JP4076111B2 - Optical fiber preform manufacturing method and manufacturing apparatus - Google Patents

Optical fiber preform manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP4076111B2
JP4076111B2 JP21046399A JP21046399A JP4076111B2 JP 4076111 B2 JP4076111 B2 JP 4076111B2 JP 21046399 A JP21046399 A JP 21046399A JP 21046399 A JP21046399 A JP 21046399A JP 4076111 B2 JP4076111 B2 JP 4076111B2
Authority
JP
Japan
Prior art keywords
optical fiber
soot deposit
burner
fine particles
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21046399A
Other languages
Japanese (ja)
Other versions
JP2001039725A (en
Inventor
大 井上
忠克 島田
秀夫 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP21046399A priority Critical patent/JP4076111B2/en
Publication of JP2001039725A publication Critical patent/JP2001039725A/en
Application granted granted Critical
Publication of JP4076111B2 publication Critical patent/JP4076111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01884Means for supporting, rotating and translating tubes or rods being formed, e.g. lathes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01815Reactant deposition burners or deposition heating means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/62Distance
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバ用母材に関し、特に、偏波面保存ファイバの製造に有用な光ファイバ用母材製造方法および製造装置に関する。
【0002】
【従来の技術】
従来、光ファイバを製造する方法として、回転しながら引き上げられる出発ターゲット材の先端に、四塩化けい素などの原料ガスを酸水素火炎で加水分解させて生成する酸化けい素微粒子を堆積させてスート堆積体を製造するVAD法(気相軸付け法)、回転する出発ターゲット材に、これと相対的に移動するバーナによって四塩化けい素などの原料ガスを酸水素火炎で加水分解させて生成する酸化けい素微粒子を堆積させてスート堆積体を製造するOVD法(外付け法)、および石英製チューブ等のクラッド部材内に原料ガスを供給し、反応により生成した酸化けい素微粒子を内周面に堆積させ、ガラス化させるMCVD法などが知られている。
【0003】
シングルモード光ファイバにおいては、コア内に応力が存在すると伝播する光は、速波軸と遅波軸に沿った二つの偏波モードに分かれ、異なる速度でコア内を伝播する。コア内の応力が伝播方向で変化しなければ、光は、この偏波モードを維持した状態で伝播する。この性質を積極的に利用したのが一部の光部品で使用される光ファイバ偏波面保存ファイバである。コア内に応力を与える方法として、光ファイバの線引きに使用する母材内に、材質の異なる応力付与部材を挿入する方法があるが、製造工程が煩雑であり、しかも、これらの工程中には、穴をあけるなどの品質を損なう要因となる工程が多く含まれるという問題があった。また、偏波面保存ファイバとして、その他にコア部の断面形状が楕円のものが提案されているが、そのようなコアを製造することは容易なことではなかった。
【0004】
【発明が解決しようとする課題】
従って、本発明の課題は、偏波面保存ファイバの製造に有用な光ファイバ用母材を容易に製造する方法および装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は、偏波面保存ファイバに関する上記のような実状に鑑み、特に、長さ方向に垂直な断面において、円周方向に楕円形状のコア領域あるいは多角形状のコア領域を持つ光ファイバ用母材の製造方法について、スート堆積体の形成過程に着目して試作研究を行った結果、実用的に望ましい方法を見出したものである。本発明で得られる光ファイバ用母材は、円周方向に楕円形状のコア領域を有することを特徴とし、コア領域の長径と短径の比が制御された関係にある。
また、本発明で得られる光ファイバ用母材は、円周方向に多角形状コア領域を有することを特徴とし、該コア領域の多角形状の中心と頂点を結ぶ線分と、該中心と辺央を結ぶ線分との比が制御された関係にある。
【0006】
