JPS59207847A - Manufacture of preform for polarization keeping fiber - Google Patents

Manufacture of preform for polarization keeping fiber

Info

Publication number
JPS59207847A
JPS59207847A JP58082148A JP8214883A JPS59207847A JP S59207847 A JPS59207847 A JP S59207847A JP 58082148 A JP58082148 A JP 58082148A JP 8214883 A JP8214883 A JP 8214883A JP S59207847 A JPS59207847 A JP S59207847A
Authority
JP
Japan
Prior art keywords
gas
burner
soot
quartz rod
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58082148A
Other languages
Japanese (ja)
Inventor
Toshio Iwamoto
岩本 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP58082148A priority Critical patent/JPS59207847A/en
Publication of JPS59207847A publication Critical patent/JPS59207847A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To enable the mass-production of a plarization keeping fiber, easily, by blasting soot to the end part of the target, and at the same time, changing the rate of revolution of the target in two stages at every rotation of the target by 90 deg.. CONSTITUTION:SiCl4 gas and GeCl4 gas are supplied to a multiplex tube burner 5, and the soot 6 for forming the core part is synthesized by the hydrolysis reaction in the flame. Thereafter, the soot 6 is blasted and deposited to the lower end of the quartz rod 1 by the burner 5. Since the quartz rod 1 is pulled up while being rotated with the motor 2 controlled by the controller 4, the core part is formed and grown on the end of the quartz rod 1 along its axis. At the same time, SiCl4 gas, H2 gas and O2 gas are supplied to another multiplex tube burner 7, and the soot 8 is synthesized by the hydrolysis reaction in the flame. The synthesized soot 8 is blasted to the lower end of the quartz rod 1 by the burner 7 to obtain the porous preform 9 containing the above core part.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、偏波面保存ファイバ用プリフォームの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for manufacturing a preform for a polarization maintaining fiber.

(発明の技術的背景) コア及びクラッドが円形断面を有する通常の光ファイバ
は、先の偏波の向きが断面内で自由であることから、外
乱によって簡単に偏波面が回転してしまう。従って、フ
ァラデー効果などの光の偏波面を使う技術分野ではこの
ような光ファイバは不適当である。そこで、近年は楕円
形のクラッドやコアを有する偏波面保存ファイバが注目
され、又実用化されている。
(Technical Background of the Invention) In a normal optical fiber whose core and cladding have a circular cross section, the direction of the polarized wave is free within the cross section, so the plane of polarized wave is easily rotated by disturbance. Therefore, such optical fibers are unsuitable for technical fields that use the plane of polarization of light, such as the Faraday effect. Therefore, in recent years, polarization maintaining fibers having an elliptical cladding and core have attracted attention and have been put into practical use.

(背景技術の問題点) しかし、この偏波面保存ファイバの製造方法は未だ研究
段階にあって確立されておらず、容易かつ量産に適した
製造方法が望まれている。
(Problems with the Background Art) However, the manufacturing method of this polarization maintaining fiber is still in the research stage and has not been established, and a manufacturing method that is easy and suitable for mass production is desired.

(発明の目的) 本発明の目的は、偏波面保存ファイバを容易に量産する
ことができる製造方法を提供することにある。
(Objective of the Invention) An object of the present invention is to provide a manufacturing method that can easily mass-produce polarization maintaining fibers.

(発明の概要) 本発明は、複数のバーナを用いてターゲットの先端に多
孔質プリフォームを成長させる軸付は法(VAD法)を
利用するもので、コア若しくはクラッド用原料ガスが送
り込まれるバーナと、製造すべきプリフォームを円形に
形成するための原料ガスが送り込まれるバーナとを、タ
ーゲットの中心軸線上でそれぞれの軸線が直交するよう
に配設し、各バーナからそれぞれの原料ガスを加水分解
して成るスートをターゲットの先端に吹き付けると共に
ターゲットが90度回転する毎にその回転速度を遅・速
の二段に変化させ、これにより楕円形ノコア部若しくは
クラッド部を有する断面円形の多孔質プリフォームを製
造することを特徴とする。
(Summary of the Invention) The present invention utilizes a shaft attachment method (VAD method) in which a porous preform is grown at the tip of a target using a plurality of burners. and a burner into which raw material gas to form a circular preform to be manufactured are arranged so that their axes are perpendicular to each other on the central axis of the target, and each raw material gas is hydrated from each burner. The decomposed soot is sprayed onto the tip of the target, and the rotation speed is changed to slow and fast every time the target rotates 90 degrees. It is characterized by manufacturing a preform.

