JPS6126559A - Manufacture of ceramics for high frequency insulating material - Google Patents

Manufacture of ceramics for high frequency insulating material

Info

Publication number
JPS6126559A
JPS6126559A JP14917484A JP14917484A JPS6126559A JP S6126559 A JPS6126559 A JP S6126559A JP 14917484 A JP14917484 A JP 14917484A JP 14917484 A JP14917484 A JP 14917484A JP S6126559 A JPS6126559 A JP S6126559A
Authority
JP
Japan
Prior art keywords
component
frequency insulating
insulating materials
firing
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14917484A
Other languages
Japanese (ja)
Inventor
萩原 宏
啓一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP14917484A priority Critical patent/JPS6126559A/en
Publication of JPS6126559A publication Critical patent/JPS6126559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は偽珪灰石(α−Cabin3)を用いた高周
波絶縁材料用セラミックスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing ceramics for high frequency insulating materials using pseudowollastonite (α-Cabin 3).

(従来の技術) 従来から高周波絶縁材料用セラミックスとしては、ステ
アタイト、フォルステライトおよびベリリアなどが知ら
れている。これらはそれぞれ絶縁材料として優れた特徴
があるが、高周波絶縁材料として最も重要な特性である
損失係数が大きいため、現実には一部で使用されている
だけである。
(Prior Art) Steatite, forsterite, beryllia, and the like have been known as ceramics for high-frequency insulating materials. Each of these has excellent characteristics as an insulating material, but in reality, they are only used in some cases because they have a large loss coefficient, which is the most important property for high-frequency insulating materials.

最近、高周波電子部品として特に集積回路セラミックス
基板として、従来以上の高性能のものが要求されるよう
になり、このため八β203を主原料としたものが主流
になっている。A℃203を主、原料とした絶縁材料は
、電気特性および機械的強度に優れているという長所を
持つが、反面それを製造する際の焼成温度が高く、また
焼結体の加工が困難であるという問題点がある。珪灰石
に関しては、1950年代にN、H,5nyder、W
Recently, high-frequency electronic components, especially integrated circuit ceramic substrates, have come to be required to have higher performance than ever before, and for this reason, products using 8β203 as the main raw material have become mainstream. Insulating materials made mainly from A℃203 have the advantage of excellent electrical properties and mechanical strength, but on the other hand, the firing temperature when manufacturing them is high, and processing of sintered bodies is difficult. There is a problem. Regarding wollastonite, in the 1950s N, H, 5nyder, W
.

M、Jacksonらによって高周波における損失係数
が極めて小さいことが指摘されて以来高周波絶縁材料と
して注目され、その種々な配合割合などが検討されてい
る。しかしながら、珪灰石を原料とするものにおいては
いずれの配合割合とした素地にあっても、吸水率が0.
1%以下の焼結体を変形なしで得るという製造技術がい
まだ充分確立されておらず、このため、高周波絶縁材料
用セラミックスの主原料としてはいまだ珪灰石が工業化
されていないのが現状である。
Since it was pointed out by M. Jackson et al. that the loss coefficient at high frequencies is extremely small, it has attracted attention as a high frequency insulating material, and various blending ratios have been studied. However, in products made from wollastonite, the water absorption rate is 0.0% regardless of the mixing ratio.
The manufacturing technology for obtaining sintered bodies of 1% or less without deformation has not yet been fully established, and for this reason wollastonite has not yet been industrialized as the main raw material for ceramics for high-frequency insulating materials. .