本発明の光ファイバ用母材の製造方法は、円周方向に楕円形状または多角形状のコア領域を有する光ファイバ用母材の製造方法であって、四塩化けい素などのガラス原料の火炎加水分解反応で生成させた酸化けい素微粒子を出発ターゲット材上に堆積させることにより形成されたスート堆積体を振動させ、該振動がスート堆積体を含んで振動している系の固有振動によるものであり、スート堆積体の回転数と振動数とが整数倍の関係にあることを特徴としている。
本発明の光ファイバ用母材の製造方法によれば、様々な形状のコア領域を形成することができる。例えば、三角形状のコア領域は、スート堆積体の一回転に対して、スート堆積体をバーナに対して相対的に三回振動させることで得られる。また、四角形状のコア領域は四回振動させることで、五角形状のコア領域は五回振動させることで得られる。
【0007】
本発明の光ファイバ用母材の製造装置は、円周方向に楕円形状または多角形状のコア領域を有する光ファイバ用母材の製造装置であって、出発ターゲット材を回転させる機構と、四塩化けい素などを火炎加水分解して酸化けい素微粒子を生成させるバーナと、出発ターゲット材とともに回転するスート堆積体を振動させる機構とを備え、該振動がスート堆積体を含んで振動している系の固有振動によるものであり、該スート堆積体を振動させる機構によりスート堆積体の酸化けい素微粒子の堆積位置と該バーナとの間隔を相対的に振動させることを特徴としている。
VAD法、OVD法またはMCVD法によりスート堆積体を形成する装置には、出発ターゲット材とともに回転するスート堆積体の酸化けい素微粒子の堆積位置と酸化けい素微粒子を堆積させるバーナとの相対的な振動状態を検知する機構と、検知した振動状態の振動数と回転数との比を一定に制御する機構が設けられる。
なお、MCVD法及びOVD法による装置の場合は、光ファイバ用母材のコア部を製造する間のみ、相対的に振動させ、振動数と回転数との比が一定に制御される。
【0008】
本発明は、回転するスート堆積体の軸を回転チャックを支点として揺動(振動)させ、酸化けい素微粒子堆積位置でのスート堆積体の回転数と振動数とが整数倍の関係を満たすように振動状態を制御して、所望の複数組の長径方向と短径方向とで異なる厚さの堆積層からなるコア領域を、光ファイバ用母材の長さ方向に連続的に形成して、断面形状で、楕円状コア領域や多角形状コア領域を有するスート堆積体を形成することに技術的特徴がある。
【0009】
【発明の実施の形態】
本発明の光ファイバ用母材の製造方法について、以下に詳細に説明する。
図1は、コア1とクラッド2からなる本発明の光ファイバ用母材3を示し、コア1は一組の長径と短径を有する楕円状の断面形状を有している。なお、コア1は三角形、四角形等の多角形であってもよい。本発明の光ファイバ用母材3の製造方法を用いれば、楕円状又は多角形状コア領域を形成することができる。
【0010】
図2は、四塩化けい素などのガラス原料をバーナ4からの火炎で加水分解させ、生成した酸化けい素微粒子を回転する出発ターゲット材上に堆積させてスート堆積体5を形成した後、ガラス化して光ファイバ用母材を製造する様子を示している。光ファイバ用母材に楕円状コア領域を形成するには、楕円の長径方向にスート堆積体5をバーナ4に対して相対的に振動させる必要があり、図2(a)は、バーナ4に対してスート堆積体5を振動させるものであり、出発ターゲット材を回転させる回転軸を重力方向からずらした機構とし、出発ターゲット材をバーナに対して揺動(振動)させるものであり、スート堆積体5の振動はこの振動系の固有振動によるものである。振動の状態はカメラによりモニタし、回転機構に所定の回転数としてフィードバックすることで、この回転数は振動数の整数分の1になるよう決定されている。
【0011】
図2(b)は、スート堆積体5に対してバーナ4を図における左右方向に振動つまり往復動させるケースを示している。いずれも振動方向がコアの長径方向となる。
本発明においては、スート堆積体の回転数と振動数との関係は整数倍とされる。この関係はコアの垂直断面形状を楕円状とする上で極めて重要である。また、コアの長径と短径の比は、上記振動幅を制御することで任意に設定することができる。
【0012】
図3は、OVD法(外付け法)により本発明の構成を有する光ファイバ用母材を製造する様子を示し、棒状ターゲット材6を回転させ、バーナ4を相対的に移動させつつ酸化けい素微粒子をこの上に堆積させてスート堆積体5を形成している。図3に示す例においては、棒状ターゲット材6を定位置で回転させ、棒状ターゲット材6に向かってバーナ4を接近、離間させながら酸化けい素微粒子を堆積させるものであり、この間、スート堆積体5の回転数とバーナ4の往復動(振動数)との関係は整数倍に制御される。
【0013】
図4は、MCVD法により光ファイバ用母材を製造する様子を示し、管状ターゲット材7を回転させ、バーナ4を相対的に移動させつつ酸化けい素微粒子を管状ターゲット材7の内周面に堆積させて母材を形成している。図4に示す例においては、管状ターゲット材7を定位置で回転させ、管状ターゲット材7に向かってバーナ4を接近、離間させながら酸化けい素微粒子を堆積させるものであり、この間、スート堆積体の回転数とバーナ4の往復動(振動数)との関係は整数倍に制御される。
【0014】
VAD法やOVD法において、火炎加水分解反応により生成した酸化けい素微粒子を回転する出発ターゲット材上に堆積する堆積効率は、製造条件に敏感で、火炎を形成するガスの流量はもとより、バーナの火炎との距離によっても大きく影響を受ける。
【0015】
MCVD法においては、管状ターゲット材にガラス原料ガスを含む燃焼ガスを管内に供給し、管状ターゲット材に対して相対的に平行移動するバーナで加熱され、この加熱位置では、すでに堆積したスート堆積体のガラス化と酸化けい素微粒子の生成反応が起こり、加熱位置よりやや離れた比較的低温部ではサーモフォレシス効果により、先に生成した酸化けい素微粒子の堆積が起こる。このときの堆積量は堆積位置の温度に大きく依存している。
