JPS59202237A - Production of porous polymer membrane - Google Patents

Production of porous polymer membrane

Info

Publication number
JPS59202237A
JPS59202237A JP58075456A JP7545683A JPS59202237A JP S59202237 A JPS59202237 A JP S59202237A JP 58075456 A JP58075456 A JP 58075456A JP 7545683 A JP7545683 A JP 7545683A JP S59202237 A JPS59202237 A JP S59202237A
Authority
JP
Japan
Prior art keywords
membrane
solvent
manufacturing
solution
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58075456A
Other languages
Japanese (ja)
Inventor
Ichiro Tajima
田嶋 一郎
Yutaka Yamamoto
豊 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP58075456A priority Critical patent/JPS59202237A/en
Publication of JPS59202237A publication Critical patent/JPS59202237A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To produce a porous polymer membrane having a controlled pore structure, by forming a membrane from a dope prepared by dissolving a membrane-forming polymer in a specified solvent and controlling the period of time from the beginning of the membrane formation to the immersion in a soiidifying liquid. CONSTITUTION:A membrane having a desired shape is formed from a dope of a concentration of 10-40w/v%, obtained by dissolving a water-insoluble, membrane-forming polymer substance, e.g., acrylonitrile/styrene copolymer, in a solvent of a solubility parameter delta (J<1/2>.m<-3/2>) of 18-25, e.g., dimethyl-formamide. This membrane is left standing in an atmosphere at 0-30 deg.C so that log to is 0-5 (wherein t (sec) is the period of time from the beginning of the membrane formation to the immersion in a solidifying liquid), and is solidified by immersion in a solidifying liquid comprising an aqueous solution containing 20-40vol% solvent of delta>=25, e.g., dimethylformamide, and heat-treated by immersion in water at 60-90 deg.C to obtain a porous polymer membrane of a pore diameter of 100-5,000Angstrom .

Description

【発明の詳細な説明】 本発明杖濡式法によって高分子多孔質膜を形成する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a porous polymer membrane by a cane wetting method.

高分子化合物を素材とする多孔質膜は)Iv密密合過膜
限外瀞過膜、および逆浸透膜など、物質の分離機能膜と
して有効に使われてきている。
Porous membranes made of polymer compounds have been effectively used as membranes with a substance separation function, such as IV close-contact ultrafiltration membranes and reverse osmosis membranes.

また一方、気体および液体の分離栖能を有する薄膜の支
持膜、辿音膜あるいは又吸放湿膜などの利用も考えられ
、高分子多孔質膜の応用分野は極めて広い。高分子多孔
質lll1Jc中で高分子−溶媒−非溶媒の相分離を利
用して得た膜は、分離機能膜に機械的強度を持たせるた
めの支持膜として、また分離機能層とその分離物質に対
してほとんど抵抗のない透過門能層とが一体となった複
合B@(非対称I¥膜)として特に有効である。
On the other hand, the application of porous polymer membranes is extremely wide, as the use of thin supporting membranes, sound tracing membranes, or moisture absorption/desorption membranes having the ability to separate gas and liquid is also considered. The membrane obtained by utilizing the polymer-solvent-nonsolvent phase separation in the porous polymer lll1Jc can be used as a support membrane to give mechanical strength to the separation functional membrane, and also as a separation functional layer and its separated substance. It is particularly effective as a composite B@ (asymmetric I membrane) that is integrated with a permeable portal layer that has almost no resistance to the membrane.

しかしながら、このような相分離を利用した高分子多孔
質膜の作製においては、原液の部製、キャス壬イング条
件、固化液の選択、むよび膜の後処理などの因子が初雑
にi影響し、その製法の違いで得られる膜の構造と機能
が著しく変化するのが現状である。いかたる段階が膜の
多孔構造を決定するかについてはこれまで数多くの研究
がなされてきているが、その因果関係についての明確な
解答は示されていない。また、実際に有効に利用される
膜は経済的な観点からも満足され得るものでなければな
らない。
However, in the production of porous polymer membranes using such phase separation, factors such as the preparation of the stock solution, casting conditions, selection of solidification liquid, and post-treatment of the membrane have a rough influence. However, the current situation is that the structure and function of the membranes obtained vary significantly depending on the manufacturing method. Numerous studies have been conducted to date on what steps determine the porous structure of membranes, but no clear answer has been given regarding the causal relationship. In addition, a membrane that is actually effectively used must be satisfactory from an economic point of view.