即ち、高周波絶縁材料の主原料として用いられる珪灰石
としては、低温型の珪灰石 (β−caSin3)がも
っばらで、高温型の偽珪灰石(α−cas i 03 
)が用いられるということはなかった。しかも低温型の
珪灰石(β−Cabins)を使用する場合でも製造時
の焼成過程において、高温型(α型)へ転移したときに
電気特性が低下するため、β型Jα型の転移温度である
1125℃以下で焼成しなければならず、しかも吸水率
も小さくしなければならないという制約があった。この
ために低温型(β型)の珪灰石を用いる場合は、媒酌剤
として例えば BaC0a  、  Pb(BO2)2
 、PbS t 03およびBi2O3を添加する必要
があった。しかしながら、低温型(β型)の珪灰石の場
合は、上記のごとき媒酌剤の添加によって焼成温度の低
下は図られても、この外に焼成温度の温度幅が最大でも
約±7℃と極端に狭く、焼結作業が困難で、生産上多大
の不良品の発生を余儀なくされていた。
That is, as wollastonite used as the main raw material for high-frequency insulating materials, low-temperature type wollastonite (β-caSin3) is the most common, and high-temperature type pseudowollastonite (α-cas i03) is the most common.
) was never used. Moreover, even when low-temperature type wollastonite (β-Cabins) is used, the electrical properties deteriorate when it transitions to a high-temperature type (α-type) during the firing process during manufacturing, so the transition temperature is lower than that of the β-Jα type. There were restrictions in that the firing had to be performed at 1125° C. or lower, and the water absorption rate had to be low. When low-temperature type (β type) wollastonite is used for this purpose, for example, BaC0a, Pb(BO2)2 is used as a moderating agent.
, PbS t 03 and Bi2O3 needed to be added. However, in the case of low-temperature type (β-type) wollastonite, even though the firing temperature can be lowered by adding the above-mentioned moderating agent, the temperature range of the firing temperature is at most about ±7°C. The extremely narrow space made sintering work difficult, resulting in a large number of defective products.

一方、高温型の偽珪灰石(α−Cagin3)を主原料
として用いる場合は出発原料を−たん完全に溶融し、氷
水中で急冷して得られるガラス状固形物を微粉砕後、成
形、焼成する方法が研究段階で知られていたく窯業協会
誌、 87 [9] 197’)。
On the other hand, when high-temperature type pseudowollastonite (α-Cagin 3) is used as the main raw material, the starting material is completely melted and rapidly cooled in ice water. Journal of the Ceramics Association, 87 [9] 197').

460〜467頁および同、 89[4] 1981.
165〜170頁)。しかしながらかかる方法は、16
50℃で完全に溶融したものを氷水中に入れるために工
業的には採用されえないものと考えられる。高周波絶縁
材料用セラミックスとしては、上記の製造上の問題とは
別に、製品として必要な電気特性の外、吸水率、焼成時
の変形の問題も満足するものでなければならないが、現
状では、これらの要求に必ずしも応えていないのが実状
である。
pp. 460-467 and same, 89[4] 1981.
165-170). However, such a method
It is considered that this method cannot be used industrially since it is completely melted at 50° C. and then placed in ice water. Ceramics for high-frequency insulating materials must satisfy the electrical properties necessary for the product, as well as water absorption and deformation during firing, in addition to the manufacturing issues mentioned above. The reality is that these demands are not always met.

(発明が解決しようとする問題点) この発明は偽珪灰石(α−CaSiO3)を原料として
電気特性ならびに物理特性の優れた高周波絶縁材料用セ
ラミックスを製造しようとしたものである。また、この
発明は製造工程における焼成温度の温度範囲を広げて高
周波絶縁材料用セラミックスの製造が容易に出来るよう
にしたものである。
(Problems to be Solved by the Invention) This invention attempts to produce ceramics for high-frequency insulating materials with excellent electrical and physical properties using pseudowollastonite (α-CaSiO3) as a raw material. Furthermore, the present invention widens the range of firing temperatures in the manufacturing process to facilitate the manufacture of ceramics for high-frequency insulating materials.

即ち、1為珪灰石(α−CaSiO3)を原料として誘
電特性、体積抵抗率といった電気特性に優れ、さらに吸
水率、曲げ強さといった物理特性も同時に満足させ、し
かも焼成温度範囲も大体100℃に拡げ、工業的製造を
可能にしようとするものである。
That is, using wollastonite (α-CaSiO3) as a raw material, it has excellent electrical properties such as dielectric properties and volume resistivity, and also satisfies physical properties such as water absorption and bending strength, and the firing temperature range is approximately 100°C. The aim is to expand the scope and make industrial manufacturing possible.

