JPS59203770A - Non-magnetic ceramic composition for magnetic head - Google Patents
Non-magnetic ceramic composition for magnetic headInfo
- Publication number
- JPS59203770A JPS59203770A JP58075244A JP7524483A JPS59203770A JP S59203770 A JPS59203770 A JP S59203770A JP 58075244 A JP58075244 A JP 58075244A JP 7524483 A JP7524483 A JP 7524483A JP S59203770 A JPS59203770 A JP S59203770A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- thermal expansion
- voids
- ceramic composition
- coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Magnetic Heads (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は電子計算機等のフロッピーディスク装置の磁気
ヘッドの構成に必要な非磁性磁器に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to non-magnetic ceramics necessary for the construction of magnetic heads of floppy disk devices such as electronic computers.
従来よシ磁気ヘッド用非磁性用非磁性構造材料としては
アルミナ、フォルステライト、ステアタイト等が用いら
れていた。しかしながらこれらの欠点は、磁性材料のフ
ェライトの組成が磁気ヘッドの仕様の違いによシ多少異
なるため、それに応じて熱膨張係数が変シ、フェライト
と非磁性材料の熱膨張係数が一致せず、ガラスボンディ
ング工程でいずれかに割れが生じ歩留9を低下させるこ
とであった。Conventionally, alumina, forsterite, steatite, etc. have been used as nonmagnetic structural materials for magnetic heads. However, these drawbacks are that the composition of the magnetic material ferrite differs depending on the specifications of the magnetic head, so the thermal expansion coefficient changes accordingly, and the thermal expansion coefficients of ferrite and non-magnetic material do not match. Cracks occurred in one of the glass bonding steps, reducing the yield of 9.
この磁気ヘッド用の非磁性材料は、常にフェライトと同
時に高速でフロッピーディスク面を摺動しながら移動す
る。したがって、その耐磨耗性がフェライトと同程度で
ない場合、フェライト部と非磁性材料との間にすき間を
生じ、磁気ヘッドの機能を低下させる。また材質の表面
に30μ以上のボイドがある場合、ボイド部から微少な
カケを生じて磁気記憶媒体のディスク表面にキズをつけ
る原因となる。更に、これらの構成部品は、精密彦加工
工程を経て磁気ヘッドに加工されるので。This non-magnetic material for the magnetic head always slides along the floppy disk surface at high speed simultaneously with the ferrite. Therefore, if its wear resistance is not on the same level as ferrite, a gap will be created between the ferrite portion and the non-magnetic material, reducing the functionality of the magnetic head. Furthermore, if there are voids of 30 microns or more on the surface of the material, minute chips may occur from the voids, causing scratches on the disk surface of the magnetic storage medium. Furthermore, these components are processed into magnetic heads through a precision machining process.
適度の加工性の良さを要求される。Appropriate workability is required.
アルミナ、フォルステライト、ステアタイト等はこれら
の諸要求に対して全てを満足できるものでは々い。それ
故、最近になV) 、 Mn −Znフェライトを用い
るヘッドに対しては、誘電材料としては機知の材料であ
るチタン酸カルシウム系の磁器が用いられるのが一般的
になっている。Alumina, forsterite, steatite, etc. cannot satisfy all of these requirements. Therefore, recently, for heads using Mn--Zn ferrite, it has become common to use calcium titanate-based porcelain, which is a known material, as the dielectric material.
Mn −Znフェライトは磁器としては比較的熱膨張係
数が大きい材料であシ9組成比により若干異なるが、1
05〜1.15X10/℃の熱膨張係数を有している。Mn-Zn ferrite is a material with a relatively large thermal expansion coefficient for porcelain.9 Although it varies slightly depending on the composition ratio, 1
It has a coefficient of thermal expansion of 05-1.15X10/°C.
チタン酸カルシウム系の磁器は。Calcium titanate porcelain.
これに対応できる熱膨張係数を有する非磁性磁器であり
、かつ適度の加工性並びに耐磨耗性を具備していること
が見い出されたからである。This is because it has been found that it is a non-magnetic porcelain that has a coefficient of thermal expansion that can accommodate this, and has appropriate workability and wear resistance.
近年フロッピーディスク装置の高性能化がはかられるに
つれて、磁気ヘッドやその材料に対する要求値も次第に
厳しくなシ、研磨面のボイドに対する要求値も5μ以下
が標準となシつつある。As the performance of floppy disk drives has improved in recent years, the requirements for magnetic heads and their materials have become increasingly strict, and a requirement for voids on the polished surface of 5 μm or less is becoming the standard.