従って、本発明の目的は、制御された多孔質構造を有す
る高分子多孔質膜の簡便で経済的な製法を提供すること
にある。
Therefore, an object of the present invention is to provide a simple and economical method for producing a porous polymer membrane having a controlled porous structure.

本発明の更に別の目的は、川下の記載から明らかであろ
う。
Further objects of the invention will be apparent from the description below.

本発明4等は、高分子−溶媒−非溶媒の相分離を利用す
る製膜法において、所定範囲の溶解度ノぐラメ−ターを
有する溶媒を使用し、膜形成直後から固化液への浸漬ま
での時間を制御することにより、制御された多孔質構造
を有する高分子膜カ得られることを見出し、本発明を完
成した。
The present invention 4 uses a solvent having a solubility parameter within a predetermined range in a film forming method that utilizes phase separation of polymer-solvent-non-solvent, from immediately after film formation until immersion in a solidifying liquid. The present invention was completed based on the discovery that a polymer membrane having a controlled porous structure can be obtained by controlling the time.

本発明の方法により得られる高分子多孔質膜の多孔質構
造は、原液溶媒が1に成皮膜の一方の面からのみ溶出し
た形状の指型構造、又は通常の連続気泡よりなるスポン
ジ型構造をとり、そして膜表面の空孔径が約51111
OAまでのafL囲に制御されていることを特徴とする
The porous structure of the porous polymer membrane obtained by the method of the present invention has a finger-shaped structure in which the stock solvent is eluted from only one side of the formed film, or a sponge-shaped structure consisting of normal open cells. and the pore size on the membrane surface is about 51111
It is characterized by being controlled within the afL range up to OA.

本発明による晶分子多孔ノa膜の製法は、膜形成、1.
6亦子q14.r を溶1fMj I□2.2□−ヶー
a (=J’ ”m ! )(J/%ル番づモル凝集エ
ネルギー、mレモルは分子容積を表わす)が187’r
いし邪の範囲にある溶媒に溶かし7て原液を4.q製す
る工程、該原液を用いて所望の形状の模をひく(形成す
る)工程、そしてイ54られた膜を固化液中に浸漬する
工程を含み、且つ膜形成Iv9>から得られた膣の固化
液浸漬までの時間t(秒)を10gtが0ないし5の・
Iイを囲で調整づ′Zこ七により多孔Si、構造を制御
することを特徴とす2へ。
The method for producing a crystalline molecular porous a-a membrane according to the present invention includes the following steps: 1.
6 亦子q14. When r is dissolved 1fMj I□2.2□-k-a (=J' ``m!) (J/% molar cohesive energy, mremol represents the molecular volume) is 187'r
Dissolve the stock solution in a solvent within the range of 7. A step of forming a desired shape using the stock solution, and a step of immersing the formed membrane in a solidifying solution, and the vagina obtained from membrane formation Iv9> The time t (seconds) until immersion in the solidified liquid of 10gt is 0 to 5.
To 2, the structure of the porous Si is controlled by adjusting I and Z.

L記高分子物%jとしては、溶解jWパラメータぞδが
18から5の範囲内にある溶媒に溶解し、しかも水(/
(1僧的に不溶性の高分子物紮が使用される。例えば酢
酸セルロース、硝酸セルロース、酢耐セルロース、ポリ
スチレン、ポリアクリニトリル、ホ゛リメチルメタクリ
レート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢
酸ビニル、ポリエチレンテレフタレート、およびそれら
の重合体を構成する単量体の共重合体等の有機高分子物
質が挙げられる。好ましい高分子物質はポリpり°リロ
ニトリルースチレン共重合体、塩化ビニル−酢酸ビニル
共重合体であり、特に好ましいのけポリアクリロニトリ
ル−スチレン共重合体である。
The polymeric substance %j of L is soluble in a solvent whose solubility jW parameter δ is in the range of 18 to 5, and water (/
(1) Insoluble polymers are used, such as cellulose acetate, cellulose nitrate, acetic acid-resistant cellulose, polystyrene, polyacrynitrile, polymethyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyethylene Examples include organic polymeric substances such as terephthalate and copolymers of monomers constituting these polymers. Preferred polymeric substances include polypropylene, rylonitrile, styrene copolymer, and vinyl chloride-vinyl acetate copolymer. Polyacrylonitrile-styrene copolymer is particularly preferred.