(問題点を解決するための手段) 本願の発明の第1は、10μばふるい残分を10%以下
まで微粉砕した偽珪灰石を加圧、成形して焼成すること
を特徴とし、またその第2は、上記第1の発明において
AffzOi成分、MgO成分。
(Means for Solving the Problems) The first aspect of the invention of the present application is characterized in that pseudowollastonite, which has been finely pulverized to 10% or less of the 10μ sieve residue, is pressurized, molded, and fired; The second is the AffzOi component and the MgO component in the first invention.

ZrO2成分、BaO成分、SrO成分の中から1種あ
るいは2種以上を添加含有させるものである。
One or more of ZrO2 components, BaO components, and SrO components are added and contained.

発明者らは、高周波絶縁材料用セラミックスの研究に当
たってまず原料の検討から行なった。即ち、高周波絶縁
材料用セラミックスとしては、従来低温型(β型)の珪
灰石が添加剤を用いて使用されていたが、本発明者は敢
えて高温型(α型)の偽珪灰石の使用を試みた。本発明
で用いた偽珪灰石(α−CaSiO3)は、石灰質原料
と珪酸質原料を混合し、成形、焼成して合成するが、そ
の合成品は高純度のものとする。即ち、Fe2O3、N
a2Oおよびに20の如き化学成分は電気特性に悪影響
を与えるため出来るだけ少なくし、純度90%以上、残
りの大部分が SiO2で、Fe2O3およびR20(
但し、RはNa、K)の合量が0.5%以下のものとす
るのがよい。
In researching ceramics for high-frequency insulating materials, the inventors first investigated raw materials. That is, although low-temperature type (β-type) wollastonite was conventionally used with additives as ceramics for high-frequency insulating materials, the present inventors dared to use high-temperature type (α-type) pseudowollastonite. I tried. The pseudowollastonite (α-CaSiO3) used in the present invention is synthesized by mixing a calcareous raw material and a silicate raw material, molding and firing, and the synthesized product is of high purity. That is, Fe2O3, N
Chemical components such as a2O and Ni20 adversely affect electrical properties, so they should be kept as low as possible, with a purity of 90% or more, with most of the remainder being SiO2, Fe2O3 and R20 (
However, the total amount of R (Na, K) is preferably 0.5% or less.

また、偽珪灰石合成時の未反応鉱物および中間生成鉱物
である遊離石灰、2CaO−8iO2あるいは3Ca0
・2SiO2鉱物は、湿式粉砕時粉砕性に悪影響を与え
たり、偽珪灰石またはその配合物の泥しようの性質に悪
影響を及ぼすため。
In addition, free lime, 2CaO-8iO2 or 3Ca0
・2SiO2 minerals have a negative effect on the grindability during wet grinding, and have a negative effect on the slurry properties of pseudowollastonite or its mixture.

これらを含まないものとする。そのため、純度の高い石
灰石、消石灰または生石灰と純度の高い非晶質シリカを
混合し、成形、焼成することによって偽珪灰石を合成す
る。
These shall not be included. Therefore, pseudowollastonite is synthesized by mixing highly pure limestone, slaked lime, or quicklime with highly pure amorphous silica, molding, and firing.

本発明者らは、上記の如き偽珪灰石くα−CaS+03
)を原料として高周波絶縁材料用セラミックスを製造す
る研究をしていた過程で、原料の偽珪灰石を微粉砕する
ことによって成形性が向上し、従来添加、配合が不可欠
とされていた粘土などの可塑剤を用いなくとも成形、焼
成が出来、しかもその際に焼成温度幅が大巾に拡幅され
るという事実を見出した。さらに得られた焼結体は緻密
で吸水率が0.1%以下となり、高周波(IMl2)に
おける損失係数も0.3%以下という優れたものとなる
ことを実験により確認した。
The present inventors have developed a pseudowollastonite α-CaS+03 as described above.
) was researched to produce ceramics for high-frequency insulating materials using raw material, and found that by finely pulverizing the raw material pseudowollastonite, the formability was improved, and clay and other materials, which had traditionally been considered indispensable to be added and blended, were discovered. It has been discovered that molding and firing can be performed without using a plasticizer, and that the firing temperature range can be widened. Furthermore, it was confirmed through experiments that the obtained sintered body was dense, had a water absorption rate of 0.1% or less, and had an excellent loss coefficient at high frequencies (IM12) of 0.3% or less.