この要求に対してチタン酸カルシウム系磁器は通常の製
法では対応が困難になシワホットプレス法や熱間静水圧
プレス法(HIP)が用いられるようになった。これら
の高密度化の手法によシ研磨面のボイドは5μ以下を実
現できるように々っだが。In response to this demand, calcium titanate-based porcelain cannot be produced using normal manufacturing methods, so wrinkle hot pressing methods and hot isostatic pressing methods (HIP) have come to be used. By using these methods of increasing the density, it is possible to achieve voids on the polished surface of 5μ or less.
量産性や製造価格に問題がち9.巾広い応用がはばまれ
ている。Problems tend to arise with mass production and manufacturing costs9. A wide range of applications are impeded.
本発明の目的は通常の焼結手法ながら研磨面のボイドが
5μ以下になるよう々Cao −T + 02系の磁気
ヘッド用非磁性磁器組成物を提供するものである。The object of the present invention is to provide a non-magnetic ceramic composition for a Cao-T + 02 magnetic head, which can be produced using a conventional sintering method but has voids on the polished surface of 5 μm or less.
本発明は、 TiO249mo1% 〜65 mo1%
+CaO34mo1% 〜50 mo1%t Y2O
30,05mo7% 〜2.0 mol %の成分範囲
よシなり合計が100 mol係になる組成を有し、熱
膨張係数が1.0OX10/℃〜120X i O’/
1?:の範囲となることを特徴とする磁気ヘッド用非磁
性磁器組成物である。The present invention provides TiO249 mo1% to 65 mo1%
+CaO34mo1% ~50 mo1%t Y2O
It has a composition with an ingredient range of 30.05mol% to 2.0mol%, with a total of 100mol%, and a thermal expansion coefficient of 1.0OX10/℃ to 120XiO'/
1? This is a non-magnetic ceramic composition for a magnetic head, characterized in that the composition falls within the range of:
熱膨張係数はT iO2とCaOの比率でほぼ決る。た
だし、Y2O6の添加量でも若干異な5 、 Y2O3
の量が増大すると熱膨張係数は下がる。TiO2とCa
0O量を上記のように選んだのは、これらの量の範囲で
、 Mn −Znフェライトの熱膨張係数に対応した]
、0OX10/℃から]、 20 x 1.0 7℃の
範囲の熱膨張係が得られるからである。The coefficient of thermal expansion is approximately determined by the ratio of TiO2 and CaO. However, the amount of Y2O6 added is also slightly different5, Y2O3
As the amount of increases, the coefficient of thermal expansion decreases. TiO2 and Ca
The reason why the amount of 0O was selected as above is within the range of these amounts, which corresponds to the coefficient of thermal expansion of Mn-Zn ferrite]
, 0OX10/°C], a coefficient of thermal expansion in the range of 20 x 1.0 7°C is obtained.
Y2O3の添加は、焼結体の研磨面のボイドを小さくし
その量を減少するためのものである。The purpose of adding Y2O3 is to reduce the size and size of voids on the polished surface of the sintered body.
焼結体の研磨面のボイドの大きさ及び量は仮焼粉の粉砕
上シの粒径に反比例する。即ち粉砕が進行するにつれて
焼結密度は向上し、研磨面のボイドは同時に小さくなシ
かつその数は減少する。The size and amount of voids on the polished surface of the sintered body are inversely proportional to the particle size of the calcined powder. That is, as the grinding progresses, the sintered density improves, and the voids on the polished surface simultaneously become smaller and their number decreases.
ボイドの小さい焼結体を得るためには、いかに粒径の小
さい仮焼後の粉砕粉を得るかが最大のポイントである。In order to obtain a sintered body with small voids, the most important point is how to obtain a pulverized powder after calcining with a small particle size.
対策としては粉砕効率の増大をはかることである。仮焼
温度を下げることによシ仮焼上シ粉を軟かくすると、粉
砕効率が増しよシ小さい粒径の粉が得られるが、その場
合、原料の炭酸カルシウム(CaCOs )が充分分解
反応しないことがあり、焼結体の内部にガスが発生し巨
大ボイドを生ずる原因となる。The countermeasure is to increase the crushing efficiency. If the calcined powder is softened by lowering the calcining temperature, the grinding efficiency will increase and powder with a smaller particle size can be obtained, but in that case, the raw material calcium carbonate (CaCOs) will not undergo sufficient decomposition reaction. This may cause gas to be generated inside the sintered body, causing huge voids.
