JP2008132415A - Filter membrane and its manufacturing method - Google Patents

Filter membrane and its manufacturing method Download PDF

Info

Publication number
JP2008132415A
JP2008132415A JP2006319678A JP2006319678A JP2008132415A JP 2008132415 A JP2008132415 A JP 2008132415A JP 2006319678 A JP2006319678 A JP 2006319678A JP 2006319678 A JP2006319678 A JP 2006319678A JP 2008132415 A JP2008132415 A JP 2008132415A
Authority
JP
Japan
Prior art keywords
solvent
polybutylene succinate
filtration
filtration membrane
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006319678A
Other languages
Japanese (ja)
Other versions
JP4710018B2 (en
Inventor
Takaaki Tanaka
孝明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
Original Assignee
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC filed Critical Niigata University NUC
Priority to JP2006319678A priority Critical patent/JP4710018B2/en
Publication of JP2008132415A publication Critical patent/JP2008132415A/en
Application granted granted Critical
Publication of JP4710018B2 publication Critical patent/JP4710018B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biodegradable new filter membrane capable of blocking particles of about 1 μm and having high heat resistance, and its manufacturing method. <P>SOLUTION: This filter membrane is formed by dipping a thin membrane of a polybutylene succinate solution obtained by dissolving polybutylene succinate in a solvent into a non-solvent of polybutylene succinate. Preferably the solvent is chloroform and the non-solvent is methanol. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、食品産業、医薬品産業、化粧品産業などにおいて微生物や微生物、植物、動物由来の破片を除去するために用いられる濾過膜及びその製造方法に関する。   The present invention relates to a filtration membrane used for removing microorganisms, microorganisms, plants, and animal-derived debris in the food industry, pharmaceutical industry, cosmetics industry, and the like, and a method for producing the same.

現在、食品産業、医薬品産業、化粧品産業などの濾過工程においては、菌体や細胞の破片、高分子凝集物など、柔らかく圧縮性の高い粒子を除去、回収必要があり、濾過助剤を用いる濾過、セラミック濾過膜を用いた濾過、及び合成高分子膜を用いた濾過が用いられている。   Currently, in filtration processes in the food industry, pharmaceutical industry, cosmetics industry, etc., it is necessary to remove and recover soft and highly compressible particles such as bacterial cells, cell debris, and polymer aggregates. Filtration using a filter aid Filtration using a ceramic filtration membrane and filtration using a synthetic polymer membrane are used.

しかし、濾過助剤を用いる濾過は、珪藻土などの濾過助剤を大量に用いるため,難分解性の濾過残渣が大量に発生する点が問題であった。また、セラミック濾過膜は高価であり、再生にアルカリなどの薬物を必要とする点が問題であった。そして、従来の合成高分子濾過膜は、焼却時の発熱量が大きく焼却炉を傷めるため、濾過膜の目詰まり後の廃棄法が問題であった。   However, the filtration using a filter aid is problematic in that a large amount of filter aid such as diatomaceous earth is used, so that a large amount of hardly decomposable filter residue is generated. Further, the ceramic filtration membrane is expensive, and a problem is that it requires a drug such as alkali for regeneration. And since the conventional synthetic polymer filtration membrane has a large calorific value at the time of incineration and damages the incinerator, the disposal method after clogging of the filtration membrane has been a problem.