実験例 副産非晶質シリカと石灰石とを混合、粉砕し、成形後回
転窯で焼成して第1表に示す化学組成の偽珪灰石(α−
CaS+03)を合成した。
Experimental Example By-product amorphous silica and limestone are mixed, crushed, molded, and fired in a rotary kiln to produce pseudowollastonite (α-
CaS+03) was synthesized.

第1表 ※ R20=Na20+に20 この原料単味を微粉砕、成形し、焼成して焼結体を得た
。この焼成に当って成形体の変形開始温度を、原料の1
0μmふるい残分(%)との関係で第1図(A)に示し
た。また、とれによって得られた焼結体の吸水率が0.
1%以下となる最低温を、同じく原料10μmふるい残
分(%)との関係で同図(B)に示した。
Table 1* R20=20 for Na20+ This raw material alone was finely pulverized, molded, and fired to obtain a sintered body. During this firing, the deformation start temperature of the compact is set to 1
The relationship with the 0 μm sieve residue (%) is shown in FIG. 1 (A). Moreover, the water absorption rate of the sintered body obtained by peeling is 0.
The lowest temperature at which the temperature becomes 1% or less is also shown in Figure (B) in relation to the raw material residue (%) after passing through a 10 μm sieve.

第1図から明らかなように、焼成時の成形体の変形開始
温度は、原料の10μmふるい残分(%)が増大するに
従って上っていくが、その割合はゆるやかである。これ
に対し、焼結体の吸水率が0.1%以下になる最低温度
は、原料の10μm−5・るい残分(%)が増大するに
従ってその焼成温度も高くなるが、その場合の焼成温度
は急激に高くなる。従って、焼成時の変形開始温度(A
)と焼結体の吸水率が0.1%以下になる最低温度(B
)の差は、同図一点鎖線(A−B)のようになる。
As is clear from FIG. 1, the deformation start temperature of the compact during firing increases as the 10 μm sieve residue (%) of the raw material increases, but the rate is gradual. On the other hand, the minimum temperature at which the water absorption rate of the sintered body becomes 0.1% or less is the firing temperature, which increases as the 10 μm-5. The temperature rises rapidly. Therefore, the deformation start temperature (A
) and the lowest temperature at which the water absorption rate of the sintered body becomes 0.1% or less (B
) is as shown by the dashed line (A-B) in the figure.

次に、第1図で示したもので用いたものと同様の原料偽
珪灰石(α−CaSiO3>を微粉砕後0.5t/ci
の成形圧で、ff115myx横100s+X高さ15
amの直方体に形成し、これを成形体の密度が0.1%
となるように、また焼成時の変形がないように、10μ
肌ふるい残分の割合により次の第2表で示゛す温度で焼
成した。
Next, raw material pseudowollastonite (α-CaSiO3) similar to that used in the one shown in Fig. 1 was finely pulverized and
With molding pressure, ff115myx width 100s+x height 15
am rectangular parallelepiped, and the density of the molded body is 0.1%.
and to avoid deformation during firing, 10μ
The materials were fired at the temperatures shown in Table 2 below, depending on the proportion of the skin sieve residue.

この焼結体について、これに用いた原料の10μmふる
い残分(%)と焼結体の曲げ強さくK9/cd>の関係
を第2図に示した。第2図によると、焼結体の曲げ強さ
を高周波絶縁材料として必要な曲げ強さ600に9/a
1以上とするためには、原料の10μmふるい残分を1
0%以下とすればよいことが判る。
Regarding this sintered body, the relationship between the 10 μm sieve residue (%) of the raw material used therein and the bending strength of the sintered body K9/cd> is shown in FIG. According to Figure 2, the bending strength of the sintered body is 9/a, which is 600, which is required as a high frequency insulating material.
In order to make it 1 or more, the 10 μm sieve residue of the raw material should be 1
It can be seen that it is sufficient to set it to 0% or less.

