JPS59205455A - Heat treatment of winding core made of amorphous alloy - Google Patents

Heat treatment of winding core made of amorphous alloy

Info

Publication number
JPS59205455A
JPS59205455A JP58078918A JP7891883A JPS59205455A JP S59205455 A JPS59205455 A JP S59205455A JP 58078918 A JP58078918 A JP 58078918A JP 7891883 A JP7891883 A JP 7891883A JP S59205455 A JPS59205455 A JP S59205455A
Authority
JP
Japan
Prior art keywords
temperature
amorphous alloy
temp
strain relief
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58078918A
Other languages
Japanese (ja)
Other versions
JPS6234829B2 (en
Inventor
Isao Ito
伊藤 庸
Hiroshi Shishido
宍戸 浩
Takahiro Kan
管 孝宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58078918A priority Critical patent/JPS59205455A/en
Publication of JPS59205455A publication Critical patent/JPS59205455A/en
Publication of JPS6234829B2 publication Critical patent/JPS6234829B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain the titled winding core improved in magnetic characteristics, especially, in iron loss characteristics and magnetic permeability, by applying preliminary stress removing annealing to an amorphous alloy thin strip in a specific temp. range between the crystallization temp. and the Curie temp. of said strip within a short time to wind up the same while applying final stress removing annealing to the wound strip at the crystallization temp. or less. CONSTITUTION:Prior to winding up an amorphous alloy thin strip with a composition of Fe79B13Si8 after quenching and solidifying the same, preliminary stress removing annealing to said strip at a temp. which is not high enough to exceed 100 deg.C above the crystallization temp. of said strip but not lower than a Curie temp., for example, 550 deg.C for one sec. In the next step, the thin strip is wound up by a winding core and, thereafter, final stress removing annealing is applied to the wound strip at a temp. 100 deg.C or more lower than the crystallization temp., for example, at 300 deg.C. By this method, a winding core made of an amorphous alloy remarkably improved in magnetic characteristics is obtained.

Description

【発明の詳細な説明】 この発明は、アモルファス合金製巻コアの熱処理方法に
関し、とくに該巻コア製造過程での歪取り焼鈍処理に工
夫を加えて、磁気特性とくに鉄損特性ならびに透磁率の
有利な改善を図ったものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat treatment method for a wound core made of an amorphous alloy, and in particular to a method for heat treatment of a wound core made of an amorphous alloy. This is a major improvement.

近年、金属または合金溶融体を、冷却面が高速で更新移
動する冷却体上に連続して供給し急冷凝固させることに
よって、溶湯から直接急冷薄帯を製造する方法が開発さ
れ、この急冷薄帯化法によりアモルファス合金薄帯の製
造も容易に行えるようになった。
In recent years, a method has been developed to produce a quenched ribbon directly from the molten metal by continuously supplying a molten metal or alloy onto a cooling body whose cooling surface moves at high speed and rapidly solidifying it. The chemical method has made it possible to easily manufacture amorphous alloy ribbons.

かようなアモルファス合金薄帯は一般に磁気特性に優れ
、中でもトランスコア素材用としてのアモルファス合金
薄帯は、飽和磁束密度が高く、ま、た鉄損特性にも優れ
ている。とくに鉄損値については、トランス素材として
従来のけい素鋼電磁鋼板を使用した場合に比べ、b以下
程度にも低減される。
Such amorphous alloy ribbons generally have excellent magnetic properties, and in particular, amorphous alloy ribbons used for transformer core materials have a high saturation magnetic flux density and are also excellent in iron loss properties. In particular, the iron loss value is reduced to about b or less compared to the case where conventional silicon steel electrical steel sheets are used as the transformer material.

しかしながらかようなトランス素材用アモルファス合金
は、一方で磁歪が高いため、巻コアとして利用した場合
には、この高磁歪特性が該コアのコーナ一部の曲率や導
入歪による影響と相まって、磁気特性とく(こ鉄損特性
を劣化させていた。
However, such amorphous alloys for transformer materials have high magnetostriction, so when used as a wound core, this high magnetostrictive property, combined with the influence of the curvature of a part of the corner of the core and the introduced strain, will affect the magnetic properties. (This caused the iron loss characteristics to deteriorate.)

このためアモルファス合金薄帯を巻コアとして利用する
場合Gこは、所定の形状に巻取ったのち歪取り焼鈍を加
えることが、良好な特性を得る上で必須の条件とされて
いる。
Therefore, when an amorphous alloy ribbon is used as a wound core, it is essential to apply strain relief annealing after winding it into a predetermined shape in order to obtain good characteristics.

またアモルファス合金は、すぐれた透磁率を示し、高周
波特性も良好であることから、各種センサーやエレクト
ロニクス関係の磁性材料としての利用が考えられている
が、その利用に際し、l・ロイド巻コアとして使用する
場合(こは、やはり歪取焼鈍が必須要件となる。
In addition, amorphous alloys exhibit excellent magnetic permeability and good high-frequency characteristics, so they are being considered for use as magnetic materials for various sensors and electronics. (In this case, strain relief annealing is still an essential requirement.

第1図(こ、Fe、oB□aSls (原子%以下間じ
)の祖成になるアモルファス合金薄帯をトロイダルに巻
いた種々の径の巻コアの歪取り焼鈍前と350’CX 
60分の歪取り焼鈍を施した後における鉄損値について
調べた結果を、巻コアの半径rの逆数と鉄損値との関係
で示す。
Figure 1 (Co, Fe, oB□aSls (at % or less)
The results of investigating the iron loss value after 60 minutes of strain relief annealing are shown as the relationship between the reciprocal of the radius r of the wound core and the iron loss value.

同図から明らかなように、歪取り焼鈍後の鉄損特性は、
該焼鈍前に比べて大幅に改善されている。
As is clear from the figure, the iron loss characteristics after strain relief annealing are
This is a significant improvement compared to before the annealing.

しかしながら巻コアの径が小さくなるにつれて鉄損値は
増加する。
However, as the diameter of the wound core becomes smaller, the iron loss value increases.

すなわちかような歪取り焼鈍を施したとしてもなお巻径
が小さい場合には、やはり鉄損特性の劣化は免かれ得な
かったのである。
In other words, even if such strain relief annealing is performed, if the winding diameter is still small, deterioration of iron loss characteristics cannot be avoided.

この発明は、上記の問題の有利な解決を目指したもので
、アモルファス合金製巻コアの製造過程における熱処理
の改善により、該巻コアの磁気特性の一層の改善を実現
することを目的とする。
The present invention aims to advantageously solve the above-mentioned problems, and aims to further improve the magnetic properties of the amorphous alloy wound core by improving the heat treatment during the manufacturing process of the wound core.

ところで一般に、アモルファス合金の熱(こよる変化は
、次のような順序で起るものと考えられている。
Incidentally, it is generally believed that changes in amorphous alloys due to heat occur in the following order.

すなわち急冷凝固状態のアモルファス合金は1、加熱に
よって、 (1)  自由体積の消滅が起り、 (2)  その後構造的に短範囲の秩序を生じ、(3)
  ついで化学的短範囲の秩序が生じ、(4) 以降、
結晶化すなわち長範囲にわたる秩序が形成される、 ような変化を生じる。そして上掲した各過程のうち(i
)の変化が、歪除去いわゆる構造緩和といわれるもので
あり、内部応力が除去される過程である。この過程にお
ける原子の変位は、1原子距離より小さい範囲に止まる
が、加熱温度がより高くなったり、またはより長時間に
及ぶ場合には、原子の変位が1原子距離よりは大きくな
って、結晶化を生じていたのである。従って巻コアなど
の歪取り焼鈍は、常に上記(1)の変化に止る熱処理で
なければならず、それ以上の熱の付与は、アモルファス
合金の結晶化ひいては磁気特性の劣化を招く原因となる
。このことは、トランス巻コアやトロイドコアなどの歪
取り焼鈍において、歪を完全に除去して鉄損の劣化を防
止できる焼鈍条件・が、結晶化を生じる温度条件と著し
く近接している場合には、磁気特性の改善にとっては極
めて不利であることを示している。
In other words, an amorphous alloy in a rapidly solidified state undergoes (1) disappearance of free volume, (2) then structural short-range order, and (3)
Then chemical short-range order arises, and (4) onwards,
Crystallization, that is, the formation of long-range order, occurs. Of each process listed above, (i
) is called strain removal or so-called structural relaxation, and is a process in which internal stress is removed. The displacement of atoms in this process remains within a range smaller than one atomic distance, but if the heating temperature becomes higher or for a longer time, the displacement of atoms becomes larger than one atomic distance, and the crystallization This was causing a change in the population. Therefore, strain relief annealing of wound cores, etc. must always be a heat treatment that does not result in the change described in (1) above, and applying more heat than that causes crystallization of the amorphous alloy and eventually deterioration of the magnetic properties. This means that in strain relief annealing of transformer-wound cores, toroid cores, etc., the annealing conditions that can completely remove strain and prevent iron loss from deteriorating are extremely close to the temperature conditions that cause crystallization. This shows that it is extremely disadvantageous for improving magnetic properties.

従って、かような歪取り焼鈍条件と結晶化を生じる熱処
理条件とが近接しているアモルファス合金においては、
従来の如く結晶化を生じるおそれがない温度、すなわち
適正な歪取り焼鈍温度よりもかなり低い温度で焼鈍を施
したとしても、十分な歪の除去は達成できず、それ故満
足のいく程度の磁気特性の改善は望み得なかったのであ
る。
Therefore, in amorphous alloys where such strain relief annealing conditions and heat treatment conditions that cause crystallization are close to each other,
Even if annealing is performed at a temperature that is not likely to cause crystallization as in the past, that is, a temperature that is considerably lower than the appropriate strain relief annealing temperature, sufficient strain relief cannot be achieved, and therefore a satisfactory level of magnetism cannot be achieved. No improvement in characteristics could be expected.

そこで発明者らは、上記の問題を解決すべく鋭意研究を
重ねた結果、アモルファス合金につき、その結晶化温度
近傍の温度で加熱を施しても、その加熱時間が短時間で
あれば該合金の結晶化は生じないこと、そしてかような
予備的な歪取り焼鈍を施しておけば、その後の低温での
焼鈍によって効果的な歪の除去が達成でき、かくして磁
気特性の改善につき、望外の成果が得られることを究明
したのである。
As a result of intensive research to solve the above problem, the inventors found that even if an amorphous alloy is heated at a temperature close to its crystallization temperature, if the heating time is short, the alloy If crystallization does not occur and such preliminary strain relief annealing is performed, subsequent low temperature annealing can achieve effective strain removal, thus yielding unexpected results in improving magnetic properties. They found that it was possible to obtain

この発明は上記の知見に由来するものである。This invention is derived from the above knowledge.

すなわちこの発明は、アモルファス合金を磁気回路材と
する巻コアの製造過程において、まず急冷凝固して得た
アモルファス合金薄帯に、その巻取りに先立って、該薄
帯の結晶化温度より100°Cを超えて高くはなく、一
方キューリ一温度よりも低くはない範囲の温度で、短時
間の゛シ迭歪取り焼鈍を施し、しかるのち巻コアに巻取
ってがら、結晶化温度よりは100 ℃以上低い温度で
最終歪取り焼鈍を施すことをもって、前記課題の解決手
段とするものである。
That is, in the process of manufacturing a wound core using an amorphous alloy as a magnetic circuit material, the amorphous alloy ribbon obtained by rapid solidification is first heated at 100° above the crystallization temperature of the ribbon before winding. A short period of strain relief annealing is carried out at a temperature not exceeding 100°C, but not below the Curie temperature, and then being wound onto a wound core at a temperature of 100°C below the crystallization temperature. A means for solving the above problem is to perform final strain relief annealing at a temperature lower than .degree. C. or higher.

以下、この発明を由来した実験結果に基き、具体的に説
明する。
Hereinafter, this invention will be specifically explained based on the experimental results derived from it.

第2 V L 、Fe7oBtaS1gの組成になるア
モルファス合金薄帯(結晶化温度Tx:480″C)に
つき、急冷凝固後直ちに100闘φのトロイド巻コアに
巻取って種々の温度で1時間の歪取り焼鈍を施した場合
(図中○印で示す)ならびに急冷凝固後550℃で1秒
間の予備歪取り焼鈍を施したのチ100 amφのトロ
イド巻コアに巻留の温度で1時間の最終歪取り焼鈍を施
した場合の、焼鈍温度と鉄損値との関係について調べた
結果を、比較して示す。
2nd V L , an amorphous alloy ribbon (crystallization temperature Tx: 480″C) having a composition of 1 g of Fe7oBtaS was immediately wound onto a toroidal core of 100 mm diameter after rapid solidification, and strain-removed at various temperatures for 1 hour. In the case of annealing (indicated by a circle in the figure) and in the case of preliminary strain relief annealing at 550°C for 1 second after rapid solidification, final strain relief was applied to a 100 amφ toroidal core at the winding temperature for 1 hour. The results of an investigation into the relationship between annealing temperature and iron loss value when annealing is performed are shown for comparison.

同図より明らかなように、この発明に従う2段階の歪取
り焼鈍を施した場合、とくに最終歪取り焼鈍温度が結晶
化温度よりも100°C以上低い場合は、従来法に較べ
、著しい鉄損値の低下を示した。
As is clear from the figure, when the two-stage strain relief annealing according to the present invention is performed, especially when the final strain relief annealing temperature is 100°C or more lower than the crystallization temperature, there is a significant iron loss compared to the conventional method. showed a decrease in value.

次に第8図に、同じ< Fe7.B□a S :Lsの
組成になるアモルファス合金(結晶化温度TX;480
℃、近傍の種々の温度および保持時間で予備歪取り焼鈍
を施した場合の鉄損特性について調べた結果を、保持時
間をパラメータとして予備歪取り焼鈍温度と鉄損値との
関係でまとめて示す。
Next, in FIG. 8, the same <Fe7. B□a S: Amorphous alloy with the composition of Ls (crystallization temperature TX; 480
℃, the results of investigating the iron loss characteristics when pre-strain relief annealing is performed at various nearby temperatures and holding times are summarized in terms of the relationship between the pre-strain relief annealing temperature and iron loss value with holding time as a parameter. .

さて予備歪取り焼鈍において、焼鈍温度が薄帯の結晶化
温度を超える場合であっても、保持時間が0.5〜1.
0秒程度であれば、580°C程度すなわち結晶化温度
よりも100″C高い温度を超えない範囲では鉄損特性
は著しく改善され、また保持・時間が2秒の場合には、
焼鈍温度の上限は幾分低下するけれども、それでも53
0’C程度すなわち結晶化温度よりも50″Cを超えな
い温度範囲ではやはり鉄損特性の改善に著しい効果が認
められた。
Now, in preliminary strain relief annealing, even if the annealing temperature exceeds the crystallization temperature of the ribbon, the holding time is 0.5 to 1.
If the temperature is about 0 seconds, the iron loss characteristics will be significantly improved as long as the temperature does not exceed about 580°C, that is, 100"C higher than the crystallization temperature, and if the holding time is 2 seconds,
Although the upper limit of the annealing temperature is lowered somewhat, it is still 53
In a temperature range of about 0'C, that is, within a temperature range not exceeding 50'C below the crystallization temperature, a remarkable effect on improving iron loss characteristics was observed.

しかしながら予備歪取り焼鈍温度が、キューリー湿度よ
りも低くなると、鉄損特性の改善効果に乏しくなる。
However, when the pre-strain annealing temperature is lower than the Curie humidity, the effect of improving iron loss characteristics becomes poor.

従って予備歪取り焼鈍温度の下限値は、キューリ一温度
としたが、このように予備歪取り焼鈍温度がキューリ一
温度を下回ると鉄損改善効果が低減する理由は、次のと
おりと考えられる。
Therefore, the lower limit of the pre-strain relief annealing temperature is set to one Curie temperature, but the reason why the iron loss improvement effect is reduced when the preliminary strain relief annealing temperature is lower than one Curie temperature is considered to be as follows.

一般に強磁性体は、温度を上昇させていっても磁気的短
範囲の秩序をもつ限り強磁性を示す。キューリ一温度は
、この磁気的秩序がまったくなくなった状態を示す温度
であるが、かような磁気的秩序がない温度範囲で焼鈍す
る方が、原子配列に及ぼす効果が、ランダム化するので
異方的原子配列などによるクラスターなどを生成しにく
くすると考えられるところ、この点キューリ一温度未満
では上記の効果に乏しい。ちなみに二、三のアモルファ
ス合金の結晶化温度とキューリ一温度を示すと、次のと
おりである。
In general, ferromagnetic materials exhibit ferromagnetism as long as they have short-range magnetic order even when the temperature is increased. The Curie temperature is the temperature at which this magnetic order is completely eliminated, but annealing in a temperature range where no such magnetic order exists is anisotropic because the effect on the atomic arrangement becomes random. It is thought that this makes it difficult to generate clusters due to the targeted atomic arrangement, etc., but in this respect, the above effect is poor at temperatures below one Curie temperature. By the way, the crystallization temperature and Curie temperature of a few amorphous alloys are as follows.

範囲の温度で行う場合には、保持時間は0.5〜1秒間
程度、また焼鈍温度が結晶化温度よりも59−°Cを超
えない範囲の温度で行う場合は、保持時間は0.5〜2
秒間程度とするのが好適である。
When the annealing is carried out at a temperature in the range of 0.5 to 1 second, the holding time is about 0.5 to 1 second, and when the annealing temperature is not more than 59°C than the crystallization temperature, the holding time is 0.5 seconds. ~2
It is preferable that the time is about seconds.

また最終歪取り焼鈍においては、巻コアの体積の増大に
よって熱容散が増加するため、焼鈍時間は長時間化する
傾向にある。このため焼鈍温度が高いと結晶化し易くな
るので、結晶化温度よりも100℃以下の温度で行う必
要がある。このことは前掲第2図に示した結果からも、
またその他発明者らの多数の実験結果からも確認されて
いる。
Further, in the final strain relief annealing, the annealing time tends to become longer because heat dissipation increases due to the increase in the volume of the wound core. For this reason, if the annealing temperature is high, crystallization becomes easy, so it is necessary to perform the annealing at a temperature of 100° C. or lower than the crystallization temperature. This is also confirmed from the results shown in Figure 2 above.
This has also been confirmed from numerous experimental results by the inventors.

以下この発明の実施例について説明する。Examples of the present invention will be described below.

・実施例1〜4 Fe7oB工、S18の組成になるアモルファス合金(
結晶化温度:480°C1キユ一リ一温度:480°C
)の急冷凝固薄帯を、巻取るに先立って550’C,1
秒間の予備歪取り焼鈍を施し、ついで直径100mmの
巻コアに巻取ったのち、300゜825.350および
375°Cで最終歪取り焼鈍を施したときの、鉄損値に
ついて調べた結果を表】に示す。なお比較のために、予
備歪取り焼鈍を施さず急冷薄帯化後直ちに巻コアGこ巻
取って歪取り焼鈍を施す従来法(こよって得られた巻コ
アの鉄損値について調べた結果も表1に併記する。
・Examples 1 to 4 Fe7oB, amorphous alloy with a composition of S18 (
Crystallization temperature: 480°C Single crystallization temperature: 480°C
) was heated to 550'C, 1 prior to winding.
The results of investigating the iron loss value are shown when preliminary strain relief annealing was performed for 2 seconds, then the core was wound onto a wound core with a diameter of 100 mm, and final strain relief annealing was performed at 300°825.350 and 375°C. ] Shown below. For comparison, we used the conventional method in which the core was immediately wound into a thin ribbon after quenching without performing preliminary strain relief annealing, and strain relief annealing was performed. It is also listed in Table 1.

表1の結果から明らかなように、この発明に従って最終
歪取り焼鈍に先立ち予備歪取り焼鈍を施したもの(実施
例1〜4)はいずれも、従来法に従い得られたもの(従
来例1〜4)に較べて鉄損特性が改善されている。
As is clear from the results in Table 1, all of the products that were subjected to preliminary strain relief annealing prior to the final strain relief annealing according to the present invention (Examples 1 to 4) were obtained according to the conventional method (Conventional Examples 1 to 4). The iron loss characteristics are improved compared to 4).

実施例5 Fe5co7□B□2Si12の組成になるアモルファ
ス合金(結晶化温度480°C,キューリ一温度:44
0°C)を急冷薄帯化後、500℃×1秒間の予備歪取
り焼鈍を施し、ついで内径10闘のトロイドコアに巻取
ったのち、380°C110分間の最終歪取り焼鈍を施
し、強制空冷により冷却した。
Example 5 Amorphous alloy having a composition of Fe5co7□B□2Si12 (crystalization temperature 480°C, Curie temperature: 44
0°C) was rapidly cooled into a thin ribbon, subjected to preliminary strain relief annealing at 500°C for 1 second, then wound around a toroid core with an inner diameter of 10 mm, subjected to final strain relief annealing at 380°C for 110 minutes, and forced air cooling. It was cooled by

得られたトロイドコアの周波数1 kHzにおける実効
透磁率μeを測定したところ、μe−5X10’であり
、この値は、予備歪取り焼鈍を施さない従来法に従って
得られたものの実効透磁率がlXl0’であったのに比
較して数段すぐれている。
The effective magnetic permeability µe of the obtained toroid core at a frequency of 1 kHz was measured and found to be µe-5X10', which means that the effective magnetic permeability of the toroid core obtained according to the conventional method without pre-strain annealing is lXl0'. It's a lot better than what it was.

実施例6 Fe、。Ni40B20の組成になるアモルファス合金
(結晶化温度=450°C,キューリ一温度890℃)
の急冷凝固薄帯に、まず450°C,0,5秒間の予備
歪取り焼鈍を施し、ついで内径IQfmのトロイドコア
に巻取ったのち、300°C,5分間の最終歪取り焼鈍
を施した。
Example 6 Fe. Amorphous alloy with the composition Ni40B20 (crystallization temperature = 450°C, Curie temperature 890°C)
The rapidly solidified ribbon was first subjected to preliminary strain relief annealing at 450°C for 0.5 seconds, then wound around a toroid core having an inner diameter of IQfm, and then subjected to final strain relief annealing at 300°C for 5 minutes.

得られたトロイドコアの周波数1 kHzにおける実効
透磁率μeを測定したところ、μeは7X10であった
。この値は、予備歪取り焼鈍を施さなし1場合のlLe
 −2X 10’に比べて数段すぐれてし)る。
When the effective magnetic permeability μe of the obtained toroid core at a frequency of 1 kHz was measured, μe was 7×10. This value is 1Le without preliminary strain relief annealing.
-2X It is several steps better than 10').

なおこの発明で対象とするアモルファス合金の成分系は
、とくに限定されるものではなl/)が、中でも高磁束
密度材のFe −B −si、系合金、高透磁率材のF
e −Ni −B −(Si)系合金、さら(こは低磁
歪材のCo −F、e −B−;(Si)系合金などに
適用してとりわけ好適である。
The component system of the amorphous alloy targeted by this invention is not particularly limited, but includes Fe-B-si, a high magnetic flux density material, Fe-B-si alloy, and F-based alloy, a high magnetic permeability material.
It is particularly suitable for application to e-Ni-B-(Si)-based alloys, as well as low magnetostrictive materials such as Co-F and e-B-;(Si)-based alloys.

以上述べたようにこの発明によれば、アモルファス合金
を磁気回路材とするトランス巻コアやモーターコア、ざ
らにはアモルファス合金をトロイド状に巻いて使用する
センサーやエレクトロニクス関係部材などのトロイドコ
アにつき、その磁気特性の改善に偉効を奏する。
As described above, according to the present invention, toroid cores such as transformer-wound cores and motor cores in which amorphous alloy is used as a magnetic circuit material, and sensors and electronics-related parts in which amorphous alloy is wound in a toroidal shape are used. Great for improving magnetic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Fe79B18”18の組成になるアモルフ
ァス合金製巻コアの歪取り焼鈍前後における鉄損特性を
、巻き径の逆数と鉄損値W10150との関係で示した
グラフ、 第2図は、同じ組成になるアモルファス合金製巻コアの
予備歪取り焼鈍の有無による鉄4.瞳の違いを比較して
示したグラフ、 第3図は、同じ組成になるアモルファス合金製巻コアに
おいて、予備歪取り焼鈍の焼鈍温度と保持時間とが鉄損
特性に及ぼす影響を示したグラフである。 特許出願人 川崎製鉄株式会社 第1図 I/r(m−θ 第2図 長系多歪敢焼j屯温度(’Cジ
Fig. 1 is a graph showing the iron loss characteristics of an amorphous alloy wound core having a composition of Fe79B18''18 before and after strain relief annealing, as a relationship between the reciprocal of the winding diameter and the iron loss value W10150. Figure 3 is a graph comparing the difference in pupil of amorphous alloy wound cores with the same composition with and without preliminary strain relief annealing. It is a graph showing the influence of annealing temperature and holding time on iron loss characteristics.Patent applicant: Kawasaki Steel Co., Ltd. Temperature ('C

Claims (1)

【特許請求の範囲】 L アモルファス合金を磁気回路材とする巻コアの製造
過程において、 まず急冷凝固して得たアモルファス合金薄帯に、その巻
取りに先立って、該薄帯の結晶化温度より100°Cを
超えて高くはなく、一方、キューリ一温度よりも低くは
ない範囲の温度で、短時間の予備歪取り焼鈍を施し、し
かるのち巻コアに・巻取ってから、結晶化温度よりは1
00℃以上低い温度で最終歪取り焼鈍を施すことを特徴
とするアモルファス合金薄帯製巻コアの熱処理方法。 2 予備歪取り焼鈍が、アモルファス合金の結晶化温度
より100℃を超えて高くはなく、かつキューリ一温度
よりも低くはない範囲の温度での、0.5〜1秒間にわ
たる加熱処理である特許請求の範囲第1項記載の方法。 & 予備歪取り焼鈍が、アモルファス合金の結晶化温度
より50°Cを超えて高くはなく、かツキューリ一温度
よりも低くはない範囲の温度での、0.5〜2秒間にわ
たる加熱処理である特許請求の範囲第1項記載の方法。
[Claims] In the process of manufacturing a wound core using an amorphous alloy as a magnetic circuit material, an amorphous alloy ribbon obtained by rapid solidification is first heated at a temperature lower than the crystallization temperature of the ribbon before winding. A short pre-strain relief annealing is carried out at a temperature not higher than 100°C, but not lower than the Curie temperature, and then after being wound into a wound core, the temperature is lower than the crystallization temperature. is 1
A method for heat treating a wound core of an amorphous alloy ribbon, the method comprising performing final strain relief annealing at a temperature lower than 00°C. 2. A patent in which the preliminary strain relief annealing is a heat treatment for 0.5 to 1 second at a temperature within a range of not more than 100°C higher than the crystallization temperature of the amorphous alloy and not lower than the Curie temperature. The method according to claim 1. & The prestrain relief annealing is a heat treatment for 0.5 to 2 seconds at a temperature in the range of not more than 50°C above the crystallization temperature of the amorphous alloy and not below the Tsukühli temperature. A method according to claim 1.
JP58078918A 1983-05-07 1983-05-07 Heat treatment of winding core made of amorphous alloy Granted JPS59205455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58078918A JPS59205455A (en) 1983-05-07 1983-05-07 Heat treatment of winding core made of amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58078918A JPS59205455A (en) 1983-05-07 1983-05-07 Heat treatment of winding core made of amorphous alloy

Publications (2)

Publication Number Publication Date
JPS59205455A true JPS59205455A (en) 1984-11-21
JPS6234829B2 JPS6234829B2 (en) 1987-07-29

Family

ID=13675230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58078918A Granted JPS59205455A (en) 1983-05-07 1983-05-07 Heat treatment of winding core made of amorphous alloy

Country Status (1)

Country Link
JP (1) JPS59205455A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016002945A1 (en) * 2014-07-03 2017-06-01 国立大学法人東北大学 Magnetic core manufacturing method
WO2023032913A1 (en) * 2021-08-30 2023-03-09 東静工業株式会社 METHOD FOR PRODUCING Fe-BASED AMORPHOUS ALLOY RIBBON AND METHOD FOR PRODUCING Fe-BASED NANOCRYSTAL ALLOY RIBBON

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016002945A1 (en) * 2014-07-03 2017-06-01 国立大学法人東北大学 Magnetic core manufacturing method
WO2023032913A1 (en) * 2021-08-30 2023-03-09 東静工業株式会社 METHOD FOR PRODUCING Fe-BASED AMORPHOUS ALLOY RIBBON AND METHOD FOR PRODUCING Fe-BASED NANOCRYSTAL ALLOY RIBBON

Also Published As

Publication number Publication date
JPS6234829B2 (en) 1987-07-29

Similar Documents

Publication Publication Date Title
US4997493A (en) Process for production of double-oriented electrical steel sheet having high flux density
WO2015046140A1 (en) METHOD FOR PRODUCING Fe-BASED NANO-CRYSTAL ALLOY, AND METHOD FOR PRODUCING Fe-BASED NANO-CRYSTAL ALLOY MAGNETIC CORE
JPH032932B2 (en)
JPS6133058B2 (en)
US3144363A (en) Process for producing oriented silicon steel and the product thereof
JPS59205455A (en) Heat treatment of winding core made of amorphous alloy
US3932235A (en) Method of improving the core-loss characteristics of cube-on-edge oriented silicon-iron
JPH03194906A (en) Manufacture of rare earth magnet
JPS6360264A (en) Production of amorphous co alloy
JPH05202452A (en) Method for heat-treating iron-base magnetic alloy
JPS6396252A (en) Heat treatment of toroidal amorphous magnetic core
JPH0219442A (en) High saturated magnetic flux density ferrous alloy having superfine crystalline structure
JPH0238519A (en) Method for annealing thin amorphous alloy strip
JPS5867825A (en) Preparation of high silicon steel thin strip
JPS62213107A (en) Manufacture of magnetic core
JPS5942069B2 (en) Method for manufacturing amorphous alloy with high effective magnetic permeability
JPS6372824A (en) Rolling method for improving magnetic characteristic of rapidly cooled foil of high silicon steel
JPH11350032A (en) Production of silicon steel sheet
JPS6256203B2 (en)
JPH09118921A (en) Manufacture of grain-oriented magnetic steel sheet having extremely low iron loss
JPS6256204B2 (en)
JPS6159815B2 (en)
JPS5938327A (en) Manufacture of thin high-silicon steel strip having superior magnetic characteristic
JPS5873720A (en) Manufacture of high-silicon steel thin band having nonorientation in(100)face
JPS619520A (en) Manufacture of rapidly cooled thin strip having high tensile strength and non-orientation