発明者は、すでにポリ乳酸、ポリカプロラクトン、及びこれらのポリマーブレンドなどの生分解性ポリエステル製濾過膜を開発している(非特許文献1〜3)。このような生分解性ポリエステル製濾過膜を用いれば、使用後の濾過膜を堆肥化装置を用いて分解処理することが可能になり、従来の合成高分子濾過膜を用いた場合に問題となっていた濾過膜の廃棄法に関する問題を解消することができる。
T.Tanaka, et al., J.Membr.Sci., 238, 65-73 (2004). T.Tanaka, et al., J.Chem.Eng.Japan, 39, 144-153 (2006). T.Tanaka, et al., Desalination, 193, 367-374 (2006).
The inventor has already developed biodegradable polyester filter membranes such as polylactic acid, polycaprolactone, and polymer blends thereof (Non-Patent Documents 1 to 3). If such a biodegradable polyester filter membrane is used, it becomes possible to decompose the used filter membrane using a composting apparatus, which is a problem when a conventional synthetic polymer filter membrane is used. The problem about the disposal method of the filtration membrane which had been can be eliminated.
T. Tanaka, et al., J. Membr. Sci., 238, 65-73 (2004). T. Tanaka, et al., J. Chem. Eng. Japan, 39, 144-153 (2006). T. Tanaka, et al., Desalination, 193, 367-374 (2006).

しかし、ポリ乳酸製濾過膜は1μm程度の大きさの粒子を阻止できない点が問題であった。また、ポリカプロラクトンを含む濾過膜は、ポリカプロラクトンの融点が60℃と低いため、耐熱性が低い点が問題であった。   However, polylactic acid filtration membranes have a problem in that particles having a size of about 1 μm cannot be blocked. Moreover, the filtration membrane containing polycaprolactone has a problem that the heat resistance is low because the melting point of polycaprolactone is as low as 60 ° C.

そこで、本発明は上記問題点に鑑み、生分解性であって、1μm程度の大きさの粒子を阻止でき、かつ耐熱性が高い、新規の濾過膜及びその製造方法を提供することをその目的とする。   Accordingly, in view of the above problems, the present invention has an object to provide a novel filtration membrane that is biodegradable, can block particles having a size of about 1 μm, and has high heat resistance, and a method for producing the same. And

上記課題を達成するため種々検討した結果、融点が114℃と耐熱性が高い生分解性プラスチックであるポリブチレンサクシネートを材料として用い、その溶液を非溶媒に浸漬することによって、生分解性であって、1μm程度の大きさの粒子を阻止でき、かつ耐熱性の高い濾過膜が得られることを見出し、本発明を完成させた。   As a result of various studies to achieve the above-mentioned problems, the biodegradable plastic having a melting point of 114 ° C. and high heat resistance, polybutylene succinate, is used as a material, and the solution is immersed in a non-solvent. Thus, the inventors have found that a filter membrane having a size of about 1 μm can be blocked and having high heat resistance, and completed the present invention.

すなわち、本発明の濾過膜は、ポリブチレンサクシネートを溶媒に溶解して得たポリブチレンサクシネート溶液の薄膜を、ポリブチレンサクシネートの非溶媒に浸漬することで得られたことを特徴とする。   That is, the filtration membrane of the present invention is obtained by immersing a thin film of a polybutylene succinate solution obtained by dissolving polybutylene succinate in a solvent in a non-solvent of polybutylene succinate. .

また、前記溶媒はクロロホルムであり、前記非溶媒はメタノールであることを特徴とする。   The solvent is chloroform and the non-solvent is methanol.

本発明の濾過膜の製造方法は、ポリブチレンサクシネートを溶媒に溶解して得たポリブチレンサクシネート溶液の薄膜を、ポリブチレンサクシネートの非溶媒に浸漬することを特徴とする。   The method for producing a filtration membrane of the present invention is characterized in that a thin film of a polybutylene succinate solution obtained by dissolving polybutylene succinate in a solvent is immersed in a non-solvent of polybutylene succinate.

また、前記溶媒はクロロホルムであり、前記非溶媒はメタノールであることを特徴とする。   The solvent is chloroform and the non-solvent is methanol.

本発明によれば、生分解性であって、1μm程度の大きさの粒子を阻止でき、かつ耐熱性が高い、新規の濾過膜及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the novel filtration membrane which is biodegradable, can prevent the particle | grains about 1 micrometer, and has high heat resistance, and its manufacturing method can be provided.