なお、このものの高周波(IMl(りにおける損失係数
はいづれも0.26%から0.27%の範囲のものであ
った。
Incidentally, the loss coefficients of these materials at high frequencies (IMl) were all in the range of 0.26% to 0.27%.

前述した第1図によっても明らかな如く、偽珪灰石の1
0μmふるい残分(%)を10%以下とすれば、焼成時
の変形開始温度と焼結体の吸水率が0.1%以下となる
最低温度との差を100℃以上とすることが出来ること
になる。従って、これと第2図に示した関係を総合すれ
ば、偽珪灰石(α−CaSiO3)を微粉砕して10μ
mふるい残分を10%以下とすることにより、焼結体の
変形がなく、しかも焼結体の吸水率も0.1%以下とな
り、また焼結体の曲げ強さは60089 / cd以上
となることが判る。さらにこの場合の焼成温度幅は10
0℃以上に出来、従来著しく狭かった焼成温度幅の問題
も一挙に解決出来るようになったことがわかる。
As is clear from the above-mentioned Figure 1, pseudowollastonite 1
If the 0μm sieve residue (%) is 10% or less, the difference between the deformation start temperature during firing and the lowest temperature at which the water absorption rate of the sintered body is 0.1% or less can be 100°C or more. It turns out. Therefore, if we combine this and the relationship shown in Figure 2, we can find that pseudowollastonite (α-CaSiO3) is finely pulverized to 10μ
By setting the m-sieve residue to 10% or less, there is no deformation of the sintered body, and the water absorption rate of the sintered body is also 0.1% or less, and the bending strength of the sintered body is 60089/cd or more. It turns out that it will happen. Furthermore, the firing temperature range in this case is 10
It can be seen that the problem of the firing temperature range, which was extremely narrow in the past, can now be solved in one fell swoop.

第3表は本発明による高周波絶縁材料用セラミックスと
従来品のそれとを、各原料配合割合とともに示し、その
製造時の焼成温度幅を対比して示したものである。
Table 3 shows the ceramics for high-frequency insulating materials according to the present invention and those of conventional products, together with the mixing ratio of each raw material, and compares the range of firing temperatures during their production.

これによってみても明らかなように、本発明方法による
と焼成幅は大きく拡大されていることがわかる。
As is clear from this, it can be seen that the firing width is greatly expanded by the method of the present invention.

上記した本発明は原料に偽珪灰石のみを用いたが、さら
にこの原料に別の添加剤を配合すると焼成温度が125
0〜1350℃と低くなったり、或いは焼結体の特性も
さらに向上されることが見出された。
The present invention described above uses only pseudowollastonite as the raw material, but if other additives are further added to this raw material, the firing temperature can be increased to 125
It has been found that the temperature can be lowered to 0 to 1350°C, and the properties of the sintered body can be further improved.

ここに用いる添加剤としては、Aμ203成分、MaO
成分、ZrO2成分、BaO成分、sr。
The additives used here include Aμ203 component, MaO
Ingredients, ZrO2 component, BaO component, sr.

成分であり、これらの1種または2種以上を用いる。こ
れらの成分は主に酸化物、水酸化物、炭酸塩、珪酸塩と
して添加される。その添加効果の1例を示す次の通りで
ある。 Aj2z 0!成分およびMgO成分を添加し
た場合、高周波における損失係数は余り向上しないが焼
成温度をさらに一層下げる効果がある。fcKお、Aj
2203成分とMgO成分とを添加する場合は、fvl
oO−Aβ203として添加すると焼成温度を下げる効
果が大きい。
One or more of these components are used. These components are mainly added as oxides, hydroxides, carbonates, and silicates. An example of the effect of its addition is as follows. Aj2z 0! When the MgO component and the MgO component are added, the loss coefficient at high frequencies does not improve much, but it has the effect of further lowering the firing temperature. fcK oh, Aj
When adding 2203 component and MgO component, fvl
When added as oO-Aβ203, it has a great effect of lowering the firing temperature.

ZrO2成分を添加すると曲げ強さが向上する。Addition of ZrO2 component improves bending strength.

これにBaO成分を答せて添加すると高周波における損
失係数が一層小さくなる。SrO成分の添加もBaO成
分添加と略同様な効果を期待することが出来る。これら
の添加剤の添加量は一律には規定出来ないが、偽珪灰石
100重量部に対し25重量部以下、好ましくは5・〜
15重量部の範囲で添加するのがよい。
If a BaO component is added to this, the loss coefficient at high frequencies becomes even smaller. Addition of the SrO component can also be expected to have substantially the same effect as the addition of the BaO component. Although the amount of these additives cannot be uniformly specified, it is 25 parts by weight or less, preferably 5 to 100 parts by weight of pseudowollastonite.
It is preferable to add in an amount of 15 parts by weight.

実施例 実験例に用いた偽珪灰石をアルミナ製ボットミルで微粉
砕して10μmふるい残分4.3%の粉末を得た。
EXAMPLE The pseudowollastonite used in the experimental example was pulverized in an alumina bot mill to obtain a powder with a 10 μm sieve residue of 4.3%.

これと+、1別に、AN203 、tVIgo、ZrO
2・S iOz 、BaC0a 、5rCOaの微粉の
特級試薬と、MqO・Δに1203は15μmふるい全
通の粉末を用意した。
Apart from this + and 1, AN203, tVIgo, ZrO
Special grade reagents of fine powder of 2.S iOz , BaC0a, and 5rCOa, and powder of MqO.Δ1203 passed through a 15 μm sieve were prepared.

上記の原料を用いて第4表に示す組成比率となるように
湿式混合したのち乾燥器中で乾燥し、次いで解砕した。
The above raw materials were wet-mixed so as to have the composition ratios shown in Table 4, dried in a drier, and then crushed.

これによって得られた粉末を用いて次のように成形した
。誘導率およびii誘導正接tanδ)測定用は直径3
0調、厚さ4mlの円板状に、体積抵抗測定′用は直径
60m、厚さ3朧の円板状に、また曲げ強さ測定用は縦
15胴×横100帆×高さ15mmの直方体状に0.5
t/cmの圧力で加圧成形した。この成形体を電気炉を
用いて第4表に示す温度で焼成した。誘導率、誘導正接
(tanδ)および体積抵抗率を測定するための電極と
しては、得られた焼結体に銀ペーストを焼きつけた。な
お表中の誘導率と誘導正接(tanδ)は1MHzで測
定し、曲げ強さは3点曲げ試験を行った。また体積抵抗
率は、500vの直流電圧を1分間印加して測定した。
The powder thus obtained was molded as follows. Diameter 3 for measurement of dielectric constant and ii dielectric tangent tan δ)
0 tone, 4 ml thick disk shape, 60 m diameter and 3 mm thick disk shape for volume resistance measurement, and 15 mm length x 100 width width x 15 mm height for measuring bending strength. 0.5 in the shape of a rectangular parallelepiped
Pressure molding was performed at a pressure of t/cm. This molded body was fired at the temperatures shown in Table 4 using an electric furnace. A silver paste was baked onto the obtained sintered body as an electrode for measuring the dielectric constant, the tangent of induction (tan δ), and the volume resistivity. Note that the inductivity and induction tangent (tan δ) in the table were measured at 1 MHz, and the bending strength was determined by a three-point bending test. Moreover, the volume resistivity was measured by applying a DC voltage of 500 V for 1 minute.

同表から明らかなように本発明になるセラミックスは、
いづれも高周波における損失係数が−小さく、また曲げ
強さも大きいことがわかる。
As is clear from the table, the ceramics of the present invention are:
It can be seen that both have a small loss coefficient at high frequencies and a large bending strength.

なお、表に示さなかったがいずれの焼結体も吸水率は0
.0%であった。
Although not shown in the table, the water absorption rate of each sintered body is 0.
.. It was 0%.

〔発明の効果〕〔Effect of the invention〕

本発明によると、偽珪灰石(α−Cagin3)単味を
用いて高周波における損失係数の小さな優れた絶縁材料
を得ることが出来るようになった。
According to the present invention, it has become possible to obtain an excellent insulating material with a small loss coefficient at high frequencies by using pseudowollastonite (α-Cagin3) alone.

しかもその製造時の焼成温度幅は、広がって100℃°
以上にもすることが出来るようになったので、製造が容
易となった。その他製品の曲げ強さも大で、かつ吸水率
も小さく、高周波絶縁材料として必要な条件を全て満足
出来るようになった。
Moreover, the firing temperature range during production has expanded to 100°C.
Since it has become possible to do the above, manufacturing has become easier. Other products have high bending strength and low water absorption, meeting all the requirements for high-frequency insulating materials.

さらに、添加剤を併用する第2の発明にあっては、高周
波における損失係数あるいは曲げ強さを更に向上する効
果を有する。
Furthermore, in the second invention, in which additives are used in combination, there is an effect of further improving the loss coefficient or bending strength at high frequencies.

【図面の簡単な説明】 第1図は、偽珪灰石粉末の10μmふるい残分(%)と
焼成温度との関係において、焼成時の変形開始温度(A
)、焼結体の吸水率が0.1%以下となる最低温度(B
)および(A−8)を示した線図、第2図は、偽珪灰石
粉末の10μmふるい残分(%)と得られた焼結1の曲
げ強さの関係を示した線図。
[Brief explanation of the drawings] Figure 1 shows the relationship between the 10 μm sieve residue (%) of pseudowollastonite powder and the firing temperature, and the deformation start temperature (A
), the lowest temperature at which the water absorption rate of the sintered body is 0.1% or less (B
) and (A-8), and FIG. 2 is a diagram showing the relationship between the 10 μm sieve residue (%) of the pseudowollastonite powder and the bending strength of the obtained sintered 1.

Claims (6)

【特許請求の範囲】[Claims] (1)10μmふるい残分を10%以下まで微粉砕した
偽珪灰石を加圧成形して焼成することを特徴とする高周
波絶縁材料用セラミックスの製造方法。
(1) A method for producing ceramics for high-frequency insulating materials, which comprises press-molding and firing pseudo-wollastonite, which has been finely ground to a level of 10% or less of 10 μm sieve residue.
(2)焼成温度を1300〜1400℃とする特許請求
の範囲第1項記載の高周波絶縁材料用セラミックスの製
造方法。
(2) The method for producing ceramics for high-frequency insulating materials according to claim 1, wherein the firing temperature is 1300 to 1400°C.
(3)10μmふるい残分を10%以下まで微粉砕した
偽珪灰石にAl_2O_3成分、MgO成分、ZrO_
2成分、BaO成分、SrO成分の中から1種あるいは
2種以上を添加含有させ、これを成形して焼成すること
を特徴とする高周波絶縁材料用セラミックスの製造方法
(3) Al_2O_3 component, MgO component, ZrO_
1. A method for producing ceramics for high-frequency insulating materials, which comprises adding one or more of two components, a BaO component, and a SrO component, and molding and firing the resulting mixture.
(4)焼成温度を1250〜1350℃とする特許請求
の範囲第3項記載の高周波絶縁材料用セラミックスの製
造方法。
(4) The method for producing ceramics for high-frequency insulating materials according to claim 3, wherein the firing temperature is 1250 to 1350°C.
(5)Al_2O_3、MgO成分としてMgO・Al
_2O_3を、ZrO_2成分としてZrO_2・Si
O_2を添加することを特徴とする特許請求の範囲第3
項記載の高周波絶縁材料用セラミックスの製造方法。
(5) Al_2O_3, MgO・Al as MgO component
_2O_3 as ZrO_2 component ZrO_2・Si
Claim 3 characterized in that O_2 is added.
A method for producing ceramics for high-frequency insulating materials as described in .
(6)ZrO_2成分としてZrO_2・SiO_2を
、BaO成分としてBaCO_3を複合添加することを
特徴とする特許請求の範囲第3項記載の高周波絶縁材料
用セラミックスの製造方法。
(6) The method for producing ceramics for high-frequency insulating materials according to claim 3, characterized in that ZrO_2.SiO_2 is added as a ZrO_2 component and BaCO_3 is added as a BaO component.
JP14917484A 1984-07-18 1984-07-18 Manufacture of ceramics for high frequency insulating material Pending JPS6126559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14917484A JPS6126559A (en) 1984-07-18 1984-07-18 Manufacture of ceramics for high frequency insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14917484A JPS6126559A (en) 1984-07-18 1984-07-18 Manufacture of ceramics for high frequency insulating material

Publications (1)

Publication Number Publication Date
JPS6126559A true JPS6126559A (en) 1986-02-05

Family

ID=15469413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14917484A Pending JPS6126559A (en) 1984-07-18 1984-07-18 Manufacture of ceramics for high frequency insulating material

Country Status (1)

Country Link
JP (1) JPS6126559A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140832A (en) * 1992-09-11 1994-05-20 Ngk Insulators Ltd Ceramic dielectric for antenna
US5420113A (en) * 1986-09-12 1995-05-30 Kyowa Hakko Kogyo Co., Ltd. [Leu13]motilin, DNAs coding for same and methods for producing same
US5695952A (en) * 1986-09-12 1997-12-09 Kyowa Hakko Kogyo Co., Ltd. Method for producing Leu13 !motilin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5420113A (en) * 1986-09-12 1995-05-30 Kyowa Hakko Kogyo Co., Ltd. [Leu13]motilin, DNAs coding for same and methods for producing same
US5695952A (en) * 1986-09-12 1997-12-09 Kyowa Hakko Kogyo Co., Ltd. Method for producing Leu13 !motilin
US5721353A (en) * 1986-09-12 1998-02-24 Kyowa Hakko Kogyo Co., Ltd. DNAs coding for LCU13 ! motilin
US6018037A (en) * 1986-09-12 2000-01-25 Kyowa Hakko Kogyo Co., Ltd DNA coding for (Leu13) motilin
JPH06140832A (en) * 1992-09-11 1994-05-20 Ngk Insulators Ltd Ceramic dielectric for antenna

Similar Documents

Publication Publication Date Title
US2565111A (en) Ceramic magnetic material with a small temperature coefficient
US2305327A (en) Ceramic material made of magnesium titanate and method of preparing the same
JP3865970B2 (en) Porcelain composition
JPS6126559A (en) Manufacture of ceramics for high frequency insulating material
US4939106A (en) Sintered ceramic body
US3627547A (en) High alumina bodies comprising anorthite gehlenite and spinel
JPS63107838A (en) Glass-ceramic sintered body
JP3393776B2 (en) Dielectric ceramic composition and dielectric resonator
US4792537A (en) Dielectric ceramic composition for high frequencies
JP2005272199A (en) Low temperature firing ceramic composition and method of manufacturing the same
JPH06333429A (en) Dielectric porcelain composition for high frequency
JP4534413B2 (en) Method for producing low dielectric constant porcelain composition for high frequency component
JP2005239446A (en) Porcelain composition and its manufacturing method
JPS6227373A (en) Dielectric ceramic
JPH08175864A (en) Production of low-temperature sintered anorthite-gehlenite ceramic
JPH0532343B2 (en)
JP3067814B2 (en) Dielectric porcelain composition
JP5354320B2 (en) Ceramic substrate and manufacturing method thereof
RU1782968C (en) Method for producing black ceramics
JP3225833B2 (en) High frequency dielectric composition
JPS6016861A (en) High alumina ceramic composition
JPS62283862A (en) Dielectric ceramic composition for microwave
SU1247370A1 (en) Charge for producing ceramic material
JPS60208007A (en) Microwave high dielectric constant dielectric porcelain composition
SU676096A1 (en) Ceramic material