(発明の実施例) 以下、本発明の実施例を図面を参照して説明する。(Example of the invention) Embodiments of the present invention will be described below with reference to the drawings.

第1図には本発明のプリフォーム製造方法に用いられる
装置が示されている。即ち、ターゲットとしての石英棒
1の上端は引き上げ及び回転用のモータ2に取り付けら
れ、その下端側にはリングヒータ3が同軸的に配設され
ている。モータ2は制御部4によりその回転速度及び引
き上げ速度が制御される。
FIG. 1 shows an apparatus used in the preform manufacturing method of the present invention. That is, the upper end of the quartz rod 1 serving as a target is attached to a motor 2 for lifting and rotation, and a ring heater 3 is coaxially disposed at the lower end thereof. The rotational speed and lifting speed of the motor 2 are controlled by the control section 4.

石英棒1の下方の先端近傍には、石英棒1の中心軸線上
でそれぞれの軸線が直交するように多重管バーナ5及び
7が配設されている。一方のバーナ5にはコア用原料ガ
スとしてSi 014ガスとGeCl4ガスが図示しな
い原料供給系から送り込まれる。他方のバーナ7にはプ
リフォームを円形に形成するための原料ガスとして5i
Oj4ガスがやはり前記原料供給系から送り込まれる。
Near the lower tip of the quartz rod 1, multi-tube burners 5 and 7 are arranged so that their axes are orthogonal to each other on the central axis of the quartz rod 1. Si 014 gas and GeCl 4 gas are fed into one burner 5 as core raw material gases from a raw material supply system (not shown). The other burner 7 is supplied with 5i as raw material gas for forming the preform into a circular shape.
Oj4 gas is also fed from the raw material supply system.

次に、本発明に係る製造方法について説明する。Next, a manufacturing method according to the present invention will be explained.

先ず、一方の多重管バーナ5にf3io14jfスとG
e014ガスを送り込むと同時にH3の如き可燃性ガス
と02ガスを送り込み、火炎中で加水分解反応によりコ
ア部形成用スート6を合成する。
First, connect f3io14jf and G to one multi-tube burner 5.
At the same time as the e014 gas is fed, a combustible gas such as H3 and the 02 gas are fed, and the soot 6 for forming the core portion is synthesized by a hydrolysis reaction in a flame.

そして、このバーナ5によりスート6を石英棒1の先端
に吹き付け、堆積させる。石英棒1は制御部4にて制御
されているモータ2により回転しつつ引き上げられるの
で、石英棒1の先端にはその軸方向にコア部が成長、形
成される。同時に他方の多重管バーナ7にS i 01
4 ガスとH2ガス及び02カスを送り込み、火炎中で
加水分解反応によりスート8を合成し、このバーナ7に
よりスート8を石英棒1の先端に吹き付け、前記コア部
を含む多孔質プリフォーム9を製造する。
Then, the burner 5 blows soot 6 onto the tip of the quartz rod 1 and deposits it. Since the quartz rod 1 is rotated and pulled up by the motor 2 controlled by the control unit 4, a core portion is grown and formed at the tip of the quartz rod 1 in the axial direction. At the same time, S i 01 is applied to the other multi-tube burner 7.
4 Gas, H2 gas, and 02 dregs are fed to synthesize soot 8 through a hydrolysis reaction in a flame, and the burner 7 sprays soot 8 onto the tip of the quartz rod 1 to form a porous preform 9 including the core portion. Manufacture.

ところで、本発明製造方法においては、モータ2は制御
部4によりその回転速度が制御される。
By the way, in the manufacturing method of the present invention, the rotation speed of the motor 2 is controlled by the control section 4.

即ち、石英棒1が、第2図に示すように、90度回転す
る毎にその回転速度が徐々に遅くなったり速くなったり
して二段に変化するように、モータ2は制御部4により
制御されている。従って、一方の多重管バーナ5の高屈
折率ドーバン)Geを含むスート6の吹き付は量は、石
英棒1が180度回板回転得られる2箇所の対向位置で
最も多くなる。この結果、多孔質プリフォーム9は、第
3図に示すように、楕円形のコア部を有するプリフォー
ムに形成される。そして、上述したように面長重管バー
ナ5及び7はそれぞれの軸線を直交させて配設されてい
るので、他方の多重管バーナ7のスート8吹き付は量は
、石英棒1が180度回板回転得られる他の90度ずれ
た2箇所の対向位置で最も多くなる。従って、第3図に
示すように、Geを多く含む楕円形コア部を冶する断面
円形の多孔質プリフォーム9が得られる。
That is, as shown in FIG. 2, the motor 2 is controlled by the control unit 4 so that each time the quartz rod 1 rotates 90 degrees, the rotation speed gradually decreases or increases in two steps. controlled. Therefore, the amount of soot 6 containing high refractive index Dovan (Ge) sprayed from one multi-tube burner 5 is greatest at two opposing positions where the quartz rod 1 is rotated by 180 degrees. As a result, the porous preform 9 is formed into a preform having an elliptical core, as shown in FIG. As mentioned above, since the long-face multi-tube burners 5 and 7 are arranged with their axes perpendicular to each other, the amount of soot 8 sprayed from the other multi-tube burner 7 is 180 degrees. The largest number occurs at two opposing positions deviated by 90 degrees where the rotation of the disc is obtained. Therefore, as shown in FIG. 3, a porous preform 9 having a circular cross section having an elliptical core containing a large amount of Ge is obtained.

このようにして得られた多孔質プリフォーム9は、石英
棒1が回転制御されつつ軸方向にσ[き上げられるので
、リングヒータ3によってゾーンメルトされ、脱泡、透
明化された偏波面保存ファイバ用プリフォーム12とな
る。この結果、楕円形コア、円形クラッドを有する偏波
面保存ファイバが得られる。
The thus obtained porous preform 9 is heated up in the axial direction while the rotation of the quartz rod 1 is controlled, so that it is zone-melted by the ring heater 3, degassed, made transparent, and preserves the polarization plane. This becomes a fiber preform 12. As a result, a polarization maintaining fiber having an elliptical core and a circular cladding is obtained.

このように、軸付は法を利用して楕円形コア部を有する
断面円形の多孔質プリフォームを製造すると、大形素材
が得られることから偏波面保存ファイバの量産効率が上
昇する。また、軸付は法に用いる装置をそのまま利用で
きるので製造も容易である。
In this way, when a porous preform with a circular cross section and an elliptical core is manufactured using the shaft method, a large-sized material can be obtained, which increases the efficiency of mass production of polarization-maintaining fibers. In addition, the shaft-mounted type is easy to manufacture because the equipment used for the method can be used as is.

尚、上記実施例において、他の多重管バーナ7に送り込
むべき原料ガスとして、5il14ガスの外に低屈折率
ドーパントを含むガス、例えばBE r3ガスを用いる
ようにしてもよい。
In the above embodiment, a gas containing a low refractive index dopant, such as BE r3 gas, may be used in addition to the 5il14 gas as the raw material gas to be sent to the other multi-tube burner 7.

第4図には本発明に係る製造方法の他の実施例が示され
ている。即ち、石英棒1の下方には、その中心軸線に同
軸的に配され、吹付口が石英棒1の先端に向けられてい
るコア部形成用の多重管バーナ10が設けられている。
FIG. 4 shows another embodiment of the manufacturing method according to the present invention. That is, below the quartz rod 1, a multi-tube burner 10 for forming a core portion is provided, which is arranged coaxially with the central axis of the quartz rod 1 and whose blowing port is directed toward the tip of the quartz rod 1.

このバーナ10にはsi□z4ガスとGe014ガスが
原料供給系から送り込まれている。これに対して、それ
ぞれの軸線を直交させて配設されている二つの多重管バ
ーナ5及び7における一方の多重管バーナ5にはクラッ
ド用原料ガスとして81014ガスとBBr。
si□z4 gas and Ge014 gas are fed into this burner 10 from a raw material supply system. On the other hand, one of the two multi-tube burners 5 and 7, which are arranged with their axes perpendicular to each other, contains 81014 gas and BBr as the raw material gas for cladding.

ガスが、又他方の多重管バーナ7にはプリフォームを円
形に形成するための原料ガスとしてF3iC1゜ガスが
それぞれ原料供給系から送り込まれている。
F3iC1° gas is fed into the other multi-tube burner 7 from a raw material supply system as a raw material gas for forming a circular preform.

そして、石英棒1は同様に90度回転する毎にその回転
速度が迦・速の二段に徐々に変化するよう制御されてい
る。
Similarly, the quartz rod 1 is controlled so that its rotational speed gradually changes into two stages of speed and speed each time it rotates 90 degrees.

多重管バーナ10は石英棒1の真下に位置しているので
、石英棒1の回転速度の変化とは無関係にコア部用スー
ト11を石英棒1の先端に吹き付け、円形コア部を堆積
、成長させる。これに対して、一方の多重管バーナ5の
低屈折率ドーパントを含むスート6の吹き付は量は、上
述したように石英棒1が180度回転して得られる2箇
所の対向位置で最も多くなり、又他方の多重管バーナI
のスート8吹き付は量は他の90度ずれた2箇所の対向
位置で最も多くなる。この結果、第5図に示すように、
円形コア部、楕円形クラッド部を有する断面円形の多孔
質プリフォーム9′が得られる。
Since the multi-tube burner 10 is located directly below the quartz rod 1, the core soot 11 is sprayed onto the tip of the quartz rod 1 regardless of changes in the rotational speed of the quartz rod 1, thereby depositing and growing a circular core portion. let On the other hand, the amount of soot 6 containing a low refractive index dopant from one multi-tube burner 5 is greatest at the two opposing positions obtained by rotating the quartz rod 1 by 180 degrees as described above. and the other multi-tube burner I
The amount of soot 8 spraying is greatest at two opposing positions separated by 90 degrees. As a result, as shown in Figure 5,
A porous preform 9' having a circular cross section and a circular core portion and an elliptical cladding portion is obtained.

(発明の効果) 本発明によれば、それぞれの軸線が直交するように二つ
のバーナを配設し、一方のバーナにはコア若しくはクラ
ッド用原料ガスを送り込み、他方のバーナにはプリフォ
ーム円形形成用の原料ガスを送り込み、これら両バーナ
からスートを吹き付けるターゲットを90度回転する毎
にその回転速度を遅・速の二段に変化させたので、楕円
形コア部若しくはクラッド部を有する断面円形の多孔質
プリフォームを従来の軸付は法で用いている装置をその
まま利用して製造することができる。従って、偏波面保
存ファイバを簡単かつ大量に生産することができる。
(Effects of the Invention) According to the present invention, two burners are arranged so that their respective axes are perpendicular to each other, one burner is fed with raw material gas for the core or cladding, and the other burner is used to form a circular preform. Each time the target to which soot is sprayed from these burners was rotated 90 degrees, the rotation speed was changed in two stages, slow and fast. Porous preforms can be manufactured using the equipment used in the conventional shafting method as is. Therefore, polarization maintaining fibers can be easily produced in large quantities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法に用いる装置を示す図、第2
図は石英棒の回転角度に対する回転速度を示す線図、第
3図は第1図の装置を用いて本発明方法により製造した
多孔質プリフォームの断面図、第4図は本発明の他の実
施例に係る装置の一部を示す図、第5図は第4図の装置
にて製造した多孔質プリフォームの断面図である。 i 、−−−−−一−−−−−−− 石英棒2 −−−
−−−−−−−−−−− モータ3 −−−−−−−−
−−−−−−− リンダヒータ4 −−−−−−−−−
−−−−−一制御部5.7.10−〜−−−−多重管バ
ーナ6 、8 、11、−−−−−−スート9 、9’
  −−−−−−−−−−−多孔質プリフォーム第1図 第2図
FIG. 1 is a diagram showing the apparatus used in the manufacturing method of the present invention, and FIG.
The figure is a diagram showing the rotational speed versus the rotation angle of the quartz rod, Figure 3 is a cross-sectional view of a porous preform manufactured by the method of the present invention using the apparatus of Figure 1, and Figure 4 is a diagram showing the rotation speed of the quartz rod. FIG. 5 is a cross-sectional view of a porous preform manufactured by the apparatus shown in FIG. 4, which is a diagram showing a part of the apparatus according to the example. i, ------1----- Quartz rod 2 ---
−−−−−−−−−−− Motor 3 −−−−−−−−
−−−−−−− Linda heater 4 −−−−−−−−−
------Control unit 5.7.10-----Multi-tube burner 6, 8, 11, ------Soot 9, 9'
-----------Porous preform Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] コア若しくはクラッド用原料ガスが送り込まれるバーナ
と、製造すべきプリフォームを円形に形成するための原
料ガスが送り込まれるバーナとを、それぞれの軸線が回
転しつつ軸方向に移動するターゲットの中心軸線上で直
交する位置に配設し、前記両バーナから、それぞれに送
り込まれる原料ガスを加水分解して成るスートを前記タ
ーゲットの先端に吹き付けると共に前記ターゲットが9
0度面回転る毎にその回転速度を遅・速の二段に変化さ
せることを特徴とする偏波面保存ファイバ用プリフォー
ムの製造方法0
A burner into which the raw material gas for the core or cladding is fed and a burner into which the raw material gas for forming the preform to be manufactured into a circular shape is fed are placed on the central axis of a target that rotates and moves in the axial direction. The soot produced by hydrolyzing the raw material gas sent to each burner is sprayed onto the tip of the target from both burners, and when the target is 9
A method for manufacturing a preform for a polarization-maintaining fiber characterized by changing the rotation speed in two stages, slow and fast, each time the plane rotates by 0 degrees.
JP58082148A 1983-05-11 1983-05-11 Manufacture of preform for polarization keeping fiber Pending JPS59207847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58082148A JPS59207847A (en) 1983-05-11 1983-05-11 Manufacture of preform for polarization keeping fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58082148A JPS59207847A (en) 1983-05-11 1983-05-11 Manufacture of preform for polarization keeping fiber