δが18表いし5の範囲にある溶媒としては、例えばジ
メチルホルムアミド(DMF)、ジメチルスルホキシド
、N−メチルピロリドン、3−エチルリン酸、ジメチル
アセトアミド、酢酸。
Examples of solvents in which δ is in the range of 18 to 5 include dimethylformamide (DMF), dimethylsulfoxide, N-methylpyrrolidone, 3-ethylphosphoric acid, dimethylacetamide, and acetic acid.

ジオキサン、乳酸エチル、アセトン、ギ醗エチル、プロ
ピレンオキシドおよびテトラヒドロピランなどの有機溶
媒が挙げられるが、好ましいのはジメチルホルムアミド
およびジメチルアセトアミドである。
Organic solvents such as dioxane, ethyl lactate, acetone, ethyl chloride, propylene oxide and tetrahydropyran may be mentioned, with dimethylformamide and dimethylacetamide being preferred.

δが18以下の溶媒は、その水溶性が低くなるために、
同化液を水又は水溶液とした本発明の方法に使用した場
合、多孔質膜が得られない。
Solvents with δ of 18 or less have low water solubility, so
When water or an aqueous solution is used in the method of the present invention as an assimilate liquid, a porous membrane cannot be obtained.

またδが25 Pl上の溶媒は、高分子の溶解性が低ド
するため本発明π−使用するのに適当でない。
Further, a solvent in which δ is 25 Pl is not suitable for use in the present invention because the solubility of the polymer is low.

)、 iI+41.[il:液の高分子4度けjI′i
7常10ないし40%(哨it/芥葦1 (W/V%)
の4へ囲に多・す、好ましく110〜:lal VV/
V%σJ也囲にある。高分子濃度が1(IW/V%より
低いと原液の粘咽が低すき゛て、膜をひいた場合、11
g形状を保持できない。一方40%(W/V)を越える
と高分子?7質が浣媒に十分に溶けないか、或いは溶け
ても帖1ψが高すぎて11弾をひくことが′起際上(ホ
)睡になる。乎た該4度は膜の表面層構造にも影′澱を
及ぼす。
), iI+41. [il: liquid polymer 4 times jI′i
7 always 10 to 40% (shuit/Akuashi 1 (W/V%)
4, preferably 110~:lal VV/
It is also within V%σJ. If the polymer concentration is lower than 1 (IW/V%), the viscosity of the stock solution will be low, and if a membrane is applied, 11
G-shape cannot be maintained. On the other hand, if it exceeds 40% (W/V), is it a polymer? Either the 7th substance is not sufficiently dissolved in the aqueous medium, or even if it is dissolved, the 1ψ is too high and the 11th bullet cannot be drawn. This 4 degree also affects the structure of the surface layer of the film.

膜形成直後から得られた膜を粘1化液中に浸漬するまで
の放置時間t(秒)を窒化させることにより、膜のti
lt造を著しく変化させることができる。多孔質膜を得
るなめに岐log tけ:中宮0ないし5.好ましくは
0〜35.更に好ましくけ0〜3.0である。特に20
0μm1以Fの嘆の場合けlogtを0ないし3.5の
範囲内で制御するのが好ましい。まなこの時間tけ、原
液の鼾・■に使用した溶媒のδ値によってもその最適l
og を値が賓る。
The film's ti
The structure can be changed significantly. To obtain a porous membrane, the logarithm is: Nakamiya 0 to 5. Preferably 0-35. More preferably, it is 0 to 3.0. Especially 20
In the case of less than 0 μm1 F, it is preferable to control logt within the range of 0 to 3.5. Depending on the time taken and the δ value of the solvent used for the stock solution, the optimum l
The value is given to og.

例えばδが18ないし21の溶媒を用いた場合は、Jo
g tが口ないし3.0.特に0ないし2,0.の間で
スポンジ型構造の多孔質膜が得られるが、lagtが3
.0を越えると均質膜になる。一方、δが21ないし5
の溶媒を用いた場合に岐、log tが0ないし3.0
で指南構造の多孔質膜が得られ、そしてA!og tが
3.0ないし3゜5でスポンジ型構造の多孔質膜が得ら
れる。
For example, when using a solvent with δ of 18 to 21, Jo
g t is mouth or 3.0. Especially 0 to 2,0. A porous membrane with a sponge-like structure is obtained between
.. When it exceeds 0, it becomes a homogeneous film. On the other hand, δ is 21 to 5
When using a solvent of
A porous membrane with a guiding structure is obtained, and A! When og t is 3.0 to 3.5, a porous membrane with a sponge-like structure can be obtained.