【0016】
図5は、スート堆積体とバーナとの位置関係を説明する図である。具体的に説明すると、スート堆積体5の円周上のある位置Aでのバーナ4との距離をd、位置Aより90度回転した位置Bでのバーナ4との距離をd'、位置Aより180度回転した位置A'でのバーナ4との距離をd、位置Bより180度回転した位置B'でのバーナ4との距離をd'とし、dをd'より大とするとき、A−A'側でのスート堆積厚さとB−B'側でのスート堆積厚さとが異なるものとなり、楕円状コア領域を有する光ファイバ用母材が得られる。
【0017】
OVD法の場合、コア部の形成時にのみ振動を与えればよい。VAD法では、コア部の形成はクラッド部の形成に比べて、バーナとスート堆積部の距離の変動に敏感であるため、コア部のみ楕円状となり都合がよい。
【0018】
MCVD法においても、スート堆積体とバーナとの間隔を規則的に変化させることにより、VAD法やOVD法で図5を用いて説明したように、A−A'側でのスート堆積厚さとB−B'側でのスート堆積厚さとが異なるものとなり、楕円状コア領域を有する光ファイバ用母材が得られる。
【0019】
スート堆積体とバーナとの間隔を規則的に変化させるには、VAD法では、バーナを固定してスート堆積体を揺らして振動させることにより、また、OVD法では、バーナを近付けたり遠ざけたりして、好都合に行うことができる。
【0020】
本発明においては、スート堆積体の一回転当たりの振動数を整数倍とするもので、スート堆積体の一回転の間に、スート堆積体とバーナとが相対的に接近、離間する振動運動を整数回与えて、厚手の堆積層をスート堆積体の長さ方向に複数列形成することで、多角形状のコア領域を形成することができる。
なお、本発明において、スート堆積体とバーナとの位置関係を検知する手段は任意であり、例えば、スート堆積体の酸化けい素微粒子の堆積位置は、カメラより取り込んだ画像を処理することによって検知することができる。
【0021】
【実施例】
(実施例1)
VAD法によりスート堆積体を形成する装置を用い、四塩化けい素などのガラス原料をバーナからの火炎で加水分解させ、反応で生成した酸化けい素微粒子を出発ターゲット材上に堆積させてスート堆積体を形成した。使用した装置は、出発ターゲット材を回転させる回転軸を重力方向からずらした機構とし、出発ターゲット材をバーナに対して揺動(振動)させた(図2(a)の態様)。この振動回数は、スート堆積体を含む系の固有振動数となる。堆積が進むにつれて、この振動系の重量が変化するため、装置にスート堆積体の振動を検知する機構を付設し、振動数の変化をモニターして回転数にフィードバックし、回転数が振動数のちょうど1/2になるように制御して、楕円状コア領域を有する光ファイバ用母材を製作した。
なお、楕円状コア領域を有する光ファイバ用母材を製造する例について説明したが、本発明によれば、回転数と振動数の関係を変えることで、楕円状コア領域あるいは辺数が任意の多角形状コア領域を有する光ファイバ用母材を製造することができる。
【0022】
【発明の効果】
本発明によれば、従来の断面円形コアを製造する装置を改良して、容易に断面楕円状あるいは多角形状コア領域を有する光ファイバ用母材を製造することができ、工業的にも実用的にも極めて望ましいものであった。
【図面の簡単な説明】
【図1】 本発明の光ファイバ用母材を示す断面図である。
【図2】 (a)は、本発明の光ファイバ用母材を製造する様子を示す概略説明図であり、スート堆積体を振動させバーナを固定した態様を示し、(b)は、スート堆積体を固定しバーナを振動させる例を示している。
【図3】 光ファイバ用母材をOVD法により製造する様子を示す概略説明図である。
【図4】 光ファイバ用母材をMCVD法により製造する様子を示す概略説明図である。
【図5】 スート堆積体とバーナとの位置関係を説明する模式図である。
【符号の説明】
1 コア
2 クラッド
3 光ファイバ用母材
4 バーナ
5 スート堆積体
6 棒状ターゲット材
7 管状ターゲット材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a preform for optical fibers, in particular, to methods and apparatus for producing useful optical fiber preform in the manufacture of polarization maintaining fiber.
[0002]
[Prior art]
Conventionally, as a method of manufacturing an optical fiber, soot is formed by depositing silicon oxide fine particles generated by hydrolyzing a raw material gas such as silicon tetrachloride with an oxyhydrogen flame at the tip of a starting target material pulled up while rotating. VAD method (vapor phase shafting method) for producing a deposit, generated by hydrolyzing a raw material gas such as silicon tetrachloride with an oxyhydrogen flame by a rotating starting target material with a burner moving relative thereto An OVD method (external method) for depositing silicon oxide fine particles to produce a soot deposit, and a raw material gas is supplied into a cladding member such as a quartz tube, and the silicon oxide fine particles generated by the reaction are inner peripheral surfaces. An MCVD method for depositing and vitrifying the substrate is known.