本発明の濾過膜は、ポリブチレンサクシネートを溶媒に溶解して得たポリブチレンサクシネート溶液の薄膜を、ポリブチレンサクシネートの非溶媒に浸漬することで得られたものである。以下、本発明の濾過膜の製造方法について説明する。   The filtration membrane of the present invention is obtained by immersing a thin film of a polybutylene succinate solution obtained by dissolving polybutylene succinate in a solvent in a non-solvent of polybutylene succinate. Hereinafter, the manufacturing method of the filtration membrane of this invention is demonstrated.

はじめに、ポリブチレンサクシネートを溶媒に溶解する。溶媒としては、ポリブチレンサクシネートを溶解できるものであれば、特定のものに限定されないが、均一な微細孔を有する多孔質膜が得られることから、本発明においては特に、クロロホルムが好適に用いられる。また、溶液のポリブチレンサクシネートの濃度は、5〜15%の範囲とするのが好ましい。5%未満であると十分な厚さ、強度を有する濾過膜が得られにくく、15%を超えるとポリブチレンサクシネートが溶解に長時間要するため、好ましくない。   First, polybutylene succinate is dissolved in a solvent. The solvent is not particularly limited as long as it can dissolve polybutylene succinate, but since a porous film having uniform fine pores can be obtained, chloroform is particularly preferably used in the present invention. It is done. The concentration of polybutylene succinate in the solution is preferably in the range of 5 to 15%. If it is less than 5%, it is difficult to obtain a filtration membrane having sufficient thickness and strength. If it exceeds 15%, polybutylene succinate takes a long time to dissolve, which is not preferable.

なお、溶解する際には、溶媒としてクロロホルムを用いる場合は、溶媒の沸点やポリブチレンサクシネートの溶解度を考慮すると、溶液が45〜55℃になるように加熱するのが好ましい。また、溶解後においても、つぎの非溶媒への浸漬まで45〜55℃に温度を保持するのが好ましい。非溶媒に浸漬する前のポリブチレンサクシネート溶液を45〜55℃に保持することによって、非溶媒に浸漬したときに溶液が急速に冷却される。その結果、ポリブチレンサクシネートと溶媒が急速に二相に分離して微細な多孔質構造が形成され、濾過抵抗の小さい濾過膜が得られる。なお、ポリブチレンサクシネート溶液を45〜55℃に保持した場合は、室温で調整した溶液を用いた場合と比較して、濾過抵抗は10分の1程度となる。   In addition, when using chloroform as a solvent when dissolving, it is preferable to heat the solution to 45 to 55 ° C. in consideration of the boiling point of the solvent and the solubility of polybutylene succinate. Further, even after dissolution, it is preferable to maintain the temperature at 45 to 55 ° C. until the next immersion in the non-solvent. By keeping the polybutylene succinate solution at 45-55 ° C. before being immersed in the non-solvent, the solution is rapidly cooled when immersed in the non-solvent. As a result, the polybutylene succinate and the solvent are rapidly separated into two phases to form a fine porous structure, and a filtration membrane having a low filtration resistance can be obtained. In addition, when a polybutylene succinate solution is hold | maintained at 45-55 degreeC, compared with the case where the solution adjusted at room temperature is used, filtration resistance will be about 1/10.

つぎに、濾過膜を作製する。ガラス板などの平坦な基板上に、ポリブチレンサクシネート溶液を流し込み、均一な厚さの薄膜とする。その後、ポリブチレンサクシネート溶液の薄膜を保持した基板を、ポリブチレンサクシネートの非溶媒に浸漬する。非溶媒としては、ポリブチレンサクシネートを溶解せず、上記溶媒と高い親和性を有するものであれば、特定のものに限定されない。溶媒にクロロホルムを用いる場合は、非溶媒としては特に、メタノールが好適に用いられる。   Next, a filtration membrane is produced. A polybutylene succinate solution is poured onto a flat substrate such as a glass plate to form a thin film having a uniform thickness. Thereafter, the substrate holding the thin film of the polybutylene succinate solution is immersed in a non-solvent of polybutylene succinate. The non-solvent is not limited to a specific one as long as it does not dissolve polybutylene succinate and has high affinity with the solvent. When chloroform is used as the solvent, methanol is particularly preferably used as the non-solvent.