以上の原液の41膜形成および同化液中への浸漬までの
放置は、温度および湿度をほぼ一定に保持した雰囲気中
で行うのが好ましい。温度岐通常0°〜30°Cの周囲
温度であり、湿度については特に限定されない。
It is preferable that the formation of the 41 film of the above-mentioned stock solution and the leaving until immersion in the assimilation solution are carried out in an atmosphere in which the temperature and humidity are kept substantially constant. The temperature range is usually an ambient temperature of 0° to 30°C, and the humidity is not particularly limited.

一定時間放置することにより、溶媒は時間と共に蒸発す
る。この膜を次に固化液に浸漬することによりゲル化さ
せる。
By standing for a certain period of time, the solvent evaporates over time. This membrane is then gelled by immersing it in a solidifying solution.

同化液としては、例えば水;ジメチルホルムアミド水溶
液等、前記原液に用いた溶媒の水溶液;およびアルコー
ル水溶液等のδが5以上の溶媒の水溶液、即ち、使用し
た高分子物質を溶解せず、一方原液に用いた溶媒を溶1
1Fする溶媒、溶I$:混合物又は溶液が用いられる。
Examples of the assimilation liquid include water; an aqueous solution of the solvent used in the stock solution, such as an aqueous dimethylformamide solution; and an aqueous solution of a solvent with a δ of 5 or more, such as an aqueous alcohol solution; Dissolve the solvent used in
1F solvent, solution I$: A mixture or solution is used.

好ましいのは原液に用いた溶媒又は溶媒混合物の水溶液
である。固化液中の原液溶媒の1八度を0′frいし4
0容ににの範囲内、好ましく岐加ないし40芥量にの範
囲内の一定O度に保持することにより、膜表面の空孔の
大食さを制御することができる。
Preferred is an aqueous solution of the solvent or solvent mixture used in the stock solution. 18 degrees of the stock solvent in the solidified solution is 0'fr to 4
By maintaining the O degree at a constant value within the range of 0 volume, preferably within the range of 0 to 40 volumes, it is possible to control the degree of occlusion of pores on the membrane surface.

s> IQをΔ)kいし40芥量%のIRII囲内で調
節することにより、膜表面の空孔径を100ないし50
(1(IAの範囲内に制御でへ、一方該溶媒濃度を加容
量πまでにすると、膜表面層り直径100A以Fの空孔
を有する緻密層になる。固化液温!(は常yl!でよい
。同化液浸消時間は高分子物質の枇類、膜厚、同化液の
軸傾および温度等によるが、通常11.1−(イ)分で
ある。
s> By adjusting IQ within the range of Δ)k to 40% IRII, the pore diameter on the membrane surface can be adjusted from 100 to 50%.
(1) When the solvent concentration is controlled within the range of IA and the added volume is increased to π, the membrane surface layer becomes a dense layer having pores with a diameter of 100 A or more. The assimilation liquid immersion time depends on the class of the polymer material, the film thickness, the axial tilt of the assimilation liquid, the temperature, etc., but is usually 11.1-(a) minutes.

このようにして固化した1草を次に、所望により6()
0ないし90°C9好圭しくけ約70°Cの水に数分間
浸−F熱処叩、むよび/又けδが約25以りの溶媒(例
えばエタノール、メタノール、肝酸’りに数分間浸す薬
品処理に付すことにより、膜形状を固定しそして/又は
膜の物質透過性を向上させることもできる。
Next, the 1 grass solidified in this way is added to 6 () if desired.
0 to 90°C 90° C The membrane shape can also be fixed and/or the substance permeability of the membrane can be improved by subjecting it to a chemical treatment in which the membrane is soaked for minutes.

次に本発明を、実施例をもって財に詳しく説明する。Next, the present invention will be explained in detail using examples.