[0003]
In a single mode optical fiber, light that propagates when stress is present in the core is divided into two polarization modes along the fast wave axis and the slow wave axis, and propagates in the core at different speeds. If the stress in the core does not change in the propagation direction, light propagates while maintaining this polarization mode . An optical fiber polarization-maintaining fiber used in some optical components has positively utilized this property. As a method of applying stress in the core, there is a method of inserting a stress applying member of a different material into a base material used for drawing an optical fiber, but the manufacturing process is complicated, and during these processes, There is a problem that many processes that cause quality deterioration such as drilling holes are included. In addition, as a polarization-maintaining fiber, an elliptical core having a cross-sectional shape has been proposed, but it is not easy to manufacture such a core.
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method and an apparatus for easily manufacturing an optical fiber preform useful for manufacturing a polarization-maintaining fiber.
[0005]
[Means for Solving the Problems]
In view of the above-described actual situation regarding the polarization-maintaining fiber, the present inventors have particularly made it for an optical fiber having an elliptical core region or a polygonal core region in the circumferential direction in a cross section perpendicular to the length direction. As a result of the trial production research on the soot deposit formation process, a practically desirable method has been found. The optical fiber preform obtained by the present invention is characterized by having an elliptical core region in the circumferential direction, and the ratio of the major axis to the minor axis of the core region is controlled.
The optical fiber preform obtained by the present invention has a polygonal core region in the circumferential direction, a line segment connecting the center and apex of the polygonal shape of the core region, and the center and the center The ratio of the line segment connecting the two is controlled.