ポリブチレンサクシネート溶液の薄膜を、ポリブチレンサクシネートの非溶媒に浸漬することで、溶液が冷却されてポリブチレンサクシネートと溶媒が二相に分離して微細な多孔質構造が形成されるとともに、ポリブチレンサクシネートが固化する。そして、ポリブチレンサクシネート溶液に含まれる溶媒が非溶媒によって抽出、除去される。このようにして、均一な多孔質のポリブチレンサクシネートからなる濾過膜が形成される。   By immersing a thin film of polybutylene succinate solution in a non-solvent of polybutylene succinate, the solution is cooled and the polybutylene succinate and solvent are separated into two phases to form a fine porous structure The polybutylene succinate solidifies. Then, the solvent contained in the polybutylene succinate solution is extracted and removed by the non-solvent. In this way, a filtration membrane made of uniform porous polybutylene succinate is formed.

さらに、溶媒を完全に抽出するために、作製した濾過膜を非溶媒中に保存するとともに、非溶媒を1〜数回交換するのが好ましい。   Furthermore, in order to completely extract the solvent, it is preferable to store the produced filtration membrane in a non-solvent and exchange the non-solvent one to several times.

以上のようにして得られた本発明の濾過膜は、1μm程度の大きさの粒子を阻止することができる。また、生分解性プラスチックであるポリブチレンサクシネートを材料としているため、使用後に堆肥化装置による分解が可能である。したがって、本発明の濾過膜を用いることにより、濾過膜、濾過残渣を堆肥として有効利用することが可能となる。また、ポリブチレンサクシネートの融点は114℃であり、耐熱性にも優れる。   The filtration membrane of the present invention obtained as described above can block particles having a size of about 1 μm. Moreover, since polybutylene succinate which is a biodegradable plastic is used as a material, it can be decomposed by a composting apparatus after use. Therefore, by using the filtration membrane of the present invention, the filtration membrane and the filtration residue can be effectively used as compost. Polybutylene succinate has a melting point of 114 ° C. and is excellent in heat resistance.

なお、本発明は上記実施形態に限定されるものではなく、本発明の思想を逸脱しない範囲で種々の変形実施が可能である。   The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明によるポリブチレンサクシネート製の濾過膜を作製し、その性能評価を行った。   A filtration membrane made of polybutylene succinate according to the present invention was produced and its performance was evaluated.

1 材料
ポリブチレンサクシネート(PBS, poly(1,4-butyrene succinate))は、昭和高分子製のビオノーレ#1001(Lot No. NEC03B263)を用いた。この製品検査報告書の物性値は、メルトフローレイト(MFR, JIS K 7210)が1.4g/10分(規格値は1.0〜2.9g/10分)であった。
1 Material Bionole # 1001 (Lot No. NEC03B263) made by Showa Polymer was used as polybutylene succinate (PBS, poly (1,4-butyrene succinate)). The physical property value of this product inspection report was 1.4 g / 10 min for melt flow rate (MFR, JIS K 7210) (standard value is 1.0 to 2.9 g / 10 min).

ポリブチレンサクシネートの溶媒としてのクロロホルム、非溶媒としてのメタノールは、いずれも和光純薬製の特級を用いた。   Special grades manufactured by Wako Pure Chemicals were used for chloroform as a solvent for polybutylene succinate and methanol as a non-solvent.

2 濾過膜の作製
はじめに、ポリブチレンサクシネートの最終濃度が10%になるように、100mLの三角フラスコ中でポリブチレンサクシネート5gをクロロホルム45gに溶解した。より詳細には、ポリブチレンサクシネート、クロロホルム、回転子を三角フラスコへ入れ、ヘッドスペースを窒素ガスで置換し、アルミホイルで覆ったコルク栓にて蓋をした。さらに、密閉のためにコルク栓の側面にテフロン(登録商標)テープを巻きつけた。そして、この三角フラスコを50℃に設定したホットスターラー上に載置し、約1時間半攪拌してポリブチレンサクシネートをクロロホルムに溶解した。さらに、50℃の高温水槽にポリブチレンサクシネート溶液を入れた三角フラスコを入れて5分間以上保温した。
2 Production of Filtration Membrane First, 5 g of polybutylene succinate was dissolved in 45 g of chloroform in a 100 mL Erlenmeyer flask so that the final concentration of polybutylene succinate was 10%. More specifically, polybutylene succinate, chloroform, and a rotor were placed in an Erlenmeyer flask, the head space was replaced with nitrogen gas, and the cap was covered with a cork stopper covered with aluminum foil. Further, Teflon (registered trademark) tape was wrapped around the side of the cork stopper for sealing. The Erlenmeyer flask was placed on a hot stirrer set to 50 ° C. and stirred for about 1 and a half hours to dissolve polybutylene succinate in chloroform. Furthermore, the Erlenmeyer flask containing the polybutylene succinate solution was placed in a high-temperature water bath at 50 ° C. and kept warm for 5 minutes or more.

つぎに、濾過膜を作製した。なお、膜の作製は室温を25℃に設定した室内で行った。76mm×62mmのガラス板に、幅8mm×厚さ1mmのテフロン(登録商標)のシートと両面テープを用いて枠を作製した。そして、50℃に保温したポリブチレンサクシネート溶液をガラス板の枠内に、少し多めに流し込んだ。余分なポリブチレンサクシネート溶液は、直線の縁をもつヘラを用いてすりきった。その後、ポリブチレンサクシネート溶液を流し込んだガラス板を、300mLのメタノールを入れたステンレスバットに入れて、クロロホルムの抽出を行うと、ポリブチレンサクシネートの膜が形成した。そして、30分後に、この膜を50mLのメタノールを入れた密閉可能なプラスチック容器(容器:ポリプロピレン;蓋:ポリエチレン)に移した。1〜数時間後と1日後にメタノールを交換した。作製した濾過膜はメタノール中で保存した。   Next, a filtration membrane was produced. The film was produced in a room where the room temperature was set to 25 ° C. A frame was prepared on a 76 mm × 62 mm glass plate using a Teflon (registered trademark) sheet having a width of 8 mm and a thickness of 1 mm and a double-sided tape. Then, the polybutylene succinate solution kept at 50 ° C. was poured slightly more into the frame of the glass plate. Excess polybutylene succinate solution was ground using a spatula with straight edges. Thereafter, the glass plate into which the polybutylene succinate solution was poured was placed in a stainless steel vat containing 300 mL of methanol, and chloroform was extracted to form a polybutylene succinate film. After 30 minutes, the membrane was transferred to a sealable plastic container (container: polypropylene; lid: polyethylene) containing 50 mL of methanol. The methanol was changed after 1 to several hours and 1 day later. The produced filtration membrane was stored in methanol.

3 濾過膜の性能評価
(1)電子顕微鏡観察
作製した濾過膜を乾燥後、水分で湿らせて、液体窒素中で割断した。試料台に設置後、金−パラジウム−合金をスパッタ・コーティングした。走査型電子顕微鏡を用いて15kVの加速電圧で膜の表面と断面を観察した。その結果を図1に示す。膜厚さ400〜500μmであって、均一な多孔質の濾過膜が得られた。
3 Performance Evaluation of Filtration Membrane (1) Electron Microscope Observation The produced filtration membrane was dried, moistened with moisture, and cleaved in liquid nitrogen. After being placed on the sample stage, gold-palladium-alloy was sputter coated. The surface and cross section of the film were observed with an acceleration voltage of 15 kV using a scanning electron microscope. The result is shown in FIG. A uniform porous membrane having a thickness of 400 to 500 μm was obtained.

(2)膜濾過抵抗の測定
膜直径25mm用の濾過装置(有効濾過面積A=4.1cm=4.1×10-4)を用いて精製水の濾過実験を行った。濾過圧力ΔP[Pa]は窒素ガスボンベを用いて10kPaに設定した。濾過圧力ΔP[Pa]、精製水の透過流束J[m/s](=濾液量[m]/(時間[s]×有効濾過面積[m])と、水の粘度μ=8.9×10−4Pa.s(25℃)から、R=ΔP/(μ・J)の式を用いて濾過膜の濾過抵抗R[1/m]を計算した。
(2) Measurement of membrane filtration resistance A filtration experiment for purified water was conducted using a filtration device (effective filtration area A = 4.1 cm 2 = 4.1 × 10 −4 m 2 ) for a membrane diameter of 25 mm. The filtration pressure ΔP [Pa] was set to 10 kPa using a nitrogen gas cylinder. Filtration pressure ΔP [Pa], purified water permeation flux J [m / s] (= filtrate amount [m 3 ] / (time [s] × effective filtration area [m 2 ]) and water viscosity μ = 8 The filtration resistance R m [1 / m] of the filtration membrane was calculated from the formula of 9 × 10 −4 Pa.s (25 ° C.) using the formula of R m = ΔP / (μ · J).

本発明の濾過膜の濾過抵抗は、表1に示すように、市販の濾過膜と同程度であった。   As shown in Table 1, the filtration resistance of the filtration membrane of the present invention was comparable to a commercially available filtration membrane.

(3)酵母懸濁液及び乳酸菌懸濁液の濾過実験
長径6.4μm×短径4.8μmの酵母を用いて濾過実験を行った。乾燥酵母(和光純薬製)を1kg/mになるように精製水に懸濁したものを圧力10kPaにて濾過した。懸濁液と濾液の660nmの吸光度を測定して酵母の阻止率を評価した。
(3) Filtration Experiment of Yeast Suspension and Lactic Acid Bacteria Suspension Filtration experiment was conducted using yeast having a major axis of 6.4 μm × minor axis of 4.8 μm. A suspension of dried yeast (manufactured by Wako Pure Chemical Industries) in purified water to 1 kg / m 3 was filtered at a pressure of 10 kPa. The inhibition rate of yeast was evaluated by measuring the absorbance of the suspension and the filtrate at 660 nm.

また、直径0.7μm×長さ2.5μmの乳酸菌(Lactobacillus plantarum NBRC 15891T)を用いて濾過実験を行った。この乳酸菌をMRS培地で静置培養した培養液を精製水で10倍に希釈して乳酸菌懸濁液(0.2kg/mに相当)とした。圧力10kPaにて濾過した。懸濁液と濾液の660nmの吸光度を測定して乳酸菌の阻止率を評価した。 Further, a filtration experiment was conducted using a lactic acid bacterium (Lactobacillus plantarum NBRC 15891 T ) having a diameter of 0.7 μm and a length of 2.5 μm. A culture solution obtained by stationary culture of the lactic acid bacteria in MRS medium was diluted 10-fold with purified water to obtain a lactic acid bacteria suspension (corresponding to 0.2 kg / m 3 ). Filtration was performed at a pressure of 10 kPa. The inhibition rate of lactic acid bacteria was evaluated by measuring the absorbance of the suspension and the filtrate at 660 nm.

以上の濾過実験は、本発明の濾過膜と、その比較のために市販の公称孔径0.2μmのセルロースアセテート膜(C020膜)を用いてそれぞれ行った。   The above filtration experiment was performed using the filtration membrane of the present invention and a commercially available cellulose acetate membrane (C020 membrane) having a nominal pore size of 0.2 μm for comparison.

表2に示すように、濾過前後の液の濁度から求めた酵母(6.4×4.8μm)及び乳酸菌(φ0.7×2.5μm)の見かけの阻止率は98%以上であった。乳酸菌懸濁液の濾液の濁度は市販の公称孔径0.2μmのセルロースアセテート膜と同程度であったことから、培養液中の着色性の溶解成分が原因と考えられた。   As shown in Table 2, the apparent inhibition rate of yeast (6.4 × 4.8 μm) and lactic acid bacteria (φ0.7 × 2.5 μm) determined from the turbidity of the liquid before and after filtration was 98% or more. . The turbidity of the filtrate of the lactic acid bacteria suspension was similar to that of a commercially available cellulose acetate membrane having a nominal pore size of 0.2 μm. Therefore, it was considered that this was caused by a colored dissolved component in the culture solution.

本発明の濾過膜の電子顕微鏡写真である。It is an electron micrograph of the filtration membrane of this invention.

Claims (4)

ポリブチレンサクシネートを溶媒に溶解して得たポリブチレンサクシネート溶液の薄膜を、ポリブチレンサクシネートの非溶媒に浸漬することで得られたことを特徴とする濾過膜。 A filtration membrane obtained by immersing a thin film of a polybutylene succinate solution obtained by dissolving polybutylene succinate in a solvent in a non-solvent of polybutylene succinate. 前記溶媒はクロロホルムであり、前記非溶媒はメタノールであることを特徴とする請求項1記載の濾過膜。 The filtration membrane according to claim 1, wherein the solvent is chloroform and the non-solvent is methanol. ポリブチレンサクシネートを溶媒に溶解して得たポリブチレンサクシネート溶液の薄膜を、ポリブチレンサクシネートの非溶媒に浸漬することを特徴とする濾過膜の製造方法。 A method for producing a filtration membrane, comprising immersing a thin film of a polybutylene succinate solution obtained by dissolving polybutylene succinate in a solvent in a non-solvent of polybutylene succinate. 前記溶媒はクロロホルムであり、前記非溶媒はメタノールであることを特徴とする請求項3記載の濾過膜の製造方法。 The method for producing a filtration membrane according to claim 3, wherein the solvent is chloroform and the non-solvent is methanol.
JP2006319678A 2006-11-28 2006-11-28 Filtration membrane and method for producing the same Active JP4710018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006319678A JP4710018B2 (en) 2006-11-28 2006-11-28 Filtration membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006319678A JP4710018B2 (en) 2006-11-28 2006-11-28 Filtration membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008132415A true JP2008132415A (en) 2008-06-12
JP4710018B2 JP4710018B2 (en) 2011-06-29

Family

ID=39557634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319678A Active JP4710018B2 (en) 2006-11-28 2006-11-28 Filtration membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP4710018B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105807A (en) * 1982-12-10 1984-06-19 Sumitomo Electric Ind Ltd Gas permselective membrane and preparation thereof
JPS59202237A (en) * 1983-04-28 1984-11-16 Toyota Central Res & Dev Lab Inc Production of porous polymer membrane
JPS6297625A (en) * 1986-10-24 1987-05-07 Sumitomo Electric Ind Ltd Gas permselective membrane and its preparation
JPH02261837A (en) * 1989-03-31 1990-10-24 Shiraishi Chuo Kenkyusho:Kk Preparation of porous film
JPH0929077A (en) * 1995-07-17 1997-02-04 Mitsubishi Rayon Co Ltd Porous membrane and its production
JP2001081229A (en) * 1999-09-16 2001-03-27 Toyo Cloth Co Ltd Biodegradable porous membrane and its preparation
JP2002020530A (en) * 2000-07-05 2002-01-23 Toyo Cloth Co Ltd Biodegradable porous membrane, structural material and method for producing the same
JP2003082140A (en) * 2001-09-10 2003-03-19 Unitika Ltd Biodegradable porous film and its production process
JP2007112868A (en) * 2005-10-19 2007-05-10 Kao Corp Porous sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105807A (en) * 1982-12-10 1984-06-19 Sumitomo Electric Ind Ltd Gas permselective membrane and preparation thereof
JPS59202237A (en) * 1983-04-28 1984-11-16 Toyota Central Res & Dev Lab Inc Production of porous polymer membrane
JPS6297625A (en) * 1986-10-24 1987-05-07 Sumitomo Electric Ind Ltd Gas permselective membrane and its preparation
JPH02261837A (en) * 1989-03-31 1990-10-24 Shiraishi Chuo Kenkyusho:Kk Preparation of porous film
JPH0929077A (en) * 1995-07-17 1997-02-04 Mitsubishi Rayon Co Ltd Porous membrane and its production
JP2001081229A (en) * 1999-09-16 2001-03-27 Toyo Cloth Co Ltd Biodegradable porous membrane and its preparation
JP2002020530A (en) * 2000-07-05 2002-01-23 Toyo Cloth Co Ltd Biodegradable porous membrane, structural material and method for producing the same
JP2003082140A (en) * 2001-09-10 2003-03-19 Unitika Ltd Biodegradable porous film and its production process
JP2007112868A (en) * 2005-10-19 2007-05-10 Kao Corp Porous sheet

Also Published As

Publication number Publication date
JP4710018B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
Saljoughi et al. Cellulose acetate (CA)/polyvinylpyrrolidone (PVP) blend asymmetric membranes: Preparation, morphology and performance
Saljoughi et al. Effect of PEG additive and coagulation bath temperature on the morphology, permeability and thermal/chemical stability of asymmetric CA membranes
Kong et al. Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination
JP7348196B2 (en) Pleated self-supporting porous block copolymer material and method for producing the same
Saljoughi et al. Effect of poly (vinyl pyrrolidone) concentration and coagulation bath temperature on the morphology, permeability, and thermal stability of asymmetric cellulose acetate membranes
Jiang et al. Deep eutectic solvent as novel additive for PES membrane with improved performance
Younas et al. Fabrication of high flux and fouling resistant membrane: A unique hydrophilic blend of polyvinylidene fluoride/polyethylene glycol/polymethyl methacrylate
Ghaffarian et al. Polyethersulfone/poly (butylene succinate) membrane: Effect of preparation conditions on properties and performance
Koseoglu-Imer The determination of performances of polysulfone (PS) ultrafiltration membranes fabricated at different evaporation temperatures for the pretreatment of textile wastewater
Venault et al. Antifouling PVDF membrane prepared by VIPS for microalgae harvesting
Ghaffarian et al. Preparation and characterization of biodegradable blend membranes of PBS/CA
MY149930A (en) Gas transfer membrane
Mousavi et al. Preparation and characterization of nanoporous polysulfone membranes with high hydrophilic property using variation in CBT and addition of tetronic‐1107 surfactant
JP2019522562A (en) Reverse osmosis membrane protective layer forming composition, reverse osmosis membrane production method using the same, reverse osmosis membrane and water treatment module
JP2012120996A (en) Filter membrane made from polylactic acid, and method for manufacturing the same
Ji et al. Morphological control and cross-flow filtration of microfiltration membranes prepared via a sacrificial-layer approach
Yunos et al. Effect of zinc oxide on performance of ultrafiltration membrane for humic acid separation
WO2015104871A1 (en) Porous hollow fiber membrane, method for producing same, and water purification method
JP4710018B2 (en) Filtration membrane and method for producing the same
Etemadi et al. Effect of transmembrane pressure on antifouling properties of PVC/Clinoptilolite ultrafiltration nanocomposite membranes
EP3235559A1 (en) Binder-coupled carbon nanostructure nano-porous membrane and manufacturing method therefor
JP5286313B2 (en) Depth filter type microfiltration membrane and manufacturing method thereof
EP1925357A2 (en) Method for fabrication of elastomeric asymmetric membranes from hydrophobic polymers
JP2004105804A (en) Polysulfone microporous membrane and its manufacturing method
JP2013081910A (en) Filter membrane made from polylactic acid and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20110221

Free format text: JAPANESE INTERMEDIATE CODE: A01