発明者はp CaO−TiO2系に種々の添加物を試み
た結果、Y2O3の適量の添加が仮焼時の反応を抑制し
CaCOsが充分分解反応する仮焼条件下でも軟い仮焼
粉が得られることを見い出した。さらにこれを湿式再粉
砕して得た粉末を成形、焼結して得られた磁器の研磨面
を調べた結果従来のCaO−T ] 02系で同一仮焼
、粉砕、焼結して得られた磁器に比してボイドが著しく
小さくかつその数が減少することを見い出した。Y2O
3の添加量の下限を0.05に、上限を2.0 mo1
%に限定したのは、 0.05motチ以下の添加量で
は上記説明の効果が得られないこと、また2、Omo7
%を越えると磁器の硬度が増し材質がもろくなシ加工性
が劣化するからである。As a result of trying various additives to the p-CaO-TiO2 system, the inventor found that the addition of an appropriate amount of Y2O3 suppresses the reaction during calcination, and a soft calcined powder can be obtained even under calcination conditions where CaCOs is sufficiently decomposed and reacted. I found out that it can be done. Furthermore, we investigated the polished surface of the porcelain obtained by wet re-pulverizing the powder, molding and sintering it, and found that it was obtained by the same calcining, crushing and sintering with the conventional CaO-T]02 system. It has been found that the voids are significantly smaller and the number of voids is reduced compared to that of porcelain. Y2O
The lower limit of the addition amount of 3 is 0.05, the upper limit is 2.0 mo1
The reason why it is limited to 0.05% is because the above-mentioned effect cannot be obtained if the amount added is less than 0.05%, and 2.
%, the hardness of the porcelain will increase, the material will become brittle, and its workability will deteriorate.
以下実施例をもって本発明の詳細な説明する。The present invention will be explained in detail below with reference to Examples.
T1021 CaCO3は純度99%以上の試薬を用い
た。For T1021 CaCO3, a reagent with a purity of 99% or higher was used.
また添加物としてのY2O3も純度99係以上の試薬を
用いた。表の組成になるように原料を配合しが一ルミル
で湿式混合した。乾燥後粉砕し1100℃から1200
℃の間で3時間仮焼した。仮焼粉は樹脂製の?−ルミル
を用いて20時間以上粉砕した。Further, as for Y2O3 as an additive, a reagent with a purity of 99 or higher was used. The raw materials were blended to have the composition shown in the table and wet mixed in a 1 lumen. After drying, pulverize from 1100℃ to 1200℃.
It was calcined for 3 hours at ℃. Is the calcined powder made of resin? - Pulverized for more than 20 hours using Lumil.
次に乾燥後バインダーを混合し1.0〜2. Ot/m
の間の圧力でプレス成形した。Next, after drying, mix the binder and mix the binder. Ot/m
Press molding was performed at a pressure between
焼結は1280℃から1340℃の間で大気中で行った
。得られた試料の密度及び熱膨張係数を測定しさらに研
磨面のがイド加工性を評価した。その結果を表に示した
。Sintering was performed in air between 1280°C and 1340°C. The density and thermal expansion coefficient of the obtained sample were measured, and the roughness of the polished surface was evaluated. The results are shown in the table.
以下余白
表において、実験試料Nα1〜5,6〜10゜1]〜1
5.16〜20.21〜25は、それぞれ+ Tt02
とCaOの配合比率が一定で、Y2O3の添加量を異に
する試料群である。In the margin table below, experimental samples Nα1~5, 6~10°1]~1
5.16-20.21-25 are +Tt02 respectively
This is a group of samples in which the mixing ratio of CaO and CaO is constant, and the amount of Y2O3 added is different.
熱膨張係数は+ TlO2とCaOの比率でほぼ決る。The coefficient of thermal expansion is approximately determined by the ratio of +TlO2 and CaO.
ただしY2O3の添加量でも若干異なシY2O3の量が
増大すると熱膨張係数は下がる。However, the amount of Y2O3 added is also slightly different; as the amount of Y2O3 increases, the coefficient of thermal expansion decreases.
Mn −Znフェライトを用いる磁気ヘッドの非磁性磁
器としては熱膨張係数は1.0OX10’/℃〜120
X10/℃が要求されこの値を満足できるT r 02
及びCaOの配合比率は、試料Nα1〜2oである。The thermal expansion coefficient of a non-magnetic porcelain for a magnetic head using Mn-Zn ferrite is 1.0OX10'/℃~120
X10/℃ is required and T r 02 that can satisfy this value
The mixing ratio of CaO and Samples Nα1 to 2o.
したがってTlO2とCaOの配合比は、それぞれ49
〜65mot係、34〜50mot%で良いことがわか
る。Therefore, the blending ratio of TlO2 and CaO is 49, respectively.
It can be seen that 34 to 50 mot% is sufficient for ~65 mot.
一方、Y2O3無添加の場合(試料N11l l 6
F 11.+i−6、21)と添加の場合(残シの試料
)とを比較すれば明かなように、研磨面ボイドの改善に
。On the other hand, in the case of no addition of Y2O3 (sample N11l l 6
F 11. +i-6, 21) and the case of addition (residue sample), it is clear that it improves the voids on the polished surface.