[0006]
The optical fiber preform manufacturing method of the present invention is a method for manufacturing an optical fiber preform having an elliptical or polygonal core region in the circumferential direction, and is a method for producing a flame of glass raw material such as silicon tetrachloride. The soot deposit formed by depositing silicon oxide fine particles generated by the decomposition reaction on the starting target material is vibrated, and the vibration is due to the natural vibration of the system that vibrates including the soot deposit. There is a feature that the rotational speed and the vibration frequency of the soot deposit have an integer multiple relationship .
According to the optical fiber preform manufacturing method of the present invention, core regions having various shapes can be formed. For example, the triangular core region can be obtained by vibrating the soot deposit relative to the burner three times for one rotation of the soot deposit. Further, the quadrangular core region is obtained by vibrating four times, and the pentagonal core region is obtained by vibrating five times.
[0007]
An optical fiber preform manufacturing apparatus of the present invention is an optical fiber preform manufacturing apparatus having an elliptical or polygonal core region in the circumferential direction, a mechanism for rotating a starting target material, and tetrachloride A system comprising a burner for generating silicon oxide fine particles by flame hydrolysis of silicon or the like, and a mechanism for vibrating a soot deposit rotating with the starting target material , wherein the vibration vibrates including the soot deposit. the is due to the natural vibration is characterized by to relatively vibrating the distance between the deposition position and the burner of silicon oxide fine particles of the soot deposit body by a mechanism for vibrating the soot deposit body.
The apparatus for forming the soot deposit by the VAD method, the OVD method, or the MCVD method has a relative position between the deposition position of the silicon oxide fine particles of the soot deposit rotating with the starting target material and the burner for depositing the silicon oxide fine particles. A mechanism for detecting the vibration state and a mechanism for controlling the ratio between the frequency and the rotation number of the detected vibration state to be constant are provided.
In the case of an apparatus based on the MCVD method and the OVD method, relative vibration is performed only during the production of the core portion of the optical fiber preform, and the ratio between the frequency and the rotational speed is controlled to be constant.
[0008]
According to the present invention, the shaft of the rotating soot deposit is oscillated (vibrated) with the rotating chuck as a fulcrum so that the rotational frequency and the frequency of the soot deposit at the silicon oxide fine particle deposition position satisfy an integer multiple relationship. The vibration state is controlled, and a core region composed of a plurality of layers of deposited layers having different thicknesses in the major axis direction and the minor axis direction is continuously formed in the length direction of the optical fiber preform, There is a technical feature in forming a soot deposit having a cross-sectional shape and an elliptical core region or a polygonal core region.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The manufacturing method of the optical fiber preform of the present invention will be described in detail below.
FIG. 1 shows an optical fiber preform 3 comprising a core 1 and a clad 2, and the core 1 has an elliptical cross-sectional shape having a pair of major axis and minor axis. The core 1 may be a polygon such as a triangle or a quadrangle. If the manufacturing method of the optical fiber preform 3 of the present invention is used, an elliptical or polygonal core region can be formed.
[0010]
FIG. 2 shows a case where a glass raw material such as silicon tetrachloride is hydrolyzed with a flame from a burner 4, and the generated silicon oxide fine particles are deposited on a rotating starting target material to form a soot deposit 5. It shows how the optical fiber preform is manufactured. In order to form the elliptical core region in the optical fiber preform, it is necessary to vibrate the soot deposit body 5 relative to the burner 4 in the major axis direction of the ellipse, and FIG. On the other hand, the soot deposit 5 is vibrated, the rotation axis for rotating the starting target material is shifted from the direction of gravity, and the starting target material is swung (vibrated) with respect to the burner. The vibration of the body 5 is due to the natural vibration of this vibration system. The state of vibration is monitored by a camera and is fed back to the rotation mechanism as a predetermined number of revolutions, so that the number of revolutions is determined to be an integral number of the number of vibrations.
[0011]
FIG. 2B shows a case in which the burner 4 is vibrated, that is, reciprocated in the horizontal direction in the figure with respect to the soot deposit 5 . In either case, the vibration direction is the major axis direction of the core.
