JP2515767B2 - Extruded building materials with excellent explosion resistance - Google Patents
Extruded building materials with excellent explosion resistanceInfo
- Publication number
- JP2515767B2 JP2515767B2 JP61290377A JP29037786A JP2515767B2 JP 2515767 B2 JP2515767 B2 JP 2515767B2 JP 61290377 A JP61290377 A JP 61290377A JP 29037786 A JP29037786 A JP 29037786A JP 2515767 B2 JP2515767 B2 JP 2515767B2
- Authority
- JP
- Japan
- Prior art keywords
- elastic modulus
- matrix
- density
- building material
- extruded building
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は耐爆裂性に優れた高強度・高弾性係数の中空
部を有する押出成形建材に関するものである。TECHNICAL FIELD The present invention relates to an extruded building material having a hollow portion with high strength and high elastic modulus, which is excellent in explosion resistance.
(従来の技術) 従来、高密度で密実なマトリックスを持つ押出成形建
材では、加熱時に製品内部に存在する水が水蒸気となり
急速膨張し、内部応力を発生させるために、はぜ割れ、
爆裂等の現象を起こし耐火性上に問題があった。特に、
耐爆裂現象は製品マトリックスの密度に比例して起こり
易いことから、内部組織が緻密で高強度・高堅牢性の押
出成形建材ほど起こい易いという困った現象である。(Prior Art) Conventionally, in an extruded building material having a high-density and solid matrix, water existing inside the product when heated becomes steam and expands rapidly to generate internal stress, which causes cracking,
There was a problem in fire resistance due to phenomena such as explosion. In particular,
Since the explosion blast phenomenon is likely to occur in proportion to the density of the product matrix, it is a troublesome phenomenon that the denser the internal structure and the higher the strength and the higher the strength of the extruded building material, the more likely it is to occur.
そのため、 木綿、パルプ、麻等の天然有機繊維あるいはアセテ
ート繊維、レーヨン繊維等の半合成繊維を原料に添加す
ることにより、軽量化し、外部への水蒸気の逃げ道を作
る方法(特開昭60−108354号公報、特開昭51−19016号
公報)、 珪藻土等の軽量骨材を添加し、軽量化することによ
る耐爆裂性の向上を目指す方法(特公昭55−23786号公
報)、 水/セメント比が大きい柔らかいアスベスト・セメ
ント混練物を調整し、これをしばらく放置し、セメント
水和物を生成せしめることにより軽量化を図り、耐爆裂
性を向上させる方法(特開昭51−19017号公報)、 等の方法が提案されていた。Therefore, by adding natural organic fibers such as cotton, pulp, hemp, etc. or semi-synthetic fibers such as acetate fibers, rayon fibers, etc. to the raw materials to reduce the weight and make an escape route for water vapor to the outside (JP-A-60-108354). No. JP-A-51-19016), a method of adding lightweight aggregate such as diatomaceous earth to reduce the weight to improve explosion blast resistance (JP-B-55-23786), water / cement ratio A method of preparing a soft asbestos-cement kneaded product having a large size, allowing it to stand for a while, and reducing the weight by forming a cement hydrate, and improving explosion resistance (JP-A-51-19017), The method of such was proposed.
(発明が解決しようとする課題) しかし、これらの従来の軽量化による耐火性の向上で
は、高密度のマトリックスという優れた特性を犠牲にし
ており、そのために高強度・高弾性係数の特性が得られ
なく問題があり、更に、中空部を有する押出成形建材の
場合には加熱時に加熱側の板(天板)と裏面側の板(地
板)との間に大きな熱温度差を生じ(即ち、天板側が直
接火炎により加熱されることにより、まず膨張し、その
後にの温度上昇に伴って収縮するのに対し、地板側は、
天板側が収縮を始めた時点では、天板に比較して温度上
昇が遅いため膨張している。このように中空部を有する
押出建材では、耐火試験時にパネル厚さ方向で大きく挙
動が異なり、一方が収縮時に一方が収縮するので、中空
部を有する押出パネル内で変形による利歪み応力が発生
する為に)平板の場合よりも中空部を有する押出成形建
材が爆裂現象を生じ易くなるという問題点が生じてい
た。(Problems to be solved by the invention) However, in the improvement of fire resistance by the conventional weight reduction, the excellent characteristics of the high-density matrix are sacrificed, and therefore, the characteristics of high strength and high elastic modulus are obtained. However, in the case of an extrusion molded building material having a hollow portion, a large thermal temperature difference occurs between the heating side plate (top plate) and the back side plate (base plate) during heating (ie, When the top plate side is directly heated by the flame, it expands first, and then contracts as the temperature rises, while the bottom plate side
At the time when the top plate side begins to contract, the temperature rises slowly compared to the top plate, causing expansion. In such an extruded building material having a hollow portion, the behavior largely differs in the panel thickness direction during the fire resistance test, and when one shrinks, one shrinks, so a strain stress due to deformation occurs in the extruded panel having a hollow portion. Therefore, there has been a problem that an extruded building material having a hollow portion is more likely to cause an explosion phenomenon than a flat plate.