Publications (1)

Publication Number Publication Date
JPS59207847A true JPS59207847A (en) 1984-11-26

Family

ID=13766348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58082148A Pending JPS59207847A (en) 1983-05-11 1983-05-11 Manufacture of preform for polarization keeping fiber

Country Status (1)

Country Link
JP (1) JPS59207847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472939A (en) * 1987-09-16 1989-03-17 Hitachi Cable Production of optical fiber retaining polarizing surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472939A (en) * 1987-09-16 1989-03-17 Hitachi Cable Production of optical fiber retaining polarizing surface

Similar Documents

Publication Publication Date Title
US4406684A (en) Core torch for fabricating single-mode optical fiber preforms
CA1164737A (en) Fabrication method of a multi-mode optical fiber preform
GB2059944A (en) Fabrication method of optical fiber preforms
JPS59207847A (en) Manufacture of preform for polarization keeping fiber
JPH0236535B2 (en)
JPS59207846A (en) Manufacture of preform for polarization keeping fiber
JP3133392B2 (en) Manufacturing method of soot base material for optical fiber
JP4076111B2 (en) Optical fiber preform manufacturing method and manufacturing apparatus
JP2020090427A (en) Burner for porous body synthesis and method of manufacturing porous body
JPS59141436A (en) Manufacture of optical fiber preform
JPH0460930B2 (en)
JPS60264336A (en) Manufacture of optical glass preform
JPH0769665A (en) Optical fiber preform, optical fiber and production thereof
JPH0525817B2 (en)
JPS5992931A (en) Preparation of preform for polarizing optical fiber
JPS5858295B2 (en) Manufacturing method of optical fiber base material
JPS63248734A (en) Production of optical fiber base material
JPH0986948A (en) Production of porous glass base material for optical fiber
JPS6054936A (en) Manufacture of preform rod
JPS63162538A (en) Production of quartz rod lens
JPS63107825A (en) Production of synthetic quartz tube
JPH05116971A (en) Device for depositing fine glass particle and production of optical fiber base material
JPS6259063B2 (en)
KR20020008433A (en) Manufacturing System and Method for Preform Optical Fiber
JPS6330339A (en) Production of optical fiber base material