In the present invention, the relationship between the rotational frequency and the vibration frequency of the soot deposit is an integral multiple. This relationship is extremely important in making the vertical cross-sectional shape of the core elliptical. The ratio of the major axis to the minor axis of the core can be arbitrarily set by controlling the vibration width.
[0012]
FIG. 3 shows a state where an optical fiber preform having the configuration of the present invention is manufactured by the OVD method (external method), and the silicon oxide is rotated while the rod-like target material 6 is rotated and the burner 4 is relatively moved. The soot deposits 5 are formed by depositing fine particles thereon. In the example shown in FIG. 3, the rod-shaped target material 6 is rotated at a fixed position, and silicon oxide fine particles are deposited while the burner 4 approaches and separates from the rod-shaped target material 6. The relationship between the rotational speed of 5 and the reciprocating motion (frequency) of the burner 4 is controlled to an integral multiple.
[0013]
FIG. 4 shows how an optical fiber preform is manufactured by the MCVD method. The tubular target material 7 is rotated and the burner 4 is moved relative to the silicon oxide fine particles on the inner peripheral surface of the tubular target material 7. The base material is formed by depositing. In the example shown in FIG. 4, the tubular target material 7 is rotated at a fixed position, and silicon oxide fine particles are deposited while the burner 4 approaches and separates toward the tubular target material 7. And the reciprocating motion (frequency) of the burner 4 are controlled to an integral multiple.
[0014]
In the VAD method and the OVD method, the deposition efficiency of depositing the silicon oxide fine particles generated by the flame hydrolysis reaction on the rotating starting target material is sensitive to the manufacturing conditions, not only the flow rate of the gas forming the flame, It is also greatly affected by the distance from the flame.
[0015]
In the MCVD method, a combustion gas containing a glass raw material gas is supplied to a tubular target material into a tube and heated by a burner that moves relatively in parallel with the tubular target material. Vitrification and formation reaction of silicon oxide fine particles occur, and the silicon oxide fine particles generated earlier are deposited by a thermophoresis effect at a relatively low temperature part slightly away from the heating position. The amount of deposition at this time largely depends on the temperature of the deposition position.
[0016]
FIG. 5 is a diagram illustrating the positional relationship between the soot deposit and the burner. More specifically, the distance from the burner 4 at a certain position A on the circumference of the soot deposit 5 is d, the distance from the burner 4 at a position B rotated 90 degrees from the position A is d ′, and the position A When the distance from the burner 4 at the position A ′ rotated 180 degrees is d, the distance from the burner 4 at the position B ′ rotated 180 degrees from the position B is d ′, and d is larger than d ′, The soot deposition thickness on the AA ′ side is different from the soot deposition thickness on the BB ′ side, and an optical fiber preform having an elliptical core region is obtained.
[0017]
In the case of the OVD method, it is sufficient to apply vibration only when the core portion is formed. In the VAD method, the formation of the core portion is more sensitive to the change in the distance between the burner and the soot deposition portion than the formation of the cladding portion, and therefore, only the core portion is conveniently elliptical.
[0018]
Also in the MCVD method, by regularly changing the distance between the soot deposit and the burner, the soot deposition thickness on the AA ′ side and B as shown in FIG. 5 in the VAD method and the OVD method. The soot deposition thickness on the −B ′ side is different, and an optical fiber preform having an elliptical core region is obtained.
[0019]
In order to regularly change the distance between the soot deposit and the burner, in the VAD method, the burner is fixed and the soot deposit is shaken and vibrated. In the OVD method, the burner is moved closer to or away from the burner. Can be done conveniently.
[0020]
In the present invention, the number of vibrations per rotation of the soot deposit is an integral multiple, and the soot deposit and the burner are relatively moved closer to and away from each other during one revolution of the soot deposit. A polygonal core region can be formed by giving an integer number of times and forming a plurality of thick deposition layers in the length direction of the soot deposit.