本発明はマトリックスの高強度・高弾性係数を保った
ままで耐爆裂性に優れた中空部を有する押出成形建材を
提供しようとするものである。The present invention is intended to provide an extruded building material having a hollow portion excellent in explosion resistance while maintaining the high strength and high elastic modulus of the matrix.
(課題を解決するための手段) 本発明は水硬性結合材と補強繊維を主体とするマトリ
ックスの密度が1.65〜2.0g/cm3であり、かつ900℃まで
の加熱線収縮率が3〜8%であることを特徴とする耐爆
裂性に優れた中空部を有する押出成形建材である。(Means for Solving the Problem) In the present invention, the density of the matrix mainly composed of the hydraulic binder and the reinforcing fiber is 1.65 to 2.0 g / cm 3 , and the heating linear shrinkage rate up to 900 ° C. is 3 to 8. %, Which is an extruded building material having a hollow portion with excellent explosion resistance.
従来より建材等の成形体を得る方法としては耐火被覆
材等の製造の際に採られているプレス成形法、オートク
レーブ養生する軽量気泡コンクリート等の製造に用いら
れている注型法、石綿セメント板等の製造に用いられて
いる抄造法等の他、本発明で用いられている押出成形法
等がある。Conventionally, as a method for obtaining a molded article such as a building material, a press molding method that has been adopted when manufacturing a fireproof coating material, a casting method that is used for manufacturing an autoclave curing lightweight cellular concrete, and an asbestos cement board. In addition to the paper-making method and the like used in the production of etc., there are the extrusion-molding method and the like used in the present invention.
補強繊維を原料中に混合使用し、かつ、その補強効果
を充分に得るためには補強繊維が配向しており、均質で
あることが望ましい。そのため、プレス成形法及び注型
法で得られたものは好ましくない。抄造法法で得あられ
たものでは補強繊維の配向性が得られるものの、その製
法上4から15mm程度の薄物板状品の成形については生産
性に優れている反面、それを越える厚さの板状品を得る
ためには不適である。更に、抄造法で得られたものは後
述の加熱線収縮率が2%以下であるにもかかわらず製造
方法によるマトリックスの構成よりはぜ割れ現象を起こ
し、耐火性能上問題があった。これに対して押出成形法
では補強繊維は充分な配向性が得られるだけでなく、薄
板の中実板のみならず、他の製造方法では生産性良く得
られ難い断面に中空部を設けて軽量化した製品、即ち、
中空部を有する押出成形建材も得られる。この中空部を
有する押出成形建材は、マトリックス部が同じ材料であ
っても中空部が存在する故に板厚を厚くすることができ
るが、上述したように中実な平板よりも爆裂し易くな
る。しかし本発明の条件を満足すると、その製品はマト
リックスが高強度・高弾性係数でかつ耐火性上も優れた
製品となる。It is desirable that the reinforcing fibers are oriented and homogeneous in order to mix and use the reinforcing fibers in the raw material and to obtain the sufficient reinforcing effect. Therefore, those obtained by the press molding method and the casting method are not preferable. Although the one obtained by the paper-making method can obtain the orientation of the reinforcing fibers, it is excellent in productivity for forming a thin plate-like product having a thickness of about 4 to 15 mm, but it has a thickness exceeding that. It is not suitable for obtaining a product. Further, although the product obtained by the papermaking method has a heating linear shrinkage ratio of 2% or less which will be described later, it causes a cracking phenomenon depending on the constitution of the matrix according to the manufacturing method, and there is a problem in fire resistance performance. On the other hand, the extrusion molding method not only provides sufficient orientation of the reinforcing fibers, but it is not only a thin solid sheet, but also a hollow section is provided in a cross section that is difficult to obtain with other manufacturing methods with good productivity. Product, that is,
An extruded building material having a hollow portion can also be obtained. The extruded building material having this hollow portion can have a thicker plate thickness because the hollow portion exists even if the matrix portion is made of the same material, but as described above, it is more likely to explode than a solid flat plate. However, when the conditions of the present invention are satisfied, the product has a high strength and high elastic modulus matrix and is excellent in fire resistance.