実施例1:温昨15°C9湿度50笈の雰囲気中で、ア
クリロニトリル−スチレン共重合体(旭ダび20.4で
あるテトラヒドロフラン、ギ酸エチル、アセトンおよび
ジオキサンに、それぞれ高分子?農度加%(W/V)で
溶かして原液を調製し、平らなガラス板上に流延させて
膜をひいた。膜をひきおわった直後から固化液(水)に
膜を浸漬するまでの時間(尤’、  5ec)をlog
tが0から3.5の範囲で調節した後、膜を15°0の
水中に60分間浸漬した。その後固化した膜をガラス板
上に固定し、70°Cの水中に10分間浸漬した。この
膜の多孔質構造を走査型電子顕微鏡で観察しな。log
tが0から3.0の間でスポンジ型の多孔質11位が得
られた。10g tにより膜の多孔竹虜造は変化した。
Example 1: Acrylonitrile-styrene copolymer (Asahi Dabi 20.4) was added to tetrahydrofuran, ethyl formate, acetone, and dioxane in an atmosphere with a temperature of 15°C and a humidity of 50℃, respectively. (W/V) to prepare a stock solution and cast it on a flat glass plate to form a film. ', 5ec)
After adjusting t in the range of 0 to 3.5, the membrane was immersed in water at 15°0 for 60 minutes. Thereafter, the solidified membrane was fixed on a glass plate and immersed in water at 70°C for 10 minutes. Observe the porous structure of this membrane using a scanning electron microscope. log
When t was between 0 and 3.0, a sponge-like porous 11th layer was obtained. The porous bamboo structure of the membrane changed with 10 g of t.

log tが30以ヒでは透明な均質膜になった。When log t was 30 or more, a transparent homogeneous film was obtained.

実施例2:溶媒としてδがそれぞれ22.0および24
7であるジメチルアセトアミドむよびジメチルホルムア
ミドを用いる1又外は実施例1と同様にしてル!l嘆し
た。logtが0から3.0の間では指南の多孔a膜が
得られた。10g tが3.0から3.5の間でけスホ
”ンジ博の多孔質膜が作製でt!た。logtが35以
Eの場合は、ガラス板りのところどころで高分子が凝隼
し、膜の形状は得られなかったo 10g t Kより
膜の多孔質構造は著しく変化した。
Example 2: δ of 22.0 and 24 as solvent, respectively
7 in the same manner as in Example 1 except that dimethylacetamide and dimethylformamide were used. I lamented. When logt was between 0 and 3.0, a porous a-film was obtained. 10g When t was between 3.0 and 3.5, the porous membrane of Kesuhonjihiro was fabricated.If logt was 35 or more, polymers were precipitated in some places on the glass plate. , the porous structure of the membrane changed significantly from 10 g t K, although the shape of the membrane was not obtained.

@1図に、実1稲例1および2で作製した高分子多孔質
−均質膜の相図を示す。第11図中、DME!’ニジメ
チルホルムfミド、 DMAニジメチルアセトアミド、
  13(JXニジオキサン、AT:アセトン、gF:
ギ酸エチル、  THF:テトラヒドリフランを表わす
Figure @1 shows the phase diagram of the polymer porous-homogeneous membranes prepared in Rice Examples 1 and 2. In Figure 11, DME! 'Ni-dimethylformamide, DMA n-dimethylacetamide,
13 (JX Nidioxane, AT: Acetone, gF:
Ethyl formate, THF: represents tetrahydrofuran.

第2図に、実施例1および2で原液の溶媒としてジオキ
サン(IX)X)又はジメチルホルムアミド(DMF)
を使用して作製した旨分子膜の代表的多孔質構造の走査
型電子顕微鏡写真を示す。第2図中、写真AI、 A2
. BIQよびB2けそれぞれ第1図のグラフに示した
膜試料AI、 A2゜B1およびB2の顕子顕@鏡写真
である。
Figure 2 shows that dioxane (IX) or dimethylformamide (DMF) was used as the solvent for the stock solution in Examples 1 and 2.
A scanning electron micrograph of a typical porous structure of a molecular membrane prepared using the method is shown. In Figure 2, photo AI, A2
.. BIQ and B2 are micrographs of membrane samples AI, A2, B1 and B2 shown in the graph of FIG. 1, respectively.

実を載例3:実施例1で使用したと同じアクリロニトリ
ル−スチレン共重合体と、溶媒としてジメチルホルムア
ミドとを用いて4度10.15゜および加%(W/V)
の原液を声製し、ilogtを0として41.114例
2と同様の方法により製膜した。いずれの1度でも折型
多孔質膜が得られたが、膜の表面層は、原液の4度変化
により異なった。
Example 3: Using the same acrylonitrile-styrene copolymer used in Example 1 and dimethylformamide as a solvent, the temperature was 4 times 10.15° and % (W/V)
A film was formed using the same method as in Example 2 with ilogt set to 0. A folded porous membrane was obtained in each case, but the surface layer of the membrane was different depending on the 4 degree change in the stock solution.