In the present invention, the means for detecting the positional relationship between the soot deposit and the burner is arbitrary. For example, the deposition position of the silicon oxide fine particles in the soot deposit is detected by processing an image captured from a camera. Can
[0021]
【Example】
Example 1
Soot deposition by using a device that forms soot deposits by the VAD method, hydrolyzing glass raw materials such as silicon tetrachloride with a flame from a burner, and depositing silicon oxide fine particles generated by the reaction on the starting target material Formed body. The apparatus used was a mechanism in which the rotation axis for rotating the starting target material was shifted from the direction of gravity, and the starting target material was swung (vibrated) with respect to the burner (the mode shown in FIG. 2A). This frequency is the natural frequency of the system including the soot deposit. Since the weight of this vibration system changes as deposition progresses, a mechanism that detects the vibration of the soot deposit is attached to the device, and the change in the frequency is monitored and fed back to the rotation speed. An optical fiber preform having an elliptical core region was produced by controlling the halves to be exactly ½.
In addition, although the example which manufactures the preform | base_material for optical fibers which has an elliptical core area | region was demonstrated, according to this invention, an elliptical core area | region or the number of sides is arbitrary by changing the relationship between a rotation speed and a frequency. An optical fiber preform having a polygonal core region can be manufactured.
[0022]
【The invention's effect】
According to the present invention, an optical fiber preform having an elliptical or polygonal core region can be easily manufactured by improving the conventional apparatus for manufacturing a circular core in cross section. It was also very desirable.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an optical fiber preform of the present invention.
FIG. 2 (a) is a schematic explanatory view showing a state in which the optical fiber preform of the present invention is manufactured, showing a mode in which a soot deposit is vibrated and a burner is fixed, and (b) is a soot deposit. An example is shown in which the body is fixed and the burner is vibrated .
FIG. 3 is a schematic explanatory view showing a state in which an optical fiber preform is manufactured by an OVD method.
FIG. 4 is a schematic explanatory view showing a state in which an optical fiber preform is manufactured by an MCVD method.
FIG. 5 is a schematic diagram for explaining the positional relationship between a soot deposit and a burner.
[Explanation of symbols]
1 Core 2 Clad 3 Optical Fiber Base Material 4 Burner 5 Soot Deposit 6 Bar Target Material 7 Tubular Target Material

Claims (3)

円周方向に楕円形状または多角形状のコア領域を有する光ファイバ用母材の製造方法であって、四塩化けい素などのガラス原料の火炎加水分解反応で生成させた酸化けい素微粒子を出発ターゲット材上に堆積させることにより形成されたスート堆積体を振動させ、該振動がスート堆積体を含んで振動している系の固有振動によるものであり、スート堆積体の回転数と振動数とが整数倍の関係にあることを特徴とする光ファイバ用母材の製造方法。  A method of manufacturing a preform for an optical fiber having an elliptical or polygonal core region in a circumferential direction, and starting from silicon oxide fine particles generated by a flame hydrolysis reaction of a glass raw material such as silicon tetrachloride The soot deposit formed by depositing on the material is vibrated, and the vibration is caused by the natural vibration of the system that includes the soot deposit and vibrates. A method for producing a preform for optical fiber, wherein the relationship is an integral multiple. 円周方向に楕円形状または多角形状のコア領域を有する光ファイバ用母材の製造装置であって、出発ターゲット材を回転させる機構と、四塩化けい素などを火炎加水分解して酸化けい素微粒子を生成させるバーナと、出発ターゲット材とともに回転するスート堆積体を振動させる機構とを備え、該振動がスート堆積体を含んで振動している系の固有振動によるものであり、該スート堆積体を振動させる機構によりスート堆積体の酸化けい素微粒子の堆積位置と該バーナとの間隔を相対的に振動させることを特徴とする光ファイバ用母材の製造装置。An optical fiber preform manufacturing apparatus having an elliptical or polygonal core region in the circumferential direction, and a mechanism for rotating a starting target material and silicon oxide fine particles by flame hydrolysis of silicon tetrachloride and the like And a mechanism for vibrating the soot deposit that rotates with the starting target material , wherein the vibration is due to the natural vibrations of the system that vibrates including the soot deposit, An optical fiber preform manufacturing apparatus characterized by relatively vibrating the deposition position of silicon oxide fine particles in the soot deposit and the burner by a mechanism for vibrating. 前記スート堆積体の酸化けい素微粒子の堆積位置と酸化けい素微粒子を堆積させるバーナとの相対的な振動状態を検知する機構と、検知した振動状態の振動数と回転数との比を一定に制御する機構を有する請求項2に記載の光ファイバ用母材の製造装置。  A mechanism for detecting a relative vibration state between the deposition position of the silicon oxide fine particles in the soot deposit and a burner for depositing the silicon oxide fine particles, and a ratio between the frequency and the rotation number of the detected vibration state are made constant. The optical fiber preform manufacturing apparatus according to claim 2, further comprising a control mechanism.