もう一度、言い換えると、 本発明の中空部を有する押出成形建材は、硬水性結合
材と補強繊維を主体とするマトリックスの密度が1.65〜
2.0g/cm3であり、かつ900℃までの加熱線収縮率が3〜
8%であることに特徴を有している。Once again, in other words, the extruded building material having a hollow portion of the present invention has a density of a matrix mainly composed of a hard water-based binder and reinforcing fibers of 1.65 to
2.0 g / cm 3 and a heating linear shrinkage rate up to 900 ° C of 3 to
It is characterized by being 8%.
本発明に於いて水硬性化結合材としては、普通ポルト
ランドセメント、アルミナセメント等のセメント類の
他、珪石粉、珪砂等の珪酸質原料もセメン類の重量に対
して100%までは併用することもできる。As the hydraulic binder in the present invention, in addition to cements such as ordinary Portland cement and alumina cement, siliceous raw materials such as silica stone powder and silica sand may be used together up to 100% with respect to the weight of cement. You can also
補強繊維としては従来からセメント質材料の補強用と
して使用されている無期繊維である石綿、耐アルカリ性
ガラス繊維、カーボンファイバー等や有機繊維としての
各種天然繊維及び合成繊維が使用できる。As the reinforcing fibers, asbestos, which is an endless fiber that has been conventionally used for reinforcing cementitious materials, alkali resistant glass fibers, carbon fibers, and various natural fibers and synthetic fibers as organic fibers can be used.
その使用量は水硬性化結合材料の種類によって異なる
が、一般に水硬性化結合材料に対して3〜30%であり、
繊維添加量によってもマトリックスの密度を変更し得
る。The amount used depends on the type of hydraulic binder, but is generally 3 to 30% relative to the hydraulic binder,
The density of the matrix can also be changed by the amount of fiber added.
本発明のマトリックスは、水硬性化結合材料と補強繊
維を主体とするものであるが、必要に応じてモルタルの
流動性改良のために増粘剤を用いることもできる。増粘
剤としては水溶性高分子、例えばメチルセルロース、ポ
リビニルアルコール等を挙げることができる。The matrix of the present invention is mainly composed of a hydraulic binder material and reinforcing fibers, but a thickener may be used for improving the fluidity of the mortar if necessary. Examples of the thickener include water-soluble polymers such as methyl cellulose and polyvinyl alcohol.
次に、マトリックスの密度の範囲について記述する
と、一般的な中空部を有する押出成形建材の規格である
厚さ60mm、中空率40%以上のパネルを耐火構造外壁用部
材として用いる場合、建築基準法での許容風荷重等を考
慮すると弾性係数20×104kg/cm2以上、曲げ強度250kg/c
m2以上という高強度、高弾性係数が必要であるが、マト
リックスの密度が1.65g/cm3以下の場合にはこの性能の
確保が困難である。Next, describing the range of the density of the matrix, when using a panel with a thickness of 60 mm and a hollow ratio of 40% or more, which is a standard for general extruded building materials with hollow parts, as a member for fire-resistant structure outer walls, the Building Standards Act Considering the allowable wind load, etc., elastic modulus 20 × 104kg / cm 2 or more, bending strength 250kg / c
High strength and high elastic modulus of m 2 or more are required, but it is difficult to secure this performance when the density of the matrix is 1.65 g / cm 3 or less.
またマトリックス密度が2.0g/cm3を超えると爆裂現象
の防止が困難となり好ましくない。If the matrix density exceeds 2.0 g / cm 3 , it is difficult to prevent the explosion phenomenon, which is not preferable.
