires, metal meshes, metal strips, crow rovings and other objects buried with the mortar raw materials. In a reinforced molded body made of a continuous reinforcing material, all of the aggregates have a coefficient of linear expansion of 15 at S degree below the highest node vLs as a part.
Reinforced molded body 02, characterized in that the aggregate has a linear expansion coefficient of 1 5 or more at humidity below the maximum firing temperature, and X 1 0-' or more. When using, the mortar raw material is prepared in a mixing ratio of 25 parts by weight or more of the aggregate having the linear expansion property t to 100 parts by weight of 1-100 parts by weight of the mortar according to claim 1. Reinforced molded body. 3. If part of the aggregate is one with a coefficient of linear expansion of 15 x 10-6 or more at a temperature below the maximum firing temperature, 2. The reinforced molded article according to claim 1, wherein the mortar raw material is prepared in such a manner that the total mixing ratio of the secondary aggregate having the above-mentioned aggregate and other aggregates is 50 parts by weight or more. 4. A continuous reinforcing material is buried inside the reinforcing molded body with a coating thickness that is at least twice the diameter -ji or wall thickness of the continuous reinforcing material. Reinforced molded body. 5. The reinforced molded article according to claim 1, wherein the particle size of the aggregate is one-half or less of the thickness of the coating in which the continuous reinforcing material is embedded. 6. The reinforced molded product according to claim 1, wherein the reinforced molded product is subjected to treatments such as drying, glazing, firing, and rehydration after molding.
JP8440083A 1983-05-13 1983-05-13 Reinforced shape Granted JPS59209110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8440083A JPS59209110A (en) 1983-05-13 1983-05-13 Reinforced shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8440083A JPS59209110A (en) 1983-05-13 1983-05-13 Reinforced shape

Publications (2)

Publication Number Publication Date
JPS59209110A true JPS59209110A (en) 1984-11-27
JPH0122219B2 JPH0122219B2 (en) 1989-04-25

Family

ID=13829522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8440083A Granted JPS59209110A (en) 1983-05-13 1983-05-13 Reinforced shape

Country Status (1)

Country Link
JP (1) JPS59209110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021725A (en) * 1988-11-29 1991-06-04 Hitachi, Ltd. Circuit arrangement for preventing inductive interference in an electric car

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021725A (en) * 1988-11-29 1991-06-04 Hitachi, Ltd. Circuit arrangement for preventing inductive interference in an electric car

Also Published As

Publication number Publication date
JPH0122219B2 (en) 1989-04-25

Similar Documents

Publication Publication Date Title
EP0990628B1 (en) Lightweight masonry mortar
JPS60176978A (en) Manufacture of high strength cement product
JP4641117B2 (en) Manufacturing method of inorganic cement composite board
US5168008A (en) Glazed cement product and method for manufacturing thereof
EP0197236B1 (en) Reinforced glazed cement product and method for its manufacture
JPS59209110A (en) Reinforced shape
EP0150002B1 (en) Cured extruded articles of metal fiber-reinforced hydraulic materials, and method for production thereof
JP2820768B2 (en) Concrete building materials
KR950014703B1 (en) Process for producing lightweight brick
JPH10167792A (en) Fiber-reinforced cement composition and production of cement cured product
JP2000203916A (en) Cement molded plate material having elasticity and plasticity
JPS60239350A (en) Manufacture of high resistance concrete products
JP2515767B2 (en) Extruded building materials with excellent explosion resistance
JPS63159272A (en) Manufacture of inorganic hardened body
JP3279166B2 (en) Manufacturing method of inorganic cement board
JP3285672B2 (en) Method of manufacturing decorative mortar coat lightweight cellular concrete precast panel
JPS6218511B2 (en)
JPH0585703B2 (en)
JPH0119323B2 (en)
JPH07112949B2 (en) Thick roof tile manufacturing method
JPH04278307A (en) Manufacture of extrusion formed cement body
JPS58120583A (en) Manufacture of inorganic building board
JPH0526751B2 (en)
JPH06191964A (en) Production of lightweight burned body
JPH06206754A (en) Production of burnt inorganic material