印、3図に得られた折型多孔質膜の構造を示す。表面層
は膜の表側(同化液に接した側)および裏側(ガラス板
に接した側)で異なっていた。濃度lO%の原液を用い
た膜の表面層重、表側で直径100〜H100Aの細長
い空孔を有し、鐸側では1〜2μmの1ft径の空孔を
仔していた。”/’%度肋%の原液を用いた場合は、膜
の表面層は緻密層となっていた0 実鴫例4:実施例1で使用したものと同じアクリロニト
リル−スチレン共・代合体と溶媒としてジメチルホルム
アミドとを用い、濃度が10および九%の原液から、ジ
メチルホルムアミドを21)および40%(V/V)含
む水溶液を同化液と12.10g tを0として実施例
2と同様(7’+方法により製膜した。膜内部は指)W
多孔a構造であったが、膿の表面層、原液の筒分子、:
′1度および同化液の溶媒4度により変化した。
Figure 3 shows the structure of the folded porous membrane obtained. The surface layer was different on the front side of the membrane (the side in contact with the assimilate fluid) and the back side (the side in contact with the glass plate). The surface layer of the membrane using the stock solution with a concentration of 10% had elongated pores with a diameter of 100 to 100 mm on the front side, and pores with a diameter of 1 ft of 1 to 2 μm on the side. When using a stock solution with a concentration of '/'%, the surface layer of the membrane was a dense layer.Actual Example 4: The same acrylonitrile-styrene co-component and solvent used in Example 1. Using dimethylformamide as an assimilate solution, 12.10 g of an aqueous solution containing dimethylformamide at a concentration of 21) and 40% (V/V) was prepared from the stock solution with a concentration of 10 and 9%. The film was formed by the '+ method.The inside of the film is a finger)W
Although it had a porous a structure, the surface layer of pus, the cylindrical molecules of the undiluted solution,
'1 degree and the solvent of the assimilate solution changed by 4 degrees.

第4図および第5図に原液の高分子4度およびVil化
液の溶媒濃度による膜表1ri′i(夫々表側および裏
側)の変化を、代表的な膜の電子顕微鏡表面互真で示す
。原液の高分子4度を10から2)%、固化液の原液溶
媒濃度を加から40%の範囲で胛部すれば、膜表面、特
に表側の空孔を1曲から5 n(1flAの範囲で制御
することがで良る。原液の高分子−5!%変は、0から
40%までならば高分子多孔質構造σ)制mt−を可f
4詫であるが、40%以上になると、極めて粘稠に原液
となり、膜をひくことは困秤であった0実施例5:実施
例2で原液溶媒としてジメチルホルムアミドを使用して
作製した多孔質膜の気体透過性を、この例で測定した。
FIGS. 4 and 5 show changes in the membrane surface 1ri'i (the front side and the back side, respectively) depending on the polymer 4 degree of the stock solution and the solvent concentration of the villization solution, as shown by electron microscope surface images of typical membranes. If the polymer concentration of the stock solution is varied from 10% to 2% and the solidified solution solvent concentration is varied from 1% to 40%, the pores on the membrane surface, especially on the front side, can be reduced from 1 to 5n (1 flA). It is possible to control the polymer porous structure σ) by controlling the polymer porous structure σ) if the polymer in the stock solution changes by -5!% from 0 to 40%.
However, when the concentration exceeds 40%, the solution becomes extremely viscous, making it difficult to form a membrane.Example 5: The porous solution prepared in Example 2 using dimethylformamide as the solution solvent The gas permeability of the membrane was measured in this example.

その結果を表1に示す0指型多孔質膜の気体透過速度は
、スポンジ型多孔質喚のそれに比べて小さかっな0原液
高分子10度加%の場合における折型多孔質膜は表面に
緻密層を有し、この緻密層は、膜の表側と裏側に存在し
た。裏側のm密層を除去した膜の気体透過速度は、除去
する前のそれに比べて大きくなった。折型多孔質膜の緻
密層を除去せずに膜をδが届であるエタノール中にlO
分間浸した。エタノール処理した膜の気体透過速度はエ
タノール処理する前のそれに比べて著しく大きくたった
The results are shown in Table 1. The gas permeation rate of the finger-shaped porous membrane is smaller than that of the sponge-type porous membrane. This dense layer was present on the front and back sides of the membrane. The gas permeation rate of the membrane from which the m-dense layer on the back side was removed was greater than that before removal. Without removing the dense layer of the folded porous membrane, the membrane was immersed in ethanol with δ reaching 1O.
Soaked for minutes. The gas permeation rate of the membrane treated with ethanol was significantly higher than that before treatment with ethanol.