Y2O3の添加が有効である。その効果は0.05mo
A%でも認められる。またY2O3の量が増大して2
mo1%を越えると材質がもろくなシ加工性が劣る(試
料Nα5,10,15,20,25)。Addition of Y2O3 is effective. The effect is 0.05mo
Even A% is acceptable. Also, the amount of Y2O3 increases and 2
If mo exceeds 1%, the material becomes brittle and has poor workability (Samples Nα5, 10, 15, 20, 25).
上記実施例から明か々ように2本発明のTiO249〜
65motq6.CaO34〜50motチ、Y2O5
0,05〜2mot%の非磁性磁器組成物は、 Mn
−Znフェライトの熱膨張係数に相応した熱膨張係数を
有し、研磨面のボイドも小さく、加工性にも優れておシ
、従って磁気ヘッドにおける非磁性材料として最適であ
る。As is clear from the above examples, two TiO249~
65motq6. CaO34~50motchi, Y2O5
0.05-2 mot% non-magnetic ceramic composition contains Mn
-Zn has a coefficient of thermal expansion corresponding to that of ferrite, has small voids on the polished surface, and has excellent workability, making it ideal as a nonmagnetic material for magnetic heads.
Claims (1)
〜50motq6゜Y2O3o、 05〜2.0mo1
%の成分範囲より々シ合計が1、00 mo1%になる
組成物からなることを特徴とする磁気ヘッド用非磁性磁
器組成物。], Tie249~65mot%, Ca034
~50motq6゜Y2O3o, 05~2.0mo1
1. A nonmagnetic ceramic composition for a magnetic head, characterized in that the composition has a total of 1,00 mo1% over a range of components.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58075244A JPS59203770A (en) | 1983-04-28 | 1983-04-28 | Non-magnetic ceramic composition for magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58075244A JPS59203770A (en) | 1983-04-28 | 1983-04-28 | Non-magnetic ceramic composition for magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59203770A true JPS59203770A (en) | 1984-11-17 |
JPS6232153B2 JPS6232153B2 (en) | 1987-07-13 |
Family
ID=13570613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58075244A Granted JPS59203770A (en) | 1983-04-28 | 1983-04-28 | Non-magnetic ceramic composition for magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59203770A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63179371U (en) * | 1987-05-11 | 1988-11-21 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58185480A (en) * | 1982-04-21 | 1983-10-29 | 富士写真フイルム株式会社 | Sheet conveying electroconductivity |
-
1983
- 1983-04-28 JP JP58075244A patent/JPS59203770A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58185480A (en) * | 1982-04-21 | 1983-10-29 | 富士写真フイルム株式会社 | Sheet conveying electroconductivity |
Also Published As
Publication number | Publication date |
---|---|
JPS6232153B2 (en) | 1987-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59203770A (en) | Non-magnetic ceramic composition for magnetic head | |
JPS6021940B2 (en) | Non-magnetic ceramics for magnetic heads | |
JPS59203771A (en) | Non-magnetic ceramic composition for magnetic head | |
KR970004614B1 (en) | Non-magnetic ceramic substrate material of magnetic head | |
JPS6016860A (en) | Magnetic composition for magnetic head | |
JPS6140869A (en) | Ceramic composition for magnetic head reinforcement | |
JPS6029669B2 (en) | Non-magnetic ceramics for magnetic heads | |
JPS60103076A (en) | Ceramic composition for magnetic head | |
JPS63170257A (en) | Manufacture of al203-tic-sic base sintered body | |
JPS59146977A (en) | Non-magnetic ceramics for magnetic head | |
JPS63134559A (en) | Non-magnetic ceramics for magnetic head | |
JPS59213671A (en) | Non-magnetic ceramic for magnetic head | |
JPS62292672A (en) | Ceramic composition for magnetic head | |
JPS63170262A (en) | Manufacture of zr02-tic-sic base sintered body | |
JPS6222946B2 (en) | ||
JPH02243562A (en) | Nonmagnetic ceramic material for magnetic head | |
JPH059056A (en) | Ceramic substrate for magnetic head | |
JPS61158864A (en) | Ceramic sintered body for magnetic head and manufacture | |
JPS61132560A (en) | Polycrystal ferrite and magnetic head device using same | |
JPS6222947B2 (en) | ||
JPS59213670A (en) | Ceramic composition for magnetic head | |
JPH0577625B2 (en) | ||
JPS5888166A (en) | Magnetic head ceramic composition | |
JPH08208326A (en) | Nonmagnetic ceramic for magnetic head and production thereof | |
JPS59213672A (en) | Non-magnetic ceramics for magnetic head |