また、マトリックス密度が1.65〜2.0g/cm3であっても
900℃までの加熱線収縮率が3%より小さい場合には爆
裂現象は発生しないものの、前述の弾性係数が20×104k
g/cm2以上、曲げ強度250kg/cm2以上が得られず好ましく
ない。Also, the matrix density a 1.65~2.0g / cm 3
Explosion does not occur when the heating linear shrinkage up to 900 ° C is less than 3%, but the elastic modulus is 20 × 104k.
g / cm 2 or more and bending strength of 250 kg / cm 2 or more cannot be obtained, which is not preferable.
更に、マトリックス密度が1.65〜2.0g/cm3であっても
900℃までの加熱線収縮率が8%を超えるものは、前述
の弾性係数が20×104kg/cm2以上、曲げ強度250kg/cm2以
上が達成されるものの、爆裂現象を防止することができ
ず好ましくない。Moreover, even the matrix density a 1.65~2.0g / cm 3
If the heating linear shrinkage rate up to 900 ° C exceeds 8%, the above-mentioned elastic modulus of 20 × 104 kg / cm 2 or more and bending strength of 250 kg / cm 2 or more are achieved, but the explosion phenomenon cannot be prevented. Not preferable.
このように、中空部を有する押出成形建材に於いて製
品のマトリックスの密度が1.65〜2.0g/cm3であり、かつ
900℃までの加熱線収縮率が3〜8%であることによ
り、例えばJIS−A1304による耐火試験に合格する爆裂現
象を起こさない高耐火性であり、その上に、高強度、例
えば曲げ強度250kg/cm2以上、高弾性係数、例えば20×1
04kg/cm2以上の中空部を有する建材となる。Thus, the density of the product matrix in the extrusion molding material having a hollow portion is 1.65 ~ 2.0 g / cm 3 , and
Since the heating linear shrinkage rate up to 900 ° C is 3 to 8%, it has high fire resistance that does not cause an explosion phenomenon that passes the fire resistance test according to JIS-A1304, and has a high strength, for example, a bending strength of 250 kg. / cm 2 or more, high elastic modulus, for example 20 × 1
It is a building material with a hollow part of 04 kg / cm 2 or more.
(実施例) 以下、実施例により本発明を詳細に説明する。なお、
実施例中の各種試験方法は、以下に示す方法によった。(Examples) Hereinafter, the present invention will be described in detail with reference to Examples. In addition,
The various test methods in the examples were as follows.
・900℃までの加熱線収縮率の試験方法 測定に当たっては理学電機(株)製熱機械分析装置TM
A標準型を用いて行った。諸条件は以下の通りである。・ Test method for heating wire shrinkage up to 900 ° C Thermomechanical analyzer TM manufactured by Rigaku Denki Co., Ltd.
A standard type was used. The conditions are as follows.
示差膨張方式 標準試料:アルミナ 試料形状:5mmφ×20mml 加熱速度:20℃/分(室温〜1000℃) 試料採取方法:押出成型時の押出方向に平行方向が試料
の長手方向となるように採取した。Differential expansion method Standard sample: Alumina Sample shape: 5mmφ × 20mml Heating rate: 20 ° C / min (room temperature to 1000 ° C) Sampling method: Sampling was performed so that the direction parallel to the extrusion direction during extrusion was the longitudinal direction of the sample. .
3体の試料を測定し、900℃の時点での加熱収縮率の
平均値をもって試料の加熱収縮率とした。Three samples were measured, and the average value of the heat shrinkage at 900 ° C. was taken as the heat shrinkage of the sample.
・耐火試験方法 測定に当たっては、JIS−A1304「建築構造部材の耐火
試験方法」に準じ、以下の方法で加熱試験を実施し、爆
裂現象の有無等を評価した。-Fire resistance test method In measuring, according to JIS-A1304 "Fire resistance test method for building structural members", a heating test was carried out by the following method, and the presence or absence of an explosion phenomenon was evaluated.
加熱等級:耐火1時間(外壁仕様) 試料:中空部を有する押出成形建材では厚さ60mm、幅59
2mm、中空率45.1%の断面形状(第1図に例示)を有す
る全長2mの板を取付スパンが1.8mとなるように上下2カ
所づつ計4カ所をZクリップで取付けアングルに固定
し、加熱試験を実施した。Heating grade: Fireproof 1 hour (outer wall specifications) Sample: Thickness 60mm, width 59 for extrusion molded building material with hollow part
A plate with a total length of 2 m, which has a cross-sectional shape of 2 mm and a hollow ratio of 45.1% (illustrated in Fig. 1), is fixed to the mounting angle with Z clips at the two upper and lower parts so that the mounting span is 1.8 m, and heated. The test was conducted.
・曲げ強度及び弾性係数試験方法 補強繊維の配向方向と長手方向が同一となるように、
幅40mm、長さ500mmの中実試料を取り出し、有効スパン4
00mmの中央1点集中荷重で載荷し破壊強度より曲げ強度
を求めた。また、弾性係数は破壊荷重の1/3荷重の時点
での撓みより求めた。三つの試験体について測定を行
い、曲げ強度及び弾性係数はその平均値とした。-Bending strength and elastic modulus test method, so that the orientation direction of the reinforcing fiber and the longitudinal direction are the same.
Take out a solid sample of width 40mm and length 500mm and use it with an effective span of 4
Bending strength was calculated from fracture strength by loading with a centralized point load of 00 mm. The elastic modulus was obtained from the bending at the time of 1/3 of the breaking load. The measurement was carried out on three test pieces, and the bending strength and elastic modulus were taken as the average values thereof.
(実施例) 実施例1〜3及び比較例1〜4 第1表には第1図に示した断面形状の厚さ60mm,幅592
mm、中空率45.1%を有する長さ2mの押出成形建材を得る
ための配合条件を示した。(Examples) Examples 1 to 3 and Comparative Examples 1 to 4 In Table 1, the thickness of the sectional shape shown in FIG.
The compounding conditions for obtaining an extruded building material with a length of 2 mm and a hollowness of 45.1% are shown.
また、抄造法により製造された朝日石綿工業(株)製
フレキシブルボードを比較例4として示した。In addition, a flexible board manufactured by Asahi Asbestos Industry Co., Ltd. manufactured by the papermaking method is shown as Comparative Example 4.
各例に於いて用いた原料、押出成形装置は下記の通り
である。The raw materials and extrusion molding equipment used in each example are as follows.
・原料 セメント:ユニオンセメント(株)製 普通ポルトラン
ドセメント 珪石粉:宇久須珪石 微粉砕品(重量平均徑20〜30μ
m) 石綿:カナダ産キャリー6D メチルセルロース:信越化学社製「メトローズ90SH 150
00」 軽量骨材:フヨーライト工業製フヨーライト2号 ・押出成形装置:宮崎鉄工社製「MV−FM−200−1型」 なお、各原料は第1表に従い、粉体にてよく攪拌混合
した後、水を加え混練した。これを混練機を通した後、
押出成形機にて成形した。この成形体を60℃飽和蒸気圧
下で6時間一次養生した後、第2表に示す条件で高温高
圧水蒸気養生を行い製品とした。-Raw material Cement: Union Cement Co., Ltd. Ordinary Portland cement Silica powder: Ukusu silica stone Finely pulverized product (weight average 20 to 30μ
m) Asbestos: Canadian carry 6D methyl cellulose: Shin-Etsu Chemical Co., Ltd. “Metroses 90SH 150”
00 ”Light weight aggregate: Fuyolite No. 2 manufactured by Fuyolite Industrial Co., Ltd. Extrusion molding apparatus:“ MV-FM-200-1 type ”manufactured by Miyazaki Tekko Co., Ltd. In addition, according to Table 1, each raw material was thoroughly mixed with powder by stirring. , And water was added and kneaded. After passing this through a kneader,
It was molded by an extruder. After subjecting this molded body to primary curing for 6 hours at 60 ° C. under saturated vapor pressure, it was subjected to high temperature and high pressure steam curing under the conditions shown in Table 2 to obtain a product.
この結果を第3表に示す。 The results are shown in Table 3.