エタノール処理することでm密層に含まれている高分子
物質中の炭化水素類たきえばスチレン誘導体および添加
剤寿どが除去されたことが膜の’er Jけ分析結果か
ら確認できた。
It was confirmed from the 'er J analysis results of the membrane that the ethanol treatment removed the hydrocarbons, styrene derivatives, and additives contained in the polymeric substance contained in the m-dense layer.

多孔質構造を制御した本発明の方法により得られる高分
子多孔質膜は、表面空孔がHIOA径以下の膜で#i気
体分離膜、逆浸透膜および除湿膜等に利用でき、一方表
面空孔がIC)0〜5 (10DA径の膜では精密瀞過
膜および限外d−過膜に応用できるOlた本発明による
脇は、分離i鏡層の支持膜として、或いは分離櫻能層と
透過機能層とが一体となった複合膜としても使用できる
The porous polymer membrane obtained by the method of the present invention with a controlled porous structure has surface pores with a diameter smaller than HIOA and can be used for #i gas separation membranes, reverse osmosis membranes, dehumidification membranes, etc. The membrane according to the present invention can be used as a support membrane for a separation mirror layer or as a separation layer. It can also be used as a composite membrane integrated with a permeable functional layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1因は、実施例1〜2で作製した高分子多孔質−均質
膜の相図、 第2図吋、実施例1〜2で作製した代表的高分子多孔質
膜の走査型電子顕微鏡写真、第3図吋、実権例3で作製
した指型多孔質膜の種々の原液高分子4度(10s(、
%15%およびw%)によるM構造の変化を示す走査型
電子顕微鏡写真、そして 第4図セよび第5図は、実施例4で作製した高分子折型
多孔質膜のそれぞれ表側および裏側の表面の走査型電子
顕微鏡写真である。
The first factor is the phase diagram of the porous polymer membrane-homogeneous membrane prepared in Examples 1 and 2. , FIG.
%15% and w%), and Figures 4 and 5 show the front and back sides of the folded polymer porous membrane prepared in Example 4, respectively. This is a scanning electron micrograph of the surface.

Claims (8)