JP21046399A 1999-07-26 1999-07-26 Optical fiber preform manufacturing method and manufacturing apparatus Expired - Fee Related JP4076111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21046399A JP4076111B2 (en) 1999-07-26 1999-07-26 Optical fiber preform manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21046399A JP4076111B2 (en) 1999-07-26 1999-07-26 Optical fiber preform manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2001039725A JP2001039725A (en) 2001-02-13
JP4076111B2 true JP4076111B2 (en) 2008-04-16

Family

ID=16589760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21046399A Expired - Fee Related JP4076111B2 (en) 1999-07-26 1999-07-26 Optical fiber preform manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4076111B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346865A (en) * 2019-06-12 2019-10-18 烽火通信科技股份有限公司 A kind of polarization maintaining optical fibre that multiband uses

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2950621A1 (en) * 2009-09-25 2011-04-01 Draka Comteq France Refilling preform of optical fiber, comprises modulating quantity of silicon deposited on preform in function of angular position of preform, where deposition of silicon is carried by projection and vitrification of silicon precursor
CN115385566A (en) * 2022-09-27 2022-11-25 武汉长盈通光电技术股份有限公司 Method for preparing elliptical core optical fiber prefabricated rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346865A (en) * 2019-06-12 2019-10-18 烽火通信科技股份有限公司 A kind of polarization maintaining optical fibre that multiband uses

Also Published As

Publication number Publication date
JP2001039725A (en) 2001-02-13

Similar Documents

Publication Publication Date Title
KR100507622B1 (en) Method and apparatus for fabricating an optical fiber preform in OVD
JP4076111B2 (en) Optical fiber preform manufacturing method and manufacturing apparatus
JP5678467B2 (en) Glass base material manufacturing method
JPH1081537A (en) Production of porous optical fiber preform
JPH07242435A (en) Production of porous glass base material for optical fiber
JPH0725637A (en) Production of porous glass preform for optical fiber
JP4398114B2 (en) Manufacturing method of glass base material for optical fiber with less unevenness
JP2000272929A (en) Production of optical fiber preform
JP3952431B2 (en) Method for producing porous glass preform for optical fiber
JP4177024B2 (en) Manufacturing method of optical fiber preform
JPH05116971A (en) Device for depositing fine glass particle and production of optical fiber base material
JP3524209B2 (en) Method for producing glass preform for optical fiber
JP2001158636A (en) Method and device for holding preform for optical fiber
JPS59141436A (en) Manufacture of optical fiber preform
JPS6136134A (en) Method and apparatus for producing preform for stress-imparted polarization-keeping optical fiber
JP5671837B2 (en) Glass base material manufacturing method
JP4169260B2 (en) Manufacturing method of glass preform for optical fiber by soot method with small outer diameter fluctuation and few defective parts at both ends
JP2011020887A (en) Method for manufacturing glass preform
JP2000281377A (en) Production method and apparatus for preform for optical fiber
JPS59207847A (en) Manufacture of preform for polarization keeping fiber
JPH10330129A (en) Production of porous glass body for optical fiber
KR20050011584A (en) Method of deposition with acoustic wave for fabricating an optical preform and apparatus for the same
JPH11189429A (en) Production of optical fiber preform
JPH11199238A (en) Fine glass particle deposition device
JPH11189428A (en) Production of optical fiber preform

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees