JPS59204210A - Isotropic permanent magnet and manufacture thereof - Google Patents

Isotropic permanent magnet and manufacture thereof

Info

Publication number
JPS59204210A
JPS59204210A JP58079097A JP7909783A JPS59204210A JP S59204210 A JPS59204210 A JP S59204210A JP 58079097 A JP58079097 A JP 58079097A JP 7909783 A JP7909783 A JP 7909783A JP S59204210 A JPS59204210 A JP S59204210A
Authority
JP
Japan
Prior art keywords
less
permanent magnet
excluding
rare earth
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58079097A
Other languages
Japanese (ja)
Other versions
JPH0467323B2 (en
Inventor
Setsuo Fujimura
藤村 節夫
Masato Sagawa
眞人 佐川
Yutaka Matsuura
裕 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP58079097A priority Critical patent/JPS59204210A/en
Priority to CA000444518A priority patent/CA1280013C/en
Priority to EP83113253A priority patent/EP0125347B1/en
Priority to US06/567,008 priority patent/US4767474A/en
Priority to DE8383113253T priority patent/DE3381482D1/en
Publication of JPS59204210A publication Critical patent/JPS59204210A/en
Publication of JPH0467323B2 publication Critical patent/JPH0467323B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To rise the Curie point of a producted alloy, and to improve the temperature characteristic of an isotropic permanent magnet by a method wherein the isotropic permanent magnet is manufactured of a 10-25% rare earh element, 3-23% B, 50% or less Co and Fe according to sintering. CONSTITUTION:A ferro boron alloy containing electrolytic iron of 99.9% purity and 19.4% B, and the remainder consisting of impurities of Fe, Al, Si and C, and Nd of 99.7% purity or more as a rare earth element, and electrolytic Co of 99.9% purity are compounded at the prescribed ratio at first. The alloy thereof is molten according to high-frequency heating process, and casted by a water- cooled copper mold. Then it is ground rough according to a grinding stamp mill, and moreover pulverized according to a ball mill. After the impalpable powder alloy thereof is pressure molded, sintered for about 1hr at 1,000-1,200 deg.C. Accordingly, an isotropic permanent magnet consisting of Nd 15%, B 8%, Co x% (provided that x is 50 or less), Fe (77-x)% can be obtained.

Description

【発明の詳細な説明】 本発明は鉄(Fe)・ホウ素(B)・希土類元素(R)
系永久磁石の温度特性の改良に関する。
[Detailed description of the invention] The present invention uses iron (Fe), boron (B), and rare earth elements (R).
This paper relates to improving the temperature characteristics of permanent magnets.

本発明においてRは希土類元素を示す記号として用いる
In the present invention, R is used as a symbol representing a rare earth element.

永久磁石材料は一般家庭の各a電気製品から、大型コン
ピュータの周辺端末P−zで幅広い分野で使われるきわ
めて重要な電気電子材料の一つである。近年の電気、電
子機器の小型化、高効率化の要求にともない永久磁石材
料は丑す′f、′f1高性能化が求められている。
Permanent magnetic materials are one of the extremely important electrical and electronic materials used in a wide range of fields, from household electrical appliances to peripheral terminals P-Z of large computers. With the recent demands for smaller size and higher efficiency of electrical and electronic equipment, permanent magnet materials are required to have higher performance.

現在の代表的な永久磁石材料はアルニコ、ハードフェラ
イトおよび希土類コバルト磁石である。
Current representative permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets.

最近のコバルト(Co)の原料事情の不安定化(Cとも
ないコバルトを20〜30重計%含むアルニコ磁石の需
要は減り、鉄の酸化物を主成分とする安価なハードフェ
ライトが磁石材!’lの主流を占めるようになった。一
方希土類コバルト磁石はコバルトを50〜60重量係も
含むうえ希土類鉱石中にあ寸り含−まれていないサマリ
ウム(Sm)i使用するだめ大変高価であるが他の磁石
に比べて磁気f[−を性が格段に高いため主として小型
で付加価値の高い磁気回路に多く使われるようになった
Recently, the raw material situation for cobalt (Co) has become unstable (C), and the demand for alnico magnets containing 20 to 30% cobalt by weight has decreased, and cheap hard ferrite, whose main component is iron oxide, is now available as a magnet material!' Rare earth cobalt magnets, on the other hand, contain 50 to 60% cobalt by weight and are very expensive because they use samarium (Sm), which is not present in rare earth ores. Because it has much higher magnetic f[- than other magnets, it has come to be used mainly in small, high-value-added magnetic circuits.

等方性永久磁石は一般に異方性永久磁石に比べ磁気特性
は劣るが形状や磁化方向に制約分受けないため重用され
る。
Isotropic permanent magnets generally have inferior magnetic properties compared to anisotropic permanent magnets, but are used extensively because they are not subject to restrictions on shape or magnetization direction.

等方性永久磁石は従来磁石材料として用いられる殆んと
の全てのものから作られてはいる。しがL7.r−ライ
i、アルニコ、マンガンアルミニウム(MnA+)磁石
、鉄−りo ムーコハル) (Fe @Cr−Co)磁
石では磁気特性の−っであるエネルぞ一種(BH)ma
xが高々2MGOeと低く、希土類元素コバル)(R−
Co)磁石の場合で4〜5MGOeとその異方性磁石に
比して1/4〜1/6である。
Isotropic permanent magnets can be made from almost any conventional magnetic material. Shiga L7. In r-rai, alnico, manganese aluminum (MnA+) magnets, iron (Fe @ Cr-Co) magnets, there is a type of energy (BH) that has magnetic properties.
x is as low as 2MGOe at most, and the rare earth element cobal) (R-
In the case of a Co) magnet, it is 4 to 5 MGOe, which is 1/4 to 1/6 of that of an anisotropic magnet.

Fe −R系合金では磁石化に適した金属間化合物が存
在しナイ(1%Fe2. n2Fe17  等が存在す
るがこれらは磁石化に不適)。葦だ、Fe−1%の二元
系合金から液体急冷法により非晶質リボンを得、こねを
磁化して磁石とすることが提案されている(特開昭57
−210934.)。この方法では(BH)maxが4
〜5MGOeのもツカ得らレル。
In Fe-R alloys, there are intermetallic compounds suitable for magnetization (1%Fe2.n2Fe17, etc. exist, but these are unsuitable for magnetization). It has been proposed to obtain an amorphous ribbon from a binary alloy containing 1% Fe by a liquid quenching method, and to magnetize the ribbon to make a magnet (Japanese Patent Laid-Open No. 57
-210934. ). In this method, (BH)max is 4
~5MGOe's Motsuka Tokurarel.

寸たFe−B−R系合金の溶解急冷により非晶質リホン
ヲ得ることもN 、 C、に、oon 、  L 、 
Kabacoffによって提案されているが、しかし、
常温での磁石特性は低く、実用的ではない。
It is also possible to obtain amorphous silicon by melting and rapidly cooling Fe-B-R alloys of small size.
Although proposed by Kabacoff,
Magnetic properties at room temperature are poor, making it impractical.

これらの非晶質リボンは数μm〜数10μmの厚さのリ
ボンであるため実用的なバルクにするには積層か粉末化
後プレスが必要となりいずれの方法でも理論密度比が6
0〜80%位に低下し磁石時性は低下して実用的な磁石
となり難い。
Since these amorphous ribbons are ribbons with a thickness of several μm to several tens of μm, lamination or pressing after powdering is required to make them into a practical bulk, and either method has a theoretical density ratio of 6.
The magnetic resistance decreases to about 0 to 80%, and the magnetic resistance decreases, making it difficult to use as a practical magnet.

本発明は、か\る従来の等方性永久磁石の欠点を改良し
た新規な等方性永久磁石及びその製造方法を提供するこ
とを目的とする。以下本発明について詳述する。
An object of the present invention is to provide a novel isotropic permanent magnet that improves the drawbacks of the conventional isotropic permanent magnet, and a method for manufacturing the same. The present invention will be explained in detail below.

本発明者等は1i”esR,Fe−BeR,の粉末冶金
法による焼結体を検討した結果、R・−Fe系ではl−
1c。
The present inventors investigated sintered bodies of 1i"esR, Fe-BeR, by powder metallurgy, and found that in the R・-Fe system, l-
1c.

(JJI−1) rr+axカ零ir(近い値しか示さ
ナカッタカ、FC−B−11,系において、上述の特定
の組成範囲内でかつ特定の製造法に従い、従来にない高
特性の永久磁石が得られた。
(JJI-1) In the FC-B-11 system, a permanent magnet with unprecedented high characteristics can be obtained within the above-mentioned specific composition range and according to a specific manufacturing method. It was done.

本発明者等は、資源的に希少なSm、Coを必ずしも必
要としないFe−B−R系の磁気異方性焼結体から成る
永久磁石を開発し、さらにB” e −B・it系の磁
気等方性焼結体から成る永久磁石をも開発した。
The present inventors have developed a permanent magnet made of a Fe-BR-based magnetically anisotropic sintered body that does not necessarily require Sm and Co, which are rare resources, and further developed a permanent magnet made of a Fe-BR-based magnetically anisotropic sintered body. We have also developed a permanent magnet made of a magnetically isotropic sintered body.

このFe−B・R系永久磁石はCo f含丑す、Rとし
てネオジウム(Nd)やプラセオジム(Pr)を中心と
する資源的に豊富な軽希土類元素を主体として用い、F
ed主成分として約gMGOeの極めて高いエネルギー
積を示すことが出来めことを示した点で優れZhもので
ある。
This Fe-B・R permanent magnet contains Cof, mainly uses resource-rich light rare earth elements such as neodymium (Nd) and praseodymium (Pr) as R, and F
It is superior to Zh in that it can exhibit an extremely high energy product of about gMGOe as a main component of ed.

とのFe−B−I%系水久磁石は従来のアルニコ磁石や
RCo磁石に比17てよシ低いコストで高い特性を有す
る叩ちより高いコストパーフォーマンスを与えるのでそ
れ自体として大きな有用性を有する。
The Fe-B-I% based Mizuku magnet has high properties at a cost 17 times lower than conventional Alnico magnets and RCo magnets, and has high cost performance compared to conventional Alnico magnets and RCo magnets. have

所でFe、B−R系水久磁石(L方性)のキュリ一点(
Tc)は、300°C前後最高370°Cである。この
キュリ一点は従来のアルニコ系ないしR・Co系の永久
磁石の約800℃のTc と比べてかな゛り低いもので
ある。
By the way, there is one curie of Fe, B-R system Mizuku magnet (L direction) (
Tc) is around 300°C and a maximum of 370°C. This Curie point is much lower than the Tc of about 800° C. of conventional alnico-based or R.Co-based permanent magnets.

かくて、本発明はFe−B−R系等方性永久磁石の温度
特性を改良することを具体的課題とする。
Thus, a specific object of the present invention is to improve the temperature characteristics of an Fe-B-R based isotropic permanent magnet.

本発明によればFe−B−R系磁石の主成分のFeの一
部f Coで置換することにより生成合金のTcを上昇
せしめ温度特性を改善することが出来る。
According to the present invention, by substituting a part of Fe, which is the main component of the Fe-B-R magnet, with fCo, it is possible to increase the Tc of the produced alloy and improve the temperature characteristics.

即ち本発明は原子百分率において10〜25幅のR,(
但しRはYを包含する希土類元素の少くとも一種)、3
〜23%のB、50%以下のC。
That is, the present invention has a range of R, (
However, R is at least one kind of rare earth element including Y), 3
~23% B, less than 50% C.

(但し000%を除く)、及び残部P e及び不可避の
不純物から成る磁気等方性i焼結体永久磁石てありこれ
により温度特性を実質的に従来のアルニコ、11.Co
  系磁石と同等程度に改善するものである。
(excluding 000%), and the remainder Pe and unavoidable impurities, the magnetically isotropic i sintered permanent magnet is made of magnetically isotropic i sintered body permanent magnet. Co
This is an improvement to the same degree as the system magnet.

本発明においてはCoを含有することにより■′p・B
、R系永久磁石の温度特性を改善すると共に希土類元素
■もとして資源的に豊富なNdやPrなとの軽希土類元
素を用いて高い磁気特性を発現する。このため本発明の
永久磁石は従来のR−C。
In the present invention, by containing Co,
, improves the temperature characteristics of R-based permanent magnets, and develops high magnetic properties by using light rare earth elements such as Nd and Pr, which are abundant in resources, as rare earth elements. Therefore, the permanent magnet of the present invention is a conventional R-C.

磁石と比較すると資源的、価格的にも有利であるばかり
でなく磁気特性もさらに優れたものが得られる。
Compared to magnets, it is not only advantageous in terms of resources and cost, but also has better magnetic properties.

一般にF e合金中へのCoの含有はCo量の増大に従
いTcが上昇するものと下降するものとが認められ、F
eをCOで置換することは通常複シ゛mな結果を生来し
その結果の予測は困難である。
In general, it is recognized that when Co is contained in an Fe alloy, Tc increases or decreases as the amount of Co increases;
Replacing e with CO usually produces complex results that are difficult to predict.

本発明によるFe−B−R系におけるFeのC。C of Fe in the Fe-BR system according to the invention.

による置換においては第1図に示す通すCO置換量の増
大によシTcは徐々に増大する。Fe−B−几系合金に
おいてはRの種類によらず同様な傾向がOi ’AMさ
れる。COの置換量はわずかでもTcの増大に有効でh
D第1図として例示する系(77−X ) Fe−BB
−15Nd−XCo ニオイて明らかな通シXの調帯に
よシ約300〜約800℃の任意のTc fもつ合金が
得られる。なお、従来このような千ユリ一点を有する同
様な系の合金は知られていない。
In the case of replacement by CO, as shown in FIG. 1, Tc gradually increases as the amount of CO replacement increases. In Fe-B-phosphorus alloys, a similar tendency is observed regardless of the type of R. Even a small amount of CO substitution is effective in increasing Tc.
System (77-X) Fe-BB exemplified as Fig. 1 D
-15Nd-XCo An alloy having an arbitrary Tc f of about 300 DEG C. to about 800 DEG C. can be obtained by adjusting the temperature of Tc f which is obvious from the odor. Incidentally, a similar type of alloy having such 1,000 points is not known so far.

本発明のCo 置p4 F e −B −R系永久磁石
のB。
B of the Co-based p4Fe-B-R permanent magnet of the present invention.

R2及0’ (Fet ” 0) + t ノa IF
j= U Th COk 含’!ないFe・B・R系合
金と基本的に同様である。
R2 and 0' (Fet "0) + t noa IF
j= U Th COk including'! It is basically the same as the Fe・B・R alloy.

■LBの含有量とiHc、Brの関係を第3図。■Figure 3 shows the relationship between LB content, iHc, and Br.

第4図に夫々に典型例として示す。即ち保磁力i Hc
 ) I K Oeを満たすためBは3−%(以下チは
原子百分率を示す)以上とし、また( BH) max
2MGOe以上とするためには少くともBrは3KG以
」二必要なため23%以下とする。Rは1HcI K 
Oe以上とするため10%以、−ヒ必要であり、Brを
3.I(0以上とするため、甘た燃え易く工業的取扱・
製造上の困難のため、さらに高価であるため、25%以
下とする。
FIG. 4 shows typical examples. That is, coercive force i Hc
) In order to satisfy IK Oe, B should be 3-% or more (hereinafter, "C" indicates atomic percentage), and (BH) max
In order to achieve 2MGOe or more, at least 3KG or more of Br is required, so it is set to 23% or less. R is 1HcIK
To achieve Oe or higher, 10% or more is required, and Br is 3. I (Since it is 0 or more, it is easy to burn and is not suitable for industrial handling.
Since it is difficult to manufacture and is also expensive, it is set to 25% or less.

Rとしては資源的に豊富な軽希士炉を用いることができ
必らずしもSmを必要とせず或いはSmを主′採とする
必要も・ないので原料が安価でありきわめて有用である
As R, it is possible to use a light oxidation reactor which is rich in resources, and it does not necessarily require Sm or use Sm as the main source, so the raw material is inexpensive and extremely useful.

本発明の等方性永久磁石に用いる希土類元素Rはイツl
−’Jウム(Y)を包含し軽希土類及び重希土類を包含
する希土類元素で化)りそのうち一種以上、好丑しくけ
Nd、Pr等の軽希土類全主体と1−て、或いはPr、
Nd等との混合物を用いる。即ち1tとしてはネオジム
(Nd)、プラセオジム(Pr) 。
The rare earth element R used in the isotropic permanent magnet of the present invention is
- 'Jium (Y), including light rare earth elements and heavy rare earth elements), one or more of them, preferably all light rare earth elements such as Nd and Pr, or Pr,
A mixture with Nd etc. is used. That is, 1t includes neodymium (Nd) and praseodymium (Pr).

ランタン(La)、セリウム(Ce)、テルビウム(”
bLジスプロシウム(Dy)+ホルミウム(HO)pエ
ルビウム(Er)、ユウロピウム(Eu)、サマリウム
(Srn)、ガト1クニウム(Gd)、グロメチウム(
Pm)t yリウム(Tm)、イッテルビウム(Yb)
Lanthanum (La), cerium (Ce), terbium (”
bL Dysprosium (Dy) + Holmium (HO) pErbium (Er), Europium (Eu), Samarium (Srn), Gato1 Kunium (Gd), Glomethium (
Pm) tyrium (Tm), ytterbium (Yb)
.

ルテチウム(Lu)及びイットーリウム(Y)が包含さ
れる。几としては、軽希土類をもって足り特にNd、P
rが好ましい。葦た通例孔のうち一種をもって足りるが
実用上は二種以上の混合物(ミツシュメタル、ジジム等
)を入手上の便宜等の理由によジ用いることができ、 
Sm、Y、La、Ce、Gd等は他のR5特にNd、P
r等との混合物として用いることができる。なお、この
几は純希土類元素でなくともよく工業上入手可能な範囲
で製造上不可避な不純物を含有するものでも差支えない
Included are lutetium (Lu) and yttrium (Y). As for the temperature, light rare earths are sufficient, especially Nd and P.
r is preferred. One type of reed is usually enough, but in practice, a mixture of two or more types (mitshumetal, dizim, etc.) can be used for reasons such as convenience of acquisition.
Sm, Y, La, Ce, Gd etc. are other R5 especially Nd, P
It can be used as a mixture with r, etc. Note that this pot does not need to be made of pure rare earth elements, and may contain impurities that are unavoidable in manufacturing as long as it is industrially available.

ホウ素Bとしては純ボロン又はフェロボロンを用いるこ
とができ、不純物としてアルミニウムAI。
Pure boron or ferroboron can be used as boron B, and aluminum AI can be used as the impurity.

硅素Si 、炭素C等金含むものも用いることができる
Materials containing gold such as silicon (Si) and carbon (C) can also be used.

本発明の永久8石は既述の10〜25%のR23〜23
%C)B、CO50%以下、残部Fe v)組成におい
て、保磁力i Hc≧IKOe、残留磁束密度B r)
 3 K Gの磁気特性全示し最大エネルギー積(BH
)rnax)2MGOe以上’c 示f モ(7) テ
tb 7) (第3.4図参照)。
The permanent 8 stones of the present invention are 10 to 25% R23 to 23 as described above.
%C) B, CO 50% or less, balance Fe v) Composition, coercive force i Hc≧IKOe, residual magnetic flux density B r)
The maximum energy product (BH
) rnax) 2MGOe or more'c (7) tb 7) (see Figure 3.4).

R12〜20%、B5−18% は夫々好7しい範囲で
l)、(BH) ma y 4 MGOe以上のさらに
高い磁気特性を付与する。
R12-20% and B5-18% each provide higher magnetic properties than 1) and (BH) may 4 MGOe within a preferable range.

Fe−B−R系氷久磁石は焼結体として得られるが、本
発明のF e −a Co e B e R系水久磁石
は磁気等方性焼結体から成る。即ち、既述組成の合金を
溶解・鋳造し、鋳造合金金粉本化した後成形し焼結する
ことによシ得られる。
The Fe-B-R based Hyaku magnet is obtained as a sintered body, but the Fe-a Coe B e R based Hyaku magnet of the present invention is made of a magnetically isotropic sintered body. That is, it can be obtained by melting and casting an alloy having the composition described above, converting it into cast alloy gold powder, and then shaping and sintering it.

溶解は真空または不活性ガス雰囲気下で行ない、鋳造は
銅その他金属製等の鋳型を用い、この場合インゴット合
金の成分偏析ケ防ぐために水冷タイプの鋳型などを用い
て、冷却速度を早くすることが望葦しい。十分冷却した
のち、スタンプミル等で粗粉砕し、さらにアトライター
、ボールミルなどで微粉砕して、約400μm以下、好
ましくは1〜100μmとする。
Melting is performed in a vacuum or an inert gas atmosphere, and casting is performed using a mold made of copper or other metal.In this case, to prevent component segregation of the ingot alloy, a water-cooled mold may be used to speed up the cooling rate. It's wishy-washy. After cooling sufficiently, the powder is coarsely pulverized using a stamp mill or the like, and further finely pulverized using an attritor, a ball mill, etc. to a size of about 400 μm or less, preferably 1 to 100 μm.

Fe*B*R系合金の微粉砕粉を得る方法としては、上
述した方法の外に、噴霧法などの機械的粉砕法や、還元
法、■解法などの物理化学的製粉法なども用−ることが
できる。
In addition to the above-mentioned methods, methods for obtaining finely pulverized powder of Fe*B*R alloys include mechanical pulverization methods such as the spray method, physicochemical milling methods such as the reduction method, and the solution method. can be done.

この微粉末合金を、常法にて加圧成形し、成形物を約9
00・〜1200℃、好1しくは1050〜1150℃
つ温度にて所定時間焼結する。焼結後の平均結晶粒径が
所定範囲になるよう焼結条件(特に温度、時間)を選択
することによシ、磁気特性の高い等方性・焼結磁石体を
得る。例えば出発原料として100μm以下の合金粉末
を成形し、温度1050〜1150℃において30分〜
8時間焼結することにより、好葦しい結晶粒径の焼結体
が得られる。
This fine powder alloy was press-molded by a conventional method to obtain a molded product of approximately 9.
00-1200°C, preferably 1050-1150°C
sinter at a temperature for a predetermined period of time. By selecting sintering conditions (particularly temperature and time) so that the average crystal grain size after sintering falls within a predetermined range, an isotropic sintered magnet body with high magnetic properties can be obtained. For example, an alloy powder of 100 μm or less is molded as a starting material, and the temperature is 1050 to 1150°C for 30 minutes to
By sintering for 8 hours, a sintered body with a favorable crystal grain size can be obtained.

なお、焼結は好捷しくは真空又は不活↑(Lガス雰囲気
で行う。葦た、成形に際しては、カンファ。
Incidentally, sintering is preferably carried out in a vacuum or in an inert ↑ (L gas atmosphere).For molding, use a camphor.

パラフィン、レジン、塩化アンモニウム等の結合剤、ス
テアリン酸亜鉛、ステアリン酸カルシクム。
Paraffin, resin, binder such as ammonium chloride, zinc stearate, calcium stearate.

パラフィン、レジン等の滑剤ないし成形助剤を用いるこ
とができる。
A lubricant or molding aid such as paraffin or resin can be used.

本発明のCO添加Fe−B−R磁石はCOを含有しない
F e −B * n三元素磁石と比較して良好な温度
特性を示しBrはほぼ同程度、iHc は同等或いは少
し低いがC’oの添加により角形性が改善さ!しるため
(BH)mayは同等か或いはそt以上である。葦た、
CoはFeに比べて耐食性を有するのでFe−B−R合
金にCoを添加することにより耐食性を付与することも
可能となる。
The CO-added Fe-B-R magnet of the present invention exhibits better temperature characteristics than the Fe-B*n three-element magnet that does not contain CO, with almost the same Br, and the same or slightly lower iHc, but C' The squareness is improved by adding o! (BH) may be equal to or greater than that. Reed,
Since Co has higher corrosion resistance than Fe, it is also possible to impart corrosion resistance by adding Co to the Fe-BR alloy.

以下本発明を実施例に従って説明する。但し、本発明は
これらの実施例に限定されるものではない。
The present invention will be explained below according to examples. However, the present invention is not limited to these examples.

第1図に代表例として77Fe・8B・15Nd  の
!゛Cの一部をCo(X)で置換した系(77−X)F
 cX C08B15 Nd K オイ””C5x’t
o 〜80に変化させた場合のTcの変化を示す。この
試料はつぎの工程によシ作成した。
Figure 1 shows typical examples of 77Fe, 8B, and 15Nd!゛System (77-X)F in which part of C is replaced with Co(X)
cX C08B15 Nd K oi""C5x't
It shows the change in Tc when changing from o to 80. This sample was prepared by the following steps.

(1)合金を高周波溶解し、水冷銅鋳型に鋳造し、出発
原料はFeとして純度999・声の電解鉄、B19、4
 % ?−金含有残部がFeとAI、Si、CC1不純
物からなるフェロボロン合金、Rとして純度919−f
/ %以上(不純物として主として他の希土類金属)を
使用、Coは純度999条の電解COを使用した。
(1) The alloy is high-frequency melted and cast in a water-cooled copper mold, and the starting material is Fe with a purity of 999, electrolytic iron, B19, 4
%? - Ferroboron alloy with gold content balance consisting of Fe and AI, Si, CC1 impurities, purity 919-f as R
/% or more (mainly other rare earth metals as impurities), and electrolytic CO with a purity of 999 was used as Co.

(2)  粉砕スタンプミルによj)35メッシュスル
−まで粗粉砕し次いでボールミルによ93時間微粉砕(
3〜10μm) (3)粉末を1.5 T/crrt  にて加圧成形(
4)焼結1000〜1200℃1時間アルゴン(Ar)
気流中にて結晶粒径が札そ5〜30μmとなるよう焼結
後放冷、焼結体から約0. i rブロックを切出しV
SMにより次のようにしてキュリ一点(Tc)を測定し
た。即ち試料は25〜600 ”Cまでの温度範囲で磁
化4π■の温度変化を測定し4π■がはソ零になる温度
をTc とした。
(2) Coarsely pulverize to 35 mesh through using a crushing stamp mill, then finely pulverize using a ball mill for 93 hours.
(3 to 10 μm) (3) Pressure mold the powder at 1.5 T/crrt (
4) Sintering at 1000-1200℃ for 1 hour in argon (Ar)
After sintering in an air stream, the crystal grain size is 5 to 30 μm, and the sintered body is left to cool. i r block cut out V
Curie point (Tc) was measured by SM as follows. That is, the temperature change of magnetization 4π■ of the sample was measured in the temperature range from 25 to 600''C, and the temperature at which 4π■ became zero was defined as Tc.

第1図から明らかな通り、TCはFeに対するC。As is clear from FIG. 1, TC is C relative to Fe.

のンパ5″換:、;、の贈入に伴い、急速に増大1.C
oが、30%以七では600 ”C;以」二に達する。
Increased rapidly due to the donation of 1.C
If o exceeds 30%, it reaches 600 ``C;

一般に永久磁石材料においてTcの増大は磁気特性の温
度変化の減少のため最も重要な要因とされている。この
点の確認のためTc測定用試料と同じ工程により第1表
の永久磁石試料を作製しBrの温度特性を測定した。
Generally, in permanent magnet materials, increasing Tc is considered to be the most important factor for reducing temperature changes in magnetic properties. To confirm this point, permanent magnet samples shown in Table 1 were prepared using the same process as the samples for Tc measurement, and the temperature characteristics of Br were measured.

Brの温度変化は次のようにして測定した。即ち25′
G、60℃、100℃の各温度でBHトレーサ・−によ
り磁化曲線を測定し25〜60℃と60〜100℃にか
けるBrの温度変化をモ均し、た。
The temperature change in Br was measured as follows. i.e. 25'
Magnetization curves were measured using a BH tracer at each temperature of G, 60°C, and 100°C, and the temperature changes of Br over 25-60°C and 60-100°C were averaged.

各種Fe−Co・I3.R系磁石試料並ひに比較例につ
いてのBrの温度係数ならびに磁気特性の測定結果を第
1″′表に示す。
Various Fe-Co・I3. Table 1'' shows the measurement results of the temperature coefficient of Br and the magnetic properties of the R-based magnet samples and comparative examples.

第1表からFe−B−R系をベースとする磁石にCoを
含有することによりBrの温度依存性が改善されること
が明らかである。
It is clear from Table 1 that the temperature dependence of Br is improved by including Co in the Fe-B-R based magnet.

R、Bの含有計のiHc、Brとの関係を調べるため、
夫h xNd−10Co−BB−Fe ノ系(X−0〜
35)、及び15Nd−10CO−xB−Fe  の系
(X−0〜30)について既述の工程と同様にして試料
を作製し、磁気特性全測定し、た。その結末を第3,4
図に夫々示す。
In order to investigate the relationship between R and B content meter iHc and Br,
Husband xNd-10Co-BB-Fe (X-0 ~
35) and 15Nd-10CO-xB-Fe systems (X-0 to 30), samples were prepared in the same manner as the above-mentioned process, and all magnetic properties were measured. The ending is 3rd and 4th
They are shown in the figure.

同様にして測定したCOを含寸ない場合の15 Nd−
x B−F e系のIHC曲・腺を点線K で第4図に
示す。
15 Nd- without CO, measured in the same way
The IHC curve/gland of the xB-Fe system is shown in FIG. 4 by the dotted line K.

保磁力iHCはCo置換によりや\低下するが減磁曲線
の角形性の向上にょ0 (BH)max;d上昇する。
Although the coercive force iHC decreases slightly due to Co substitution, it increases due to the improvement in the squareness of the demagnetization curve.

しかしCO置換量が多くなシ5o%に近刊くとiHc 
 の低下が著しく、永久磁石材料として1Hc)IKO
eを得るためにCo没は50%以下とする(第1表比較
例J、 C4参照)。
However, if the amount of CO replacement is large and will be published soon at 5%, iHc
1Hc) IKO as a permanent magnet material.
In order to obtain e, the Co loss should be 50% or less (see Comparative Examples J and C4 in Table 1).

第1表にけRとしてNd、Prを主として用いた例を掲
げであるが夫々高い磁気特性を示しFeのCoによる置
換によって更に温度特性が吹善されている。Rとしては
二種以上の希土類元素の混合物も有用である。
Table 1 lists examples in which Nd and Pr are mainly used as R, and each exhibits high magnetic properties, and the temperature properties are further improved by replacing Fe with Co. Mixtures of two or more rare earth elements are also useful as R.

本発明の等方性永久磁石の一例(・窮1茨、試料黒7)
を用いてiHc  と平均結晶粒径の関係について検討
した結果を第2図に示す。第2図からi HcンIKO
eを得るためには焼結後の平均結晶粒径は約1〜約13
0μmである必要があり、好丑しくけ1〜80μm1よ
シ好”f、L、<Id3〜30μmである。
An example of an isotropic permanent magnet of the present invention (Ku 1 Thorn, Sample Black 7)
Fig. 2 shows the results of examining the relationship between iHc and average grain size using . From figure 2 i Hc n IKO
To obtain e, the average grain size after sintering must be about 1 to about 13
It needs to be 0 μm, preferably 1 to 80 μm, and preferably 3 to 30 μm.

以上詳述の通シ本発明のFe−Co5BsR系等方性永
久磁石はRとして@希土類特に各種の軽th士類・重希
土類の混合物例えばミツ7ユメタル、ジジムのような安
価なR原料を用いて高い磁気特性が得られかつCOの含
有量も重量百分率で45楚以下(原子%で50%以下)
で十分でありSm・Co系磁石が50〜60重量係OC
Oを含有するのと比l咬すれげCOを十分節約可能であ
り、温度特性はFe−B・几系斃石に比べて顕著に改善
され、実用−ト十分有用な温度特性を示す。
As described above in detail, the Fe-Co5BsR isotropic permanent magnet of the present invention uses an inexpensive R raw material such as a mixture of rare earths, especially various light and heavy rare earths, such as Mitsu7yumetal and Didym. High magnetic properties can be obtained, and the CO content is less than 45 so in weight percentage (less than 50% in atomic %).
is sufficient, and Sm/Co magnets have a weight coefficient of 50 to 60 OC.
Compared to containing O, it is possible to save enough CO, and the temperature characteristics are significantly improved compared to Fe-B and phosphorus-based stones, and exhibit temperature characteristics that are sufficiently useful in practical use.

本発明の永久磁石けF e −Co・B、Rのほか工業
的製造上不可避な不純物の存在を許容できるが、さらに
以下の展開も可;徒であり一層実用性を高めることがで
きる。即ち、本発明の基本組成は233%以下、 82
.5 %以下、 C4,O%以下、 Cu33%以下の
含有も許容し、Brの減少を−伴う;ゲ、この@回内で
実用可能である。Cは有機成形助剤ないし結合剤から、
S、P、Cu等は原料、製造工程等から含有されること
があり、これらの許容は、工業的製造−り有利である。
In addition to the permanent magnets of the present invention, Fe-Co.B and R, the presence of impurities unavoidable in industrial production can be tolerated, but the following development is also possible; That is, the basic composition of the present invention is 233% or less, 82
.. Contents of 5% or less, C4,O% or less, and Cu33% or less are also allowed, and are practical in this @ pronation, with a reduction in Br. C is an organic forming aid or binder;
S, P, Cu, etc. may be contained from raw materials, manufacturing processes, etc., and allowing these is advantageous for industrial manufacturing.

さらに本発明の磁石にアルミニウム(”Lチタン(Ti
)、 バfジ’yム(V)+りoム(Cr)。
Furthermore, the magnet of the present invention is made of aluminum ("L titanium (Ti)").
), Bafzi'ym (V) + Riom (Cr).

マンガン(Mn)、銅(Cu)、亜鉛(Zn)、ジルコ
ニウム(Zr)、 ニオン゛(Nb)、−Eリフ゛テン
(MO)。
Manganese (Mn), copper (Cu), zinc (Zn), zirconium (Zr), ion (Nb), -E fiber (MO).

タンタル(’I”a)、タングステン(W)、スズ(S
n)。
Tantalum ('I”a), tungsten (W), tin (S
n).

ビスマス(Bi)、アンチモンLbLの一錘J、iJ 
上を添加することによシ高保磁力化が可#ヒとなり、′
またニッケル(N1)添加により耐食性改善も可能とな
る。
Bismuth (Bi), antimony LbL spindle J, iJ
By adding the above, it becomes possible to increase the coercive force.
Further, corrosion resistance can be improved by adding nickel (N1).

以上本発明はFe−Co−B−n系永久磁石で高残留磁
化、高保磁力、高エネルギー積を有し、かつ温度特性の
すぐれた磁気等方性焼結体からなる永久磁石を実現した
もので工業的にきわめて高い価値全治するものである。
As described above, the present invention has realized a permanent magnet made of a magnetically isotropic sintered body that has high residual magnetization, high coercive force, and high energy product using Fe-Co-B-n based permanent magnets and has excellent temperature characteristics. It is a complete cure that has extremely high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例についてキュリ・一点1’ 
c (”c、 )とCo量の関係を示すグラフ(横@λ
はCoの原子百分比%)、 第2図は本発明の一実施例についての保磁力i Hc 
(K Oe )と平均結晶粒径の関係を示すグラフ(横
軸りは平均結晶粒径μm)、 第3図はR(Nd)含有量(横軸原子矛ンとf、Is−
(KO) 、 1I−Ic (KOe )  との関係
を示すグラフ、第4図は、B含有量(横軸原子%)とB
 r(KG) 。 111c(KOe)との関係を示すグラフである。 出願人住友特殊金属株式会社 代理人弁理士加 萎 朝 道 第1図 Co原子自分奉(x%) 第2図 平均綿晶腫経O(μm) 第3図 Nd原子百今牟(X%) 第4図 Fe−10co−xB−15Nd B厘子白介奉(x%)
FIG. 1 shows one embodiment of the present invention.
Graph showing the relationship between c (“c, ) and Co amount (horizontal @λ
is the atomic percentage of Co), and Figure 2 shows the coercive force i Hc for one embodiment of the present invention.
A graph showing the relationship between (K Oe ) and average grain size (the horizontal axis shows the average grain size μm), and Figure 3 shows the R (Nd) content (the horizontal axis shows the atomic axis and f, Is-
(KO), 1I-Ic (KOe), Figure 4 is a graph showing the relationship between B content (horizontal axis atomic%) and B
r(KG). 111c (KOe). Applicant: Sumitomo Special Metals Co., Ltd., Patent Attorney Attorney, Kao Asahi Figure 1: Co atomic self-absorption (x%) Figure 2: Average cotton crystal size O (μm) Figure 3: Nd atomic mass (x%) Fig. 4 Fe-10co-xB-15Nd B Rinshi Hakusukeho (x%)

Claims (1)

【特許請求の範囲】 ■)原子6分率において、10〜25%のR(RはYを
包含する希土類元素の少くとも一種)、3〜23チのB
、Co50%以下(但しCo □%を除<)、及び残部
Fe及び不可避の不純物からなる磁気等方性焼結体永久
磁石。 2)原子首分率において、10〜25%のR(RはYを
包含する希土類元素の少くとも一種)、3〜23%のB
、Co50%以下(但しCo □%を除<)、及び残部
Fe及び不可避の不純物から成り、焼結体の平向結晶粒
径が約1〜約130μmである磁気等方性焼結体永久磁
石。 3)原子百分率において、10〜25%のR(R,はY
4包含する希土類元素の少くとも一種)、3〜23%の
B、Co50%以下(但しCo □%を除<)、及び残
部Fe及び不司避の不純物から成る合金粉末を、加圧成
形の後焼結することを特徴とする磁気等方性焼結体永久
磁石の製造方法。 4)原子百分率において、10〜25%のrt(RばY
を包含する希土類元素の少くとも一種)、3〜23%の
B、Co50%以下(但しCo □%を除く)、所定係
の元素式(但しAO%を除き、AはP 3.3%以下、
825%以下、040%以下、Cu3,3%以下でAを
2種以上含む場合当該元素のうち所定%の最犬航以丁と
する)、及び残部Fe及び不可避の不純物からなる磁気
等方性焼結体永久磁石。 5)原子百分率において、10〜25係のR(RはYを
包含する希土類元素の少くとも一種)、3〜23裂のB
、Co50%以下(化り、C00%を除く)、所定係の
元素A(但しA□%を除き、AはP3.3%以下、82
5%以下、C4,0%以下、Cu3,3%以下で八を2
種以上含む場合当該元素のうち所定襲の最犬値以下とす
る)、及び残部Fe及び不可避の不純物から成り、焼結
体の平均結晶粒径が約1〜約130μmである磁気等方
性焼結体永久磁石。 6)原子百分率において、10〜25%ノR(RはYを
包含する希土類元素の少くとも一種)、3〜23%のB
、Co50%以下(但しCo □%を除り)、所定係の
元素人(但しAO%を除き、l’j:P33%以下、 
82.5 %以下、040%以丁、Cu3,3%以下で
A全2種以上含む場合当該元素のうち所定係の最大値以
下とする)、及び残部Fe及び不可避の不純物から成る
合金粉末を、加圧成形の後焼結することを特徴とする磁
気等方性焼結体永久磁石の製造方法。
[Scope of Claims] ■) 10 to 25% of R (R is at least one kind of rare earth element including Y), 3 to 23% of B in 6 atomic fractions
, a magnetically isotropic sintered permanent magnet consisting of 50% or less Co (excluding □% Co), and the remainder Fe and unavoidable impurities. 2) In terms of atomic head fraction, 10 to 25% R (R is at least one kind of rare earth element including Y), 3 to 23% B
, Co50% or less (excluding Co □%), and the remainder Fe and unavoidable impurities, and the magnetic isotropic sintered body permanent magnet has an orthogonal crystal grain size of about 1 to about 130 μm. . 3) In terms of atomic percentage, 10 to 25% of R (R, is Y
4), 3 to 23% of B, 50% or less of Co (excluding □% of Co), and the balance Fe and unavoidable impurities. A method for producing a magnetically isotropic sintered permanent magnet characterized by post-sintering. 4) In terms of atomic percentage, 10 to 25% of rt (R
(at least one kind of rare earth element including), 3 to 23% B, Co 50% or less (however, excluding Co □%), elemental formula of the specified ratio (however, excluding AO%, A is P 3.3% or less) ,
Magnetic isotropy consisting of 825% or less, 040% or less, Cu3.3% or less and containing two or more types of A), and the balance consisting of Fe and unavoidable impurities. Sintered permanent magnet. 5) In terms of atomic percentage, R of 10 to 25 (R is at least one kind of rare earth element including Y), B of 3 to 23
, Co50% or less (excluding oxidation, C00%), element A in the specified ratio (excluding A□%, A is P3.3% or less, 82
5% or less, C4.0% or less, Cu3.3% or less, 8 to 2
Magnetic isotropic sintering is made of a sintered body with an average crystal grain size of about 1 to about 130 μm. Solid permanent magnet. 6) In atomic percentage, 10 to 25% R (R is at least one kind of rare earth element including Y), 3 to 23% B
, Co 50% or less (however, excluding Co □%), elemental personnel in the specified section (however, excluding AO%, l'j:P 33% or less,
82.5% or less, 0.40% or less, Cu 3.3% or less, and if it contains two or more types of A, it shall be less than the maximum value of the specified ratio among the relevant elements), and the balance is Fe and unavoidable impurities. , a method for producing a magnetically isotropic sintered permanent magnet, characterized by sintering after pressure forming.
JP58079097A 1983-05-06 1983-05-06 Isotropic permanent magnet and manufacture thereof Granted JPS59204210A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58079097A JPS59204210A (en) 1983-05-06 1983-05-06 Isotropic permanent magnet and manufacture thereof
CA000444518A CA1280013C (en) 1983-05-06 1983-12-30 Isotropic magnets and process for producing same
EP83113253A EP0125347B1 (en) 1983-05-06 1983-12-30 Isotropic magnets and process for producing same
US06/567,008 US4767474A (en) 1983-05-06 1983-12-30 Isotropic magnets and process for producing same
DE8383113253T DE3381482D1 (en) 1983-05-06 1983-12-30 ISOTROPE MAGNETS AND METHOD FOR THEIR PRODUCTION.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58079097A JPS59204210A (en) 1983-05-06 1983-05-06 Isotropic permanent magnet and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS59204210A true JPS59204210A (en) 1984-11-19
JPH0467323B2 JPH0467323B2 (en) 1992-10-28

Family

ID=13680371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58079097A Granted JPS59204210A (en) 1983-05-06 1983-05-06 Isotropic permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59204210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338217A (en) * 1986-08-04 1988-02-18 Tohoku Metal Ind Ltd Manufacture of sintered rare earth element magnet
EP4105353A4 (en) * 2020-02-13 2024-06-19 Sanyo Special Steel Co., Ltd. Sputtering target material and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141901A (en) * 1981-02-26 1982-09-02 Mitsubishi Steel Mfg Co Ltd Permanent magnet powder
JPS5964739A (en) * 1982-09-03 1984-04-12 ゼネラルモーターズコーポレーション High energy rare earth metal-transition metal magnetic alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141901A (en) * 1981-02-26 1982-09-02 Mitsubishi Steel Mfg Co Ltd Permanent magnet powder
JPS5964739A (en) * 1982-09-03 1984-04-12 ゼネラルモーターズコーポレーション High energy rare earth metal-transition metal magnetic alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338217A (en) * 1986-08-04 1988-02-18 Tohoku Metal Ind Ltd Manufacture of sintered rare earth element magnet
EP4105353A4 (en) * 2020-02-13 2024-06-19 Sanyo Special Steel Co., Ltd. Sputtering target material and method for manufacturing same

Also Published As

Publication number Publication date
JPH0467323B2 (en) 1992-10-28

Similar Documents

Publication Publication Date Title
EP0126179B1 (en) Process for producing permanent magnet materials
EP0125347A2 (en) Isotropic magnets and process for producing same
Ormerod The physical metallurgy and processing of sintered rare earth permanent magnets
EP0249973B1 (en) Permanent magnetic material and method for producing the same
JPH0319296B2 (en)
JPH0232761B2 (en)
JPH0316761B2 (en)
US4929275A (en) Magnetic alloy compositions and permanent magnets
JPS59132105A (en) Permanent magnet
US20210304933A1 (en) Synthesis of high purity manganese bismuth powder and fabrication of bulk permanent magnet
JP2610798B2 (en) Permanent magnet material
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPS59204210A (en) Isotropic permanent magnet and manufacture thereof
JPH085664B2 (en) Rare earth / iron / boron tetragonal compound
JPH0146575B2 (en)
JPH0467322B2 (en)
JPH0535210B2 (en)
JPH0467324B2 (en)
JPH0146574B2 (en)
JPH03170643A (en) Alloy for permanent magnet
JPS59219453A (en) Permanent magnet material and its production
WO2017191790A1 (en) Rare-earth permanent magnet, and method for manufacturing same
JPS6365742B2 (en)
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JPH0316763B2 (en)