【特許請求の範囲】[Claims] (1)膜形成用高分子物質を溶解度パラメータδユ、−
5 (J2 mz)が18ないしδのlll1囲にある溶媒
に溶かした原液を胛製し、該原液を用いて所望の形状の
膜を形成し、そして得られた襖を固化液中に浸漬する工
程を含み、且つ膜形成直後から得られた膜の同化液浸漬
までの時間t(秒)を7ogtが()ないし5の範囲内
で調整することにより膜の多孔質惜造を制御する仁とを
特徴とする、筒分子多孔)J!、嘆の製法。
(1) Solubility parameter δu, −
5 (J2 mz) is prepared by dissolving it in a solvent in the range of 18 to δ, forming a film of the desired shape using the stock solution, and immersing the obtained sliding door in the solidifying solution. process, and controls the porous structure of the membrane by adjusting the time t (seconds) from immediately after membrane formation to immersion of the obtained membrane in the assimilated liquid within the range of 7ogt ( ) to 5. Cylindrical molecular porous) J! , The manufacturing method of grief.
(2)前記原液の高分子濃度が10 Yrいし40%(
改に/各社)のIIQ囲にある特許請求の範囲第1項記
載の製法。
(2) The polymer concentration of the stock solution is 10 Yr and 40% (
The manufacturing method according to claim 1, which is listed in IIQ of the following patent claims.
(3)  前記固化液中の原液溶媒痛度が40%(容量
/容量)までである特許請求の範囲第1頃又は笛2項記
載の製法。
(3) The manufacturing method according to claim 1 or 2, wherein the solidification solution has a solvent strength of up to 40% (volume/volume).
(4)  前記原液の高分子^瞳を10ないし2)にと
しそして前記固化液の前記溶媒濃度を加ないし40%と
して、膜表面の空孔径を11)OA 7Ir−いし50
011Aの範囲に制御する特許請求の範囲第1項ないし
第3項のいずれか1項に記載の製法。
(4) Set the polymer diameter of the stock solution to 10 to 2), set the solvent concentration of the solidified solution to 40%, and set the pore diameter on the membrane surface to 11) OA 7Ir-50.
The manufacturing method according to any one of claims 1 to 3, wherein the manufacturing method is controlled within the range of 011A.
(5)各工程を、温度お、よび湿度を実質的に一定に保
持した雰囲気中で実施する特許請求の範囲第1項寿いし
第4項のいずれか1項記載の製法。
(5) The manufacturing method according to any one of claims 1 to 4, wherein each step is carried out in an atmosphere where the temperature and humidity are kept substantially constant.
(6)  膜を固化液浸漬後、60ないし90 ’ 0
の?I@餅の一定温度の水中に浸漬する熱処理工程に付
す特許請求の範囲第1項ないし第5項のいずれか1項記
載の製法。
(6) After immersing the membrane in the solidifying solution, the temperature is 60 to 90'0.
of? The manufacturing method according to any one of claims 1 to 5, which involves a heat treatment step of immersing I@mochi in water at a constant temperature.
(7)膜を固化液浸漬後、δが25以上の溶媒に浸漬す
る薬品処理に付す特許請求の範囲第1項ないし第6項の
いずれか1項記載の製法。
(7) The manufacturing method according to any one of claims 1 to 6, wherein the membrane is immersed in a solidifying liquid and then subjected to a chemical treatment in which δ is immersed in a solvent of 25 or more.
(8)  高分子物質がアクリロニトリル−スチレン共
重合体である特許請求の範囲第1ないし第7項のいずれ
か1項記載の製法。
(8) The method according to any one of claims 1 to 7, wherein the polymeric substance is an acrylonitrile-styrene copolymer.
JP58075456A 1983-04-28 1983-04-28 Production of porous polymer membrane Pending JPS59202237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58075456A JPS59202237A (en) 1983-04-28 1983-04-28 Production of porous polymer membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58075456A JPS59202237A (en) 1983-04-28 1983-04-28 Production of porous polymer membrane

Publications (1)

Publication Number Publication Date
JPS59202237A true JPS59202237A (en) 1984-11-16

Family

ID=13576803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58075456A Pending JPS59202237A (en) 1983-04-28 1983-04-28 Production of porous polymer membrane

Country Status (1)

Country Link
JP (1) JPS59202237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132415A (en) * 2006-11-28 2008-06-12 Niigata Univ Filter membrane and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008132415A (en) * 2006-11-28 2008-06-12 Niigata Univ Filter membrane and its manufacturing method
JP4710018B2 (en) * 2006-11-28 2011-06-29 国立大学法人 新潟大学 Filtration membrane and method for producing the same

Similar Documents

Publication Publication Date Title
US4933081A (en) Asymmetric micro-porous membrane containing a layer of minimum size pores below the surface thereof
US3884801A (en) Preparation of reverse osmosis membranes by complete evaporation of the solvent system
JPH057047B2 (en)
JPH02302449A (en) Preparation of microporous film
JPS5891732A (en) Porous polyvinylidene fluoride resin membrane and preparation thereof
JP3499993B2 (en) Method for producing porous membrane and porous membrane
JPS62115043A (en) Production of porous membrane
US4869857A (en) Process for producing porous membranes
KR20010078245A (en) Hollow fiber membrane and process for producing the same
JPH06862B2 (en) Microporous membrane manufacturing method
JPS59202237A (en) Production of porous polymer membrane
JPH0278425A (en) Hydrophilic and dryable semipermeable membrane based on polyvinylidene fluoride
JP2004105804A (en) Polysulfone microporous membrane and its manufacturing method
JP3169404B2 (en) Method for producing semipermeable membrane with high water permeability
JPS63141607A (en) Microporous membrane
JPS5836617A (en) Manufacture of film for separating gas
JPS59304A (en) Fpreparation of separation membrane
JPS63141610A (en) Production of microporous membrane
TWI661862B (en) Modified polyether 碸 microporous membrane and preparation method thereof
JPS59173105A (en) Polysulfone semipermeable membrane
JPS5819339A (en) Membrane of a mixture composed of cellulose ester and silica and production thereof
JPS5980305A (en) Preparation of ultrafiltration membrane
JPS5959207A (en) Permselective membrane and preparation thereof
JPS5830308A (en) Cellulose ester permeable membrane and its production
JPS6249911A (en) Production of aromatic polysulfone hollow yarn membrane