比較例1では実施例1、2と同一配合であるものの、
養生条件が一次養生のみで高温高圧養生を行っていない
ため密度1.75g/cm3であるものの900℃までの加熱線収縮
率が1.3%と3%を下回っている。 Comparative Example 1 has the same composition as Examples 1 and 2, but
Since the curing conditions are only primary curing and no high temperature and high pressure curing, the density is 1.75 g / cm 3 , but the heating linear shrinkage rate up to 900 ° C is 1.3%, which is less than 3%.
このため耐火性能は良好なものの曲げ強度及び弾性係
数が高強度・高弾性係数の指標である250kg/cm2以上、2
0×104kg/cm2を下回っており好ましくない。Therefore, although the fire resistance is good, the flexural strength and elastic modulus are higher than 250 kg / cm 2, which is an index of high strength and high elastic modulus, 2
It is less than 0 × 104 kg / cm 2 , which is not preferable.
比較例2では、実施例1と配合及び養生条件のうち昇
温速度、飽和水蒸気最大温度、降温速度が同一であるも
のの保持時間が4時間と異なっている。このため密度が
1.72g/cm3であるものの900℃までの加熱線収縮率が9.3
%と8%を上回っている。このため、曲げ強度及び弾性
係数は指標を上回っているものの耐火試験には加熱後9
分で爆裂現象を起こした。耐火性能上問題がある。Comparative Example 2 is different from Example 1 in that the heating rate, the maximum saturated steam temperature, and the cooling rate are the same among the mixing and curing conditions, but the holding time is different from 4 hours. Therefore, the density
Although it is 1.72 g / cm 3 , the heating wire shrinkage rate up to 900 ° C is 9.3.
% And 8%. Therefore, although the flexural strength and elastic modulus are above the index, it is 9
The explosion occurred in minutes. There is a problem in fire resistance.
比較例3では軽量骨材を20%用いているために900℃
までの加熱線収縮率が4.2%であるものの密度が1.47g/c
m3と1.65g/cm3を下回っている。このため、爆裂現象を
敗勢しないものの曲げ強度及び弾性係数が指標値を下回
っており好ましくない。In Comparative Example 3, 20% of lightweight aggregate is used, so 900 ° C
Although the heating linear shrinkage rate is up to 4.2%, the density is 1.47 g / c
Below m 3 and 1.65 g / cm 3 . For this reason, the bending strength and elastic modulus are below the index values, although the explosion phenomenon is not defeated, which is not preferable.
比較例4は抄造法で作られた厚さ12mmのフレキシブル
ボードである。密度は所望する範囲に入っており、曲げ
強度と弾性係数は共に指標値を上回っている。しかも、
押出成形建材では爆裂現象を起こさない低い加熱線収縮
率(1.2%)であるにもかかわらず製造方法に基づくマ
トリックスの構造により耐火試験時には加熱開始後6分
ではぜ割れ現象を起こし、耐火上性能上問題がある。Comparative Example 4 is a flexible board having a thickness of 12 mm made by the papermaking method. The density is within the desired range, and the flexural strength and elastic modulus both exceed the index values. Moreover,
Despite the low heating linear shrinkage (1.2%) that does not cause the explosion phenomenon in extruded building materials, the matrix structure based on the manufacturing method causes a cracking phenomenon 6 minutes after the start of heating during the fire resistance test, and the fire resistance performance. There is an upper problem.
(発明の効果) 以上の比較例1〜4と比較し、実施例1〜3では全て
密度は1.65g/cm3〜2.0kg/cm3であり、かつ、900℃まで
の加熱線収縮率が3〜8%の範囲に入っている。その結
果、曲げ強度及び弾性係数が高強度・高弾性係数の指標
である250kg/cm2以上、20×104kg/cm2を上回っているば
かりでなく、耐火試験時に於いてもはぜ割れ、爆裂を起
こさず優れた耐火性を有しており、本発明による中空部
を有する押出成形建材が優れた耐火性を有し、かつ、高
強度・高弾性係数のものであることが判る。(Effect of the Invention) Compared with the above Comparative Examples 1 to 4, in Examples 1 to 3, the density is all 1.65 g / cm 3 to 2.0 kg / cm 3 , and the heating linear shrinkage rate up to 900 ° C. It is in the range of 3 to 8%. As a result, not only the flexural strength and elastic modulus exceeded the high strength / high elastic modulus index of 250 kg / cm 2 or more, 20 × 104 kg / cm 2 , but also cracks and explosions occurred during the fire resistance test. It can be seen that the extruded building material having a hollow portion according to the present invention has excellent fire resistance and has high strength and high elastic modulus.
第1図は本発明の実施品の断面形状であり、同時に比較
例1〜3により得られた製品の断面形状でもある。FIG. 1 shows the cross-sectional shape of the product of the present invention and at the same time the cross-sectional shape of the products obtained in Comparative Examples 1 to 3.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 111:28 C04B 111:28 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area C04B 111: 28 C04B 111: 28
Claims (1)
リックスの密度が1.65〜2.0g/cm3であり、かつ900℃ま
での加熱線収縮率が3〜8%であることを特徴とする耐
爆裂性に優れた中空部を有する押出成形建材。1. A matrix comprising a hydraulic binder and reinforcing fibers as a main component, which has a density of 1.65 to 2.0 g / cm 3 and a heating linear shrinkage rate up to 900 ° C. of 3 to 8%. Extruded building material with a hollow part with excellent explosion resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61290377A JP2515767B2 (en) | 1986-12-08 | 1986-12-08 | Extruded building materials with excellent explosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61290377A JP2515767B2 (en) | 1986-12-08 | 1986-12-08 | Extruded building materials with excellent explosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63144157A JPS63144157A (en) | 1988-06-16 |
JP2515767B2 true JP2515767B2 (en) | 1996-07-10 |
Family
ID=17755227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61290377A Expired - Fee Related JP2515767B2 (en) | 1986-12-08 | 1986-12-08 | Extruded building materials with excellent explosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2515767B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01122951A (en) * | 1987-11-05 | 1989-05-16 | Mitsubishi Mining & Cement Co Ltd | Extrusion-molded article of cement having excellent frost resistance and burst resistance |
CN114002261B (en) * | 2021-11-29 | 2024-02-20 | 广西交科集团有限公司 | Asphalt mixture line shrinkage coefficient measuring device and using method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5119016A (en) * | 1974-08-09 | 1976-02-16 | Onoda Cement Co Ltd | Taibakuretsuseino asubesuto * sementooshidashiseikeihinno seizoho |
JPS5913656A (en) * | 1982-07-13 | 1984-01-24 | 昭和電工株式会社 | Asbestos cement product forming composition |
-
1986
- 1986-12-08 JP JP61290377A patent/JP2515767B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63144157A (en) | 1988-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107382346B (en) | refractory wear-resistant pouring material and preparation method thereof | |
US4781994A (en) | Fiber-reinforced cement material and molded article comprising hardened product thereof | |
CN111302722A (en) | Polymer anti-crack mortar | |
JP2506208B2 (en) | Asbestos inorganic cured product and method for producing the same | |
EP1787967B1 (en) | Process for the manufacture of a burnt shaped body for a refractory lining | |
JP2515767B2 (en) | Extruded building materials with excellent explosion resistance | |
WO1992009538A1 (en) | Insulating material containing pitch based graphite fiber | |
JPS5836981A (en) | Hydraulic fiber-containing heat-resistant composition and premold product therefrom | |
EP1739356A1 (en) | Moulding composition for making a refractory lining | |
CN108285308A (en) | A kind of thermal insulation mortar, heat insulation layer structure and heat preserving exterior wall body structure | |
JPH0218301B2 (en) | ||
CN1279220A (en) | Cement-based composite material and its usage | |
JP2614274B2 (en) | Building material and manufacturing method thereof | |
JP2910285B2 (en) | Cement building material products | |
CA1043533A (en) | Ingot mould base plates | |
JP2002012465A (en) | Extrusion compact and its manufacturing method | |
JP2916565B2 (en) | Method for producing molded article for fireproof coating | |
JP2749257B2 (en) | Highly functional mortar / concrete and method for producing the same | |
EP4071125A1 (en) | Composition of heat-insulating lightweight composite material | |
JP2864862B2 (en) | Cement compositions and cement extruded products | |
JPH0526751B2 (en) | ||
JP2538928B2 (en) | Extruded building material composition | |
JP3083627B2 (en) | Method for producing low expansion ceramic molded plate | |
CN117209181A (en) | High-temperature-resistant high-performance concrete and preparation method thereof | |
JP2001335354A (en) | Inorganic board and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |