JPS6249911A - Production of aromatic polysulfone hollow yarn membrane - Google Patents
Production of aromatic polysulfone hollow yarn membraneInfo
- Publication number
- JPS6249911A JPS6249911A JP18783185A JP18783185A JPS6249911A JP S6249911 A JPS6249911 A JP S6249911A JP 18783185 A JP18783185 A JP 18783185A JP 18783185 A JP18783185 A JP 18783185A JP S6249911 A JPS6249911 A JP S6249911A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- solvent
- aromatic polysulfone
- hollow fiber
- vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、透水性と機械的強度のいずれにもすぐれた芳
香族ポリスルホン中空糸状半透膜の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing an aromatic polysulfone hollow fiber semipermeable membrane having excellent water permeability and mechanical strength.
(従来の技術)
芳香族ポリスルホンは、耐熱性及び耐薬品性にすぐれて
いるため、従来よりこれを素材とする中空糸状半透膜が
種々提案されている。しかし、従来より知られている方
法によれば、機械的強度が高く、且つ、透水性にすぐれ
た中空糸状膜を得ることができない。(Prior Art) Since aromatic polysulfone has excellent heat resistance and chemical resistance, various hollow fiber semipermeable membranes made from aromatic polysulfone have been proposed. However, according to conventionally known methods, it is not possible to obtain a hollow fiber membrane with high mechanical strength and excellent water permeability.
例えば、特開昭49−23183号公報には、内表面に
緻密な層を有し、外表面には重合体が欠落した径10μ
m以上の空洞が開口している中空糸状半透膜が提案され
ているが、かかる構造によれば特に機械的強度が小さい
。このため、特開昭54−145379号公報には、内
表面及び外表面に共に緻密な層を有し、この緻密層から
連続する多孔質重合体層が膜表面から孔径が連続的に大
きくなるような構造の芳香族ポリスルホン中空糸状半透
膜が提案されている。しかし、この膜は、透水性の膜厚
依存性が大きく、特に、膜厚が200μmを越えるとき
、透水性が著しく悪くなる。For example, Japanese Patent Application Laid-Open No. 49-23183 discloses a film having a diameter of 10 μm with a dense layer on the inner surface and no polymer on the outer surface.
A hollow fiber-like semipermeable membrane having a cavity of m or more in size has been proposed, but such a structure has particularly low mechanical strength. For this reason, Japanese Patent Application Laid-Open No. 54-145379 discloses that a porous polymer layer has a dense layer on both the inner and outer surfaces, and a porous polymer layer that continues from this dense layer has a pore size that continuously increases from the membrane surface. An aromatic polysulfone hollow fiber semipermeable membrane with the following structure has been proposed. However, the water permeability of this membrane is highly dependent on the film thickness, and in particular, when the film thickness exceeds 200 μm, the water permeability becomes significantly poor.
他方、特開昭59−228017号公報には、既に本発
明者らによって、芳香族ポリスルホンを二重管壁ノズル
から押し出して、湿式法にて中空糸状膜に成形する際に
、膜の内側表面に凝固液を接触させ、外側表面には所定
の湿度の空気を接触させ、次いで、水中に浸漬して脱溶
剤し、凝固させて、中空糸状膜を製造する方法が開示さ
れている。この方法によれば、特に、外側表面の微孔孔
径を制御しつつ、内側表面に外側表面よりも小さい孔径
の微孔を形成させた中空糸状膜を得ることができる。On the other hand, in JP-A No. 59-228017, the present inventors have already reported that when aromatic polysulfone is extruded from a double tube wall nozzle and formed into a hollow fiber membrane by a wet method, the inner surface of the membrane is A method is disclosed in which a hollow fiber membrane is produced by contacting a coagulating liquid with a coagulating liquid, contacting the outer surface with air at a predetermined humidity, and then immersing the membrane in water to remove the solvent and coagulating it. According to this method, in particular, it is possible to obtain a hollow fiber membrane in which micropores having a smaller pore diameter than those on the outer surface are formed on the inner surface while controlling the diameter of the micropores on the outer surface.
本発明者らは、前記した従来の芳香族ポリスルホン中空
糸状膜における問題を解決するために、上記のようにし
て、中空糸状膜への成形の際に内外表面の凝固条件を異
ならせる方法による芳香族中空糸状膜の製造について更
に鋭意研究した結果、芳香族ポリスルホンを二重管壁ノ
ズルから押し出して、湿式法にて中空糸状膜に成形する
際に、膜の内側表面に凝固液を接触させ、外側表面には
芳香族ポリスルホンの非溶剤の所定の蒸気圧の蒸気を接
触させることによって、外側表面の微孔孔径を一層容易
に制御しつつ、内側表面に外側表面よりも小さい孔径の
微孔を形成させると共に、内外表面の間に厚い網状多孔
質層を形成させた中空糸状膜を得ることができ、従って
、かかる構造を有する中空糸状膜は、特に、破裂強度に
すぐれると共に、膜厚が厚い場合にも、実用上十分に大
きい透水性能をもつことを見出して、本発明に至ったも
のである。In order to solve the problems with the conventional aromatic polysulfone hollow fiber membranes described above, the present inventors have developed an aromatic polysulfone membrane using a method of varying the coagulation conditions of the inner and outer surfaces during forming into a hollow fiber membrane, as described above. As a result of further intensive research into the production of hollow fiber membranes, we found that when aromatic polysulfone is extruded from a double tube wall nozzle and formed into a hollow fiber membrane using a wet method, a coagulating liquid is brought into contact with the inner surface of the membrane. By contacting the outer surface with vapor of a non-solvent of aromatic polysulfone at a predetermined vapor pressure, the diameter of the micropores on the outer surface can be controlled more easily, and micropores with a smaller pore diameter than those on the outer surface are formed on the inner surface. At the same time, it is possible to obtain a hollow fiber membrane in which a thick reticular porous layer is formed between the inner and outer surfaces. Therefore, a hollow fiber membrane having such a structure has particularly excellent burst strength and a small membrane thickness. The inventors have discovered that even when the material is thick, it has a water permeability that is sufficiently high for practical use, leading to the present invention.
(発明の目的)
従って、本発明は、一般的には、機械的強度及び透水性
のいずれにもすぐれる芳香族ポリスルホン中空糸状半透
膜を製造する方法を提供することを目的とし、特に、従
来の製造方法に比較して、外側表面の微孔孔径を一層容
易に制御しつつ、内側表面に外側表面よりも小さい孔径
の微孔を形成させてなり、従って、構造が前記したよう
な従来の中空糸状膜とは基本的に異なり、その結果、機
械的強度及び透水性のいずれにもすぐれる芳香族ポリス
ルホン中空糸状半透膜を製造する方法を提供することを
目的とする。(Object of the Invention) Therefore, the present invention generally aims to provide a method for manufacturing an aromatic polysulfone hollow fiber semipermeable membrane having excellent mechanical strength and water permeability, and in particular: Compared to conventional manufacturing methods, the diameter of the micropores on the outer surface can be controlled more easily, and micropores with smaller diameters than those on the outer surface are formed on the inner surface. An object of the present invention is to provide a method for producing an aromatic polysulfone hollow fiber semipermeable membrane that is fundamentally different from the hollow fiber membranes of the present invention and, as a result, has excellent mechanical strength and water permeability.
(発明の構成)
本発明による芳香族ポリスルホン中空糸状半透膜の製造
方法は、芳香族ポリスルホンを溶解する極性有機溶剤と
、この溶剤と混和するが、芳香族ポリスルホンを溶解し
ない溶剤との混合溶剤に芳香族ポリスルホンを溶解して
製膜溶液とし、二重管壁ノズルの内管から凝固液を流出
させつつ、上記製膜溶液を外管から押出し、外側表面に
は製膜溶液の温度における蒸気圧よりも151mHg以
上高い蒸気圧を有する芳香族ポリスルホンの非溶剤の蒸
気に接触させた後、水中に浸漬して、中空糸に成形する
と共に、中空糸に残存する溶剤を脱溶剤し、内側表面に
実質的に10〜lOO人の範囲にある微孔を有する緻密
な表面を形成し、外側表面に実質的に0.01〜0.5
μmの範囲にある微孔を有する緻密な表面を形成し、そ
の間に、孔径が上記いずれの表面の有する微孔よりも大
きく、且つ、孔径が実質的に0.05〜5μmの範囲に
ある細孔を有すると共に、上記各表面に連続し、且つ、
厚みが全膜厚の20〜50%を占める網状多孔質層を形
成することを特徴とする特
本発明による方法においては、芳香族ポリスルホンを溶
解する極性有機溶剤と、この溶剤と混和するが芳香族ポ
リスルホンを溶解しない溶剤との混合溶剤に芳香族ポリ
スルホンを溶解して製膜溶液とし、二重管壁ノズルの外
管から押出してポリスルホンを脱溶剤凝固させて、中空
糸状膜に成形する際に、内側表面には凝固液を接触させ
、外側表面には所定の蒸気圧の芳香族ポリスルホン非溶
剤の蒸気を接触させ、次いで、水中に浸漬して、中空糸
に残存する溶剤を脱溶剤する。従って、この方法におい
ては、二重管壁ノズルから押出されたポリスルホンは、
内側表面は凝固液との置換によって凝固され、外側表面
は非溶剤によって凝固されるが、しかし、外側表面は完
全に凝固する必要はなく、この後に水中に浸漬されるこ
とによって、外側表面も完全に凝固されると共に、残存
する溶剤が脱溶剤されて、本発明による中空糸状膜を得
ることができる。(Structure of the Invention) The method for producing an aromatic polysulfone hollow fiber semipermeable membrane according to the present invention uses a mixed solvent of a polar organic solvent that dissolves aromatic polysulfone and a solvent that is miscible with this solvent but does not dissolve aromatic polysulfone. Aromatic polysulfone is dissolved in the liquid to form a membrane forming solution, and while the coagulating liquid flows out from the inner tube of the double wall nozzle, the membrane forming solution is extruded from the outer tube, and the outer surface is filled with steam at the temperature of the membrane forming solution. After bringing the aromatic polysulfone into contact with non-solvent vapor having a vapor pressure 151 mHg or more higher than the pressure, it is immersed in water to be formed into a hollow fiber, and the solvent remaining in the hollow fiber is removed, and the inner surface is forming a dense surface with micropores in the range of substantially 10 to 100 μm, with substantially 0.01 to 0.5 micropores on the outer surface.
Forms a dense surface with micropores in the range of 0.05 to 5 μm, the pore size of which is larger than the pores of any of the above surfaces, and the pore size is substantially in the range of 0.05 to 5 μm. having holes and being continuous with each of the above surfaces, and
In the method according to the present invention, which is characterized in that a reticular porous layer having a thickness of 20 to 50% of the total film thickness is formed, a polar organic solvent that dissolves aromatic polysulfone and an aromatic polysulfone that is miscible with this solvent are used. Aromatic polysulfone is dissolved in a mixed solvent with a solvent that does not dissolve group polysulfone to form a membrane forming solution, and the solution is extruded from the outer tube of a double wall nozzle to remove the solvent and solidify the polysulfone to form a hollow fiber membrane. The inner surface is brought into contact with a coagulating liquid, the outer surface is brought into contact with aromatic polysulfone non-solvent vapor at a predetermined vapor pressure, and then immersed in water to remove the solvent remaining in the hollow fibers. Therefore, in this method, the polysulfone extruded from the double wall nozzle is
The inner surface is coagulated by displacement with a coagulating liquid, and the outer surface is coagulated by a non-solvent, but the outer surface does not need to be completely coagulated; by subsequent immersion in water, the outer surface is also completely coagulated. The hollow fiber membrane according to the present invention can be obtained by solidifying the membrane and removing the remaining solvent.
かかる本発明の方法によれば、膜の内側表面に実質的に
10〜100人の孔径の微孔を有する緻密な表面を形成
し、膜の外側表面に実質的に0.01〜0.5.crm
、通常、O,1〜0.3 p mの範囲の孔径の微孔を
有する他方の緻密な表面を形成すると共に、その間に、
上記いずれの表面の有する微孔よりも大きく、且つ、孔
径が実質的に0.05〜5μの範囲にある細孔を有して
、上記各表面にそれぞれ連続する網状多孔質層と、この
網状多孔質層に連続してほぼ膜の中間に位置すると共に
、膜のほぼ半径方向に延びる空洞を有する指状構造層と
からなる機械的強度及び透水性にすぐれる芳香族ポリス
ルホン中空糸状半透膜を得ることができる。According to the method of the present invention, a dense surface having micropores having a diameter of substantially 10 to 100 pores is formed on the inner surface of the membrane, and a dense surface having micropores having a diameter of substantially 0.01 to 0.5 pores is formed on the outer surface of the membrane. .. crm
, typically forming a dense surface with micropores of pore size ranging from 1 to 0.3 p m, while
A network porous layer having pores larger than the micropores of any of the above surfaces and having a pore size substantially in the range of 0.05 to 5μ, and continuous to each of the above surfaces; An aromatic polysulfone hollow fiber semipermeable membrane having excellent mechanical strength and water permeability, comprising a finger-like structure layer that is continuous with a porous layer and located approximately in the middle of the membrane, and has a cavity that extends approximately in the radial direction of the membrane. can be obtained.
特に、本発明の方法によれば、得られる中空糸状半透膜
の全膜厚は、通常、50〜500μmであり、このうち
、網状多孔質層が、通常、全膜厚の20〜50%、殆ど
の場合、25〜40%を占め、この網状多孔質層にはポ
リスルホンが欠落した空洞は全く存在しない。従って、
本発明による中空糸状膜は、特に、機械的強度及び耐圧
密化性にすぐれている。また、指状構造層の有する空洞
の横断方向の径は、通常、10mμ以上である。In particular, according to the method of the present invention, the total membrane thickness of the hollow fiber semipermeable membrane obtained is usually 50 to 500 μm, of which the network porous layer usually accounts for 20 to 50% of the total membrane thickness. , which accounts for 25-40% in most cases, and there are no voids lacking polysulfone in this reticulated porous layer. Therefore,
The hollow fiber membrane according to the present invention has particularly excellent mechanical strength and compaction resistance. Further, the diameter of the cavity in the finger-like structure layer in the transverse direction is usually 10 mμ or more.
尚、網状多孔質層は外表面よりも粗大な多孔質層であっ
て、網状多孔質層の有する細孔の孔径は、通常、外表面
の有する微孔の孔径の約10倍又はそれ以上である。Note that the network porous layer is a porous layer that is coarser than the outer surface, and the pore diameter of the pores in the network porous layer is usually about 10 times or more than the diameter of the micropores in the outer surface. be.
本発明の方法において、芳香族ポリスルホンは代表的に
は次のような繰返し単位を有する。In the method of the present invention, the aromatic polysulfone typically has the following repeating units.
但し、X1〜X6はメチル基、エチル基等のアルキル基
、塩素、臭素等のハロゲンに例示される非解離性の置換
基を示し、l、m、n、0、p及びqは0〜4の整数を
示す。一般的には、1.m、n、o、p及びqのすべて
が0であるポリスルホンが入手しやすく、本発明におい
ても好ましく用いられる。しかし、本発明で用いるポリ
スルホンは上記に限定されるものではない。However, X1 to X6 represent non-dissociable substituents exemplified by alkyl groups such as methyl groups and ethyl groups, and halogens such as chlorine and bromine, and l, m, n, 0, p and q are 0 to 4. indicates an integer. Generally, 1. Polysulfone in which m, n, o, p and q are all 0 is easily available and is preferably used in the present invention. However, the polysulfone used in the present invention is not limited to the above.
本発明の方法において、芳香族ポリスルホンを含む製膜
溶液は、芳香族ポリスルホンをこれを溶解する極性有機
溶剤と、これを溶解しない非溶剤との混合溶剤に溶解さ
せて調製される。上記極性有機溶剤としては、N−メチ
ル−2−ピロリドン、ジメチルホルムアミド、ジメチル
アセトアミド等が好ましく用いられ、また、非溶剤とし
ては、グリセリン、エチレングリコール、プロピレング
リコール等のような脂肪族多価アルコール、ジエチレン
グリコール、ポリエチレングリコール等のポリアルキレ
ングリコール、メタノール、エタノール、イソプロピル
アルコール等の低級脂肪族アルコール、ジオキサン、テ
トラヒドロフラン等の環状エーテル、アセトン、メチル
エチルケトン等の低級脂肪族ケトン等が好ましく用いら
れる。In the method of the present invention, a membrane forming solution containing aromatic polysulfone is prepared by dissolving aromatic polysulfone in a mixed solvent of a polar organic solvent that dissolves aromatic polysulfone and a non-solvent that does not dissolve aromatic polysulfone. As the polar organic solvent, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, etc. are preferably used, and as the non-solvent, aliphatic polyhydric alcohols such as glycerin, ethylene glycol, propylene glycol, etc. Preferably used are polyalkylene glycols such as diethylene glycol and polyethylene glycol, lower aliphatic alcohols such as methanol, ethanol, and isopropyl alcohol, cyclic ethers such as dioxane and tetrahydrofuran, and lower aliphatic ketones such as acetone and methyl ethyl ketone.
本発明の方法においては、製膜溶液における非溶剤は、
得られる芳香族ポリスルホン中空糸状膜の透水性を高め
るために用いられる。かかる非溶剤と極性有機溶剤との
混合溶剤中の非溶剤の含有量は、得られる混合溶剤が均
一である限りは特に制限されないが、通常、5〜50重
量%の範囲である。通常、混合溶剤中の非溶剤の割合を
高める程、得られる中空糸状半透膜の透水性が高まる。In the method of the present invention, the non-solvent in the membrane forming solution is
It is used to increase the water permeability of the resulting aromatic polysulfone hollow fiber membrane. The content of the non-solvent in the mixed solvent of the non-solvent and the polar organic solvent is not particularly limited as long as the mixed solvent obtained is uniform, but is usually in the range of 5 to 50% by weight. Generally, the higher the proportion of the non-solvent in the mixed solvent, the higher the water permeability of the resulting hollow fiber semipermeable membrane.
反対に、製膜溶液に非溶剤を用いない場合は、得られる
膜の透水性は、製膜溶液の成分として非溶剤を用いて得
られる膜の1/2乃至1/10程度である。しかし、混
合溶剤において、非溶剤の割合を余りに多くすることは
、混合溶剤へのポリスルホンの溶解を困難とすると共に
、得られる中空糸状膜にピンホール等の膜欠陥を形成さ
せることがあるので、好ましくない。On the other hand, when a non-solvent is not used in the membrane-forming solution, the water permeability of the resulting membrane is about 1/2 to 1/10 that of a membrane obtained using a non-solvent as a component of the membrane-forming solution. However, increasing the proportion of non-solvent in the mixed solvent too much makes it difficult to dissolve polysulfone in the mixed solvent and may cause membrane defects such as pinholes to be formed in the resulting hollow fiber membrane. Undesirable.
製膜溶液中の芳香族ポリスルホンの濃度は、通常、5〜
35重量%、好ましくは10〜30重量%である。35
重量%を越えるときは、得られる半透膜の透水性が実用
的には小さすぎるからであり、一方、5重量%より少な
いときは、得られる膜が機械的強度に劣るようになるか
らである。The concentration of aromatic polysulfone in the membrane forming solution is usually 5 to 5.
35% by weight, preferably 10-30% by weight. 35
If it exceeds 5% by weight, the water permeability of the resulting semipermeable membrane will be too low for practical use, while if it is less than 5% by weight, the resulting membrane will have poor mechanical strength. be.
次に、二重前型ノズルの内管に流出させる凝固液として
は、一般的には水が用いられるが、前記したように、芳
香族ポリスルホンを溶解しないが、前記極性有機溶剤と
混和する溶剤であれば任意に用いることができ、例えば
、前記した非溶剤又はこれと水との混合溶剤であっても
よい。更に、芳香族ポリスルホンを単独では溶解する溶
剤であっても、他の溶剤と混合することにより、ポリス
ルホンを溶解しない範囲であれば、凝固液として用いる
ことができる。このように、製膜溶液が二重前型ノズル
から非溶剤蒸気中に押し出されてから水中に浸漬される
までの時間は、製膜溶液の組成やノズルから押し出され
る際の製膜溶液の厚みにもよるが、通常、0.1秒以上
、好ましくは0.5〜10秒の範囲である。Next, water is generally used as the coagulating liquid to flow into the inner tube of the double-front nozzle, but as mentioned above, a solvent that does not dissolve the aromatic polysulfone but is miscible with the polar organic solvent is used. Any solvent can be used, for example, the above-mentioned non-solvent or a mixed solvent of this and water. Further, even a solvent that dissolves aromatic polysulfone alone can be used as a coagulating liquid by mixing it with another solvent, as long as it does not dissolve polysulfone. In this way, the time from when the membrane-forming solution is extruded into non-solvent vapor through the double front nozzle until it is immersed in water depends on the composition of the membrane-forming solution and the thickness of the membrane-forming solution when it is extruded from the nozzle. Although it depends, it is usually 0.1 seconds or more, preferably in the range of 0.5 to 10 seconds.
本発明の方法においては、製膜溶液をポリスルホンの非
溶剤蒸気中に押し出す際の非溶剤蒸気としては、水蒸気
のほか、製膜溶液の調製のために用いられる非溶剤有機
溶剤の蒸気も用いられる。In the method of the present invention, as the non-solvent vapor when extruding the film-forming solution into the non-solvent vapor of polysulfone, in addition to water vapor, vapor of a non-solvent organic solvent used for preparing the film-forming solution is also used. .
特に、本発明においては、かかる非溶剤蒸気としては、
水蒸気及びメタノール、エタノール、イソプロピルアル
コール等の低級脂肪族アルコールの蒸気が好ましい。In particular, in the present invention, such non-solvent vapors include:
Water vapor and vapors of lower aliphatic alcohols such as methanol, ethanol, and isopropyl alcohol are preferred.
本発明の方法において、非溶剤の蒸気圧は、得られる中
空糸状膜における網状多孔質層の厚みを全膜厚の20〜
50%とするために、用いる製膜溶液の温度における蒸
気圧よりも15mHg以上、好ましくは23mmHg以
上高いことが必要である。In the method of the present invention, the vapor pressure of the non-solvent is such that the thickness of the reticulated porous layer in the resulting hollow fiber membrane is 20 to 20% of the total membrane thickness.
In order to make it 50%, it is necessary that the vapor pressure at the temperature of the membrane forming solution used is higher than the vapor pressure by 15 mHg or more, preferably by 23 mmHg or more.
非溶剤の蒸気圧が、用いる製膜溶液の温度における蒸気
圧よりも15m[1gよりも低い場合は、特に、外側表
面の網状多孔質層の厚みが薄く、その結果、相対的に指
状構造の占める厚みが大きいうえに、更に、外側表面に
おける微孔の分散密度が小さいので、かかる中空糸状膜
は、高い透水性能をもたず、しかも、機械的強度及び耐
圧密化性に劣る。If the vapor pressure of the non-solvent is less than 15 m[1 g] than the vapor pressure at the temperature of the membrane-forming solution used, the thickness of the reticulated porous layer on the outer surface is particularly small, resulting in a relatively finger-like structure. In addition to the large thickness occupied by the hollow fibers, the dispersion density of micropores on the outer surface is small, so such hollow fiber membranes do not have high water permeability and are inferior in mechanical strength and consolidation resistance.
このように、網状多孔質層が全膜厚の20%よりも少な
いときは、膜が実用上十分な機械的強度及び耐圧密化性
を有しない。As described above, when the network porous layer is less than 20% of the total film thickness, the film does not have practically sufficient mechanical strength and compaction resistance.
第1図は、本発明の方法による芳香族ポリスルホン中空
糸状半透膜の一実施例であって、内側表面がより小さい
孔径の微孔を有し、外側表面がより大きい孔径の微孔を
有する膜の断面構造を示す電子顕微鏡写真(200倍)
である。第2図は、実質的に0.01〜0.5μmの孔
径の微孔を有する中空糸状膜の外側表面の電子顕微鏡写
真(5000倍)を示す。第3図及び第4図は、製膜溶
液を二重前型ノズルから芳香族ポリスルホン非溶剤雰囲
気中に押し出す際に、製膜溶液の温度における蒸気圧よ
りも15 wmllgより小さい蒸気圧を有する非溶剤
蒸気中に押し出して得られた比較例としての中空糸状膜
の断面の電子顕微鏡写真(200倍)、及び外側表面の
電子顕微鏡写真(5000倍)を示す。比較例としての
中空糸状膜は、外側表面の網状多孔質層の厚みが薄く、
且つ、微孔孔径が一様でないと共に、外側表面における
微孔の分散密度が小さいことが明らかである。FIG. 1 shows an embodiment of an aromatic polysulfone hollow fiber semipermeable membrane according to the method of the present invention, in which the inner surface has pores with a smaller pore size and the outer surface has pores with a larger pore size. Electron micrograph showing the cross-sectional structure of the membrane (200x magnification)
It is. FIG. 2 shows an electron micrograph (5000x magnification) of the outer surface of a hollow fiber membrane having micropores with a pore size of substantially 0.01 to 0.5 μm. Figures 3 and 4 show that when extruding a membrane forming solution from a double-front nozzle into an aromatic polysulfone non-solvent atmosphere, a non-solvent having a vapor pressure lower than 15 wmllg at the temperature of the membrane forming solution is used. An electron micrograph (200x) of a cross section of a hollow fiber membrane as a comparative example obtained by extrusion into solvent vapor and an electron micrograph (5000x) of the outer surface are shown. The hollow fiber membrane as a comparative example has a thin reticulated porous layer on the outer surface;
It is also clear that the pore diameter is not uniform and the distribution density of the pores on the outer surface is small.
(発明の効果)
このように、本発明の膜によれば、膜の緻密な内外表面
における微孔孔径が異なるため、小さい孔径の微孔を有
する膜内側に処理すべき液体を供給すれば、一様な大き
い孔径の微孔を多数有する外側表面は流体の通過抵抗を
形成しないので、高い透水性能を得ることができる。ま
た、網状多孔質層が全膜厚の20〜50%、殆どの場合
に25〜40%を占めるので、本発明の方法による中空
糸状膜は、機械的強度及び耐圧密化性にもすぐれている
。(Effects of the Invention) As described above, according to the membrane of the present invention, since the micropore diameters on the dense inner and outer surfaces of the membrane are different, if the liquid to be treated is supplied to the inside of the membrane having micropores with a small pore diameter, The outer surface, which has a large number of uniformly large pores, does not create resistance to fluid passage, so high water permeability can be achieved. In addition, since the network porous layer accounts for 20 to 50%, and in most cases 25 to 40%, of the total membrane thickness, the hollow fiber membrane produced by the method of the present invention has excellent mechanical strength and consolidation resistance. There is.
尚、網状多孔質層及び指状構造層の有する細孔や空洞の
径の大きさは電子顕微鏡写真により評価されるが、緻密
層の微孔孔径はポリエチレングリコール、デキストラン
、種々の分子量を有するタンパク質等に対する除去率か
ら評価される。The diameters of the pores and cavities in the network porous layer and the finger-like structure layer are evaluated using electron micrographs, but the micropore diameter in the dense layer can be measured using polyethylene glycol, dextran, and proteins with various molecular weights. It is evaluated from the removal rate against etc.
一般に、中空糸状半透膜は、空洞を有しないときに機械
的強度及び耐圧密化性にすぐれるといわれているが、本
発明の中空糸状半透膜は上記したように、網状多孔質層
が全膜厚の20〜50%、殆どの場合に25〜40%を
占める厚い層を形成し、他方、相対的に指状構造の占め
る厚さが薄いために、空洞を有しながら機械的強度及び
耐圧密化性にすぐれており、特に、厚みが大きい場合に
も透水性にもすぐれている特徴を有する。It is generally said that a hollow fiber semipermeable membrane has excellent mechanical strength and consolidation resistance when it does not have a cavity, but the hollow fiber semipermeable membrane of the present invention has a network porous layer as described above. forms a thick layer that accounts for 20-50% of the total film thickness, and in most cases 25-40%, and on the other hand, because the finger-like structure is relatively thin, it has a cavity but is not mechanically It has excellent strength and compaction resistance, and is particularly characterized by excellent water permeability even when it is thick.
(実施例)
以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。尚、以
下において、中空糸状膜の特性は、次のようにして求め
た。膜に圧力1 kg / 0111% 温度25℃に
て純水を透過させ、15分後の透水速度の測定値を純水
透水速度とした。また、膜の除去率は、ポリエチレング
リコール(平均分子量20000)の水溶液を平均圧力
1kg/cIi、温度25℃にて供給し、15分後の測
定値を除去率とした。(Examples) The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples in any way. In the following, the characteristics of the hollow fiber membrane were determined as follows. Pure water was permeated through the membrane at a pressure of 1 kg/0.111% and a temperature of 25° C., and the measured value of the water permeation rate after 15 minutes was taken as the pure water permeation rate. The removal rate of the membrane was determined by supplying an aqueous solution of polyethylene glycol (average molecular weight: 20,000) at an average pressure of 1 kg/cIi and a temperature of 25° C., and taking the value measured after 15 minutes as the removal rate.
また、破裂強度は、膜の内側から水圧を加えて、破裂し
たときの圧力とした。Moreover, the bursting strength was determined by applying water pressure from inside the membrane and determining the pressure at which the membrane burst.
以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way.
実施例I
N−メチル−2−ピロリドン58重量部とジエチレング
リコール25重量部との混合溶剤に、式で表わされる繰
返し単位を有する芳香族ポリスルホン17重量部を溶解
して製膜溶液を得た。Example I A membrane forming solution was obtained by dissolving 17 parts by weight of an aromatic polysulfone having a repeating unit represented by the formula in a mixed solvent of 58 parts by weight of N-methyl-2-pyrrolidone and 25 parts by weight of diethylene glycol.
製膜溶液の25℃の温度における蒸気圧よりも25n+
Hg高い蒸気圧を有する水蒸気下に二重管壁ノズルの外
管から上記製膜溶液を温度25℃にて押し出すと共に、
内管から温度25℃の水を流出させて、1秒間上記雰囲
気に保ち、その内外両表面から凝固させ、次に、水中に
浸漬、脱溶剤して、内径0.5 mm、外径0.911
の中空糸状半透膜を得た。25n+ than the vapor pressure of the membrane forming solution at a temperature of 25°C.
While extruding the above film-forming solution from the outer tube of the double-walled nozzle under water vapor having high Hg vapor pressure at a temperature of 25°C,
Water at a temperature of 25°C is flowed out from the inner tube, kept in the above atmosphere for 1 second to solidify from both the inner and outer surfaces, and then immersed in water to remove the solvent to form a tube with an inner diameter of 0.5 mm and an outer diameter of 0.5 mm. 911
A hollow fiber semipermeable membrane was obtained.
この膜の全膜厚は200μmであり、網状多孔質層の厚
みは、膜厚全体の約25%であった。The total thickness of this membrane was 200 μm, and the thickness of the reticulated porous layer was about 25% of the total membrane thickness.
この中空糸状膜は、純水透水速度6001/d・時・気
圧であり、分子!20000のポリエチレングリコール
に対する除去率は88%であった。また、破裂強度は3
0kg/c+aであった。This hollow fiber membrane has a pure water permeation rate of 6001/d・hour・atmosphere, and molecules! The removal rate for polyethylene glycol 20,000 was 88%. In addition, the bursting strength is 3
It was 0 kg/c+a.
また、上で得た中空糸状半透膜の断面の電子顕微鏡写真
(200倍)を第1図に、外側表面の電子顕微鏡写真(
5000倍)を第2図に示す。In addition, Fig. 1 shows an electron micrograph (200x magnification) of the cross section of the hollow fiber semipermeable membrane obtained above, and an electron micrograph of the outer surface (
5000x) is shown in Figure 2.
比較例1
実施例1において用いたのと同じ製膜溶液を用い、製膜
溶液の温度における蒸気圧よりも10mHg高い蒸気圧
を有する水蒸気雰囲気中に製膜溶液を二重管壁ノズルか
ら押し出して、同様にして中空糸状膜を製造した。この
膜における網状多孔質層の厚みは、膜厚全体の約16%
であった。Comparative Example 1 Using the same membrane forming solution as used in Example 1, the membrane forming solution was extruded through a double tube wall nozzle into a steam atmosphere having a vapor pressure 10 mHg higher than the vapor pressure at the temperature of the membrane forming solution. A hollow fiber membrane was produced in the same manner. The thickness of the network porous layer in this membrane is approximately 16% of the total membrane thickness.
Met.
この中空糸状膜は、純水透水速度4001/rd・時・
気圧、分子!20000のポリエチレングリコールに対
する除去率は85%であり、破裂強度は18kg/ad
であった。従って、この膜は、実施例1による中空糸状
膜に比較して、純水透水速度が低く、更に、破裂強度が
著しく小さいことが明らかである。This hollow fiber membrane has a pure water permeation rate of 4001/rd・hour・
Atmospheric pressure, molecules! The removal rate for 20,000 polyethylene glycol is 85%, and the bursting strength is 18 kg/ad.
Met. Therefore, it is clear that this membrane has a lower pure water permeation rate and a significantly lower bursting strength than the hollow fiber membrane according to Example 1.
また、上で得た中空糸状半透膜の断面の電子顕微鏡写真
(200倍)を第3図に、外側表面の電子顕微鏡写真(
5000倍)を第4図に示す。Figure 3 shows an electron micrograph (200x magnification) of the cross section of the hollow fiber semipermeable membrane obtained above, and an electron micrograph of the outer surface (
5000 times) is shown in FIG.
実施例2
N、N−ジメチルホルムアミド63重量部とエチレング
リコール19重量部との混合溶剤に実施例1と同じ芳香
族ポリスルホン18重量部を溶解して製膜溶液を得た。Example 2 A membrane forming solution was obtained by dissolving 18 parts by weight of the same aromatic polysulfone as in Example 1 in a mixed solvent of 63 parts by weight of N,N-dimethylformamide and 19 parts by weight of ethylene glycol.
製膜溶液の25℃の温度における蒸気圧よりも30mm
Hg高い蒸気圧を有するイソプロピルアルコール蒸気下
に二重管壁ノズルの外管から上記製膜溶液を温度25℃
にて押し出すと共に、内管から温度25℃の水を流出さ
せて、1秒間上記雰囲気に保ち、その内外両表面から凝
固させ、次に、水中に浸漬、脱溶剤して、全膜厚200
〜500μm、内径1. OIm、外径1.4〜2.
OImの種々の膜厚を有する中空糸状半透膜を得た。30 mm higher than the vapor pressure of the membrane forming solution at a temperature of 25°C.
The above film-forming solution was heated at 25°C from the outer tube of a double-walled nozzle under isopropyl alcohol vapor having a high Hg vapor pressure.
At the same time, water at a temperature of 25°C was extruded from the inner tube, kept in the above atmosphere for 1 second, solidified from both the inner and outer surfaces, and then immersed in water to remove the solvent to form a film with a total film thickness of 200°C.
~500μm, inner diameter 1. OIm, outer diameter 1.4-2.
Hollow fiber semipermeable membranes having various thicknesses of OIm were obtained.
これら中空糸状膜について、膜厚と純水透水速度及びポ
リエチレングリコール除去率との関係を第5図に、また
、膜厚に対する網状多孔質層の厚みと破裂強度との関係
を第6図にそれぞれ示す。Regarding these hollow fiber membranes, Figure 5 shows the relationship between membrane thickness, pure water permeation rate, and polyethylene glycol removal rate, and Figure 6 shows the relationship between the thickness of the reticulated porous layer and bursting strength with respect to membrane thickness. show.
本発明による中空糸状膜によれば、破裂強度が高く、且
つ、膜厚が厚くなっても、高い透水速度を維持すること
が明らかである。It is clear that the hollow fiber membrane according to the present invention has high burst strength and maintains a high water permeation rate even when the membrane thickness increases.
比較例2
実施例1において、イソプロピルアルコール蒸気圧を製
膜溶液の温度における蒸気圧よりも11n+Hg高くし
た以外は、実施例2と同様にして、中空糸状膜を得た。Comparative Example 2 A hollow fiber membrane was obtained in the same manner as in Example 2, except that the isopropyl alcohol vapor pressure in Example 1 was made 11n+Hg higher than the vapor pressure at the temperature of the membrane forming solution.
これらの膜について、膜厚と純水透水速度及びポリエチ
レングリコール除去率との関係を第5図に、また、膜厚
に対する網状多孔質層の厚みと破裂強度との関係を第6
図にそれぞれ示す。For these membranes, the relationship between membrane thickness, pure water permeation rate, and polyethylene glycol removal rate is shown in Figure 5, and the relationship between the thickness of the reticulated porous layer and bursting strength with respect to membrane thickness is shown in Figure 6.
Each is shown in the figure.
これらの中空糸状膜は、膜厚が同じである本発明による
膜に比較して、純水透水速度が小さく、また、膜厚全体
に・占める綱状多孔質層の厚みが薄いために、破裂強度
が著しく小さいことが明らかである。These hollow fiber membranes have a lower pure water permeation rate than the membrane according to the present invention with the same membrane thickness, and because the thickness of the porous porous layer in the entire membrane thickness is small, they are prone to rupture. It is clear that the strength is significantly lower.
第1図は本発明の方法による芳香族ポリスルホン中空糸
状膜の断面構造を示す走査型電子顕微鏡写真(200倍
)、第2図は外側の表面構造を示す走査型電子顕微鏡写
真(5000倍)、第3図は比較例としての芳香族ポリ
スルホン中空糸状膜の断面構造を示す走査型電子顕微鏡
写真(200倍)、第4図は外側表面の構造を示す走査
型電子顕微鏡写真(5000倍)である。
また、第5図は、上記本発明による中空糸状膜及び比較
例としての中空糸状膜について、純水透水速度及びポリ
エチレングリコールの除去率の膜厚依存性を示すグラフ
、第6図は、上記本発明による中空糸状膜及び比較例と
しての中空糸状膜について、膜厚に対する網状多孔質層
厚み及び破裂強度との関係を示すグラフである。
特許出願人 日東電気工業株式会社
代理人 弁理士 牧 野 逸 部
第1図
第2図
第3図
第4図
第5図
蝮厚(μmK)
第6図
賊厚(、am )
手続補正書(方式)
%式%
2、発明の名称
芳香族ポリスルホン中空糸状膜の製造方法3、補正をす
る者
事件との関係 特許出願人
住 所 大阪府茨木市下穂積1丁目1番2号名 称 日
東電気工業株式会社
4、代理人
住 所 大阪市西区新町1丁目8番3号5、補正命令の
日付 昭和60年11月 6日(発送日 昭和59年1
1月26日)
6、補正により増加する発明の数
補正の内容
(1)明細書第20頁第12〜19行の「第1図は・・
・である。」を削除する。
(2)明細書第20頁第20行の「また、第5図は、上
記」を「第1図は、」と補正する。
(3)明細書第21頁第3行の「第6図」を1第2図」
と補正する。
(4) 図面第1図乃至第6図を削除し、新に第1図
及び第2図を提出する。
以上
第1図
γy辱(μ峨)FIG. 1 is a scanning electron micrograph (200x) showing the cross-sectional structure of an aromatic polysulfone hollow fiber membrane produced by the method of the present invention, and FIG. 2 is a scanning electron micrograph (5000x) showing the outer surface structure. Figure 3 is a scanning electron micrograph (200x) showing the cross-sectional structure of an aromatic polysulfone hollow fiber membrane as a comparative example, and Figure 4 is a scanning electron micrograph (5000x) showing the structure of the outer surface. . Further, FIG. 5 is a graph showing the dependence of pure water permeation rate and polyethylene glycol removal rate on membrane thickness for the hollow fiber membrane according to the present invention and the hollow fiber membrane as a comparative example. It is a graph showing the relationship between the membrane thickness, the reticular porous layer thickness, and the bursting strength for the hollow fiber membrane according to the invention and the hollow fiber membrane as a comparative example. Patent Applicant Nitto Electric Industry Co., Ltd. Agent Patent Attorney Ittsu Makino Department Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Thickness (μmK) Figure 6 Thickness (μmK) Procedural Amendment (Formula) ) % formula % 2. Name of the invention: Method for producing aromatic polysulfone hollow fiber membrane 3. Relationship with the case of the person making the amendment Patent applicant address: 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Name: Nitto Electric Industry Co., Ltd. Co., Ltd. 4, agent address: 1-8-3-5 Shinmachi, Nishi-ku, Osaka City, date of amendment order: November 6, 1985 (shipment date: January 1, 1988)
(January 26) 6. Number of inventions increased by amendment Contents of the amendment (1) "Figure 1 is..." in lines 12-19 of page 20 of the specification
・It is. ” to be deleted. (2) On page 20, line 20 of the specification, ``Also, FIG. 5 is shown above'' is corrected to ``FIG. 1 is''. (3) ``Figure 6'' on page 21, line 3 of the specification is replaced with ``Figure 2.''
and correct it. (4) Delete drawings 1 to 6 and submit new drawings 1 and 2. Above is Figure 1 γy insult (μ峨)
Claims (4)
この溶剤と混和するが、芳香族ポリスルホンを溶解しな
い溶剤との混合溶剤に芳香族ポリスルホンを溶解して製
膜溶液とし、二重管型ノズルの内管から凝固液を流出さ
せつつ、上記製膜溶液を外管から押出し、外側表面には
製膜溶液の温度における蒸気圧よりも15mmHg以上
高い蒸気圧を有する芳香族ポリスルホンの非溶剤の蒸気
に接触させた後、水中に浸漬して、中空糸に成形すると
共に、中空糸に残存する溶剤を脱溶剤し、内側表面に実
質的に10〜100Åの範囲にある微孔を有する緻密な
表面を形成し、外側表面に実質的に0.01〜0.5μ
mの範囲にある微孔を有する緻密な表面を形成し、その
間に、孔径が上記いずれの表面の有する微孔よりも大き
く、且つ、孔径が実質的に0.05〜5μmの範囲にあ
る細孔を有すると共に、上記各表面に連続し、且つ、厚
みが全膜厚の20〜50%を占める網状多孔質層を形成
することを特徴とする芳香族ポリスルホン中空糸状膜の
製造方法。(1) a polar organic solvent that dissolves aromatic polysulfone;
Aromatic polysulfone is dissolved in a mixed solvent with a solvent that is miscible with this solvent but does not dissolve aromatic polysulfone to form a film forming solution. The solution is extruded from the outer tube, and the outer surface is brought into contact with the vapor of an aromatic polysulfone non-solvent having a vapor pressure 15 mmHg or more higher than the vapor pressure at the temperature of the membrane forming solution, and then immersed in water to form a hollow fiber. At the same time, the solvent remaining in the hollow fibers is removed, forming a dense surface with micropores substantially in the range of 10 to 100 Å on the inner surface, and substantially pores in the range of 0.01 to 100 Å on the outer surface. 0.5μ
Forms a dense surface having micropores in the range of m, with a pore size larger than the micropores of any of the above surfaces, and having a pore size substantially in the range of 0.05 to 5 μm. A method for producing an aromatic polysulfone hollow fiber membrane, which comprises forming a network-like porous layer having pores, continuous on each of the surfaces, and having a thickness of 20 to 50% of the total membrane thickness.
請求の範囲第1項記載の芳香族ポリスルホン中空糸状膜
の製造方法。(2) The method for producing an aromatic polysulfone hollow fiber membrane according to claim 1, wherein the non-solvent vapor is water vapor.
とを特徴とする特許請求の範囲第1項記載の芳香族ポリ
スルホン中空糸状膜の製造方法。(3) The method for producing an aromatic polysulfone hollow fiber membrane according to claim 1, wherein the non-solvent vapor is lower aliphatic alcohol vapor.
とを特徴とする特許請求の範囲第1項記載の芳香族ポリ
スルホン中空糸状膜の製造方法。(4) The method for producing an aromatic polysulfone hollow fiber membrane according to claim 1, wherein the network porous layer occupies 25 to 40% of the total membrane thickness.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18783185A JPH0696104B2 (en) | 1985-08-26 | 1985-08-26 | Method for producing aromatic polysulfone hollow fiber membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18783185A JPH0696104B2 (en) | 1985-08-26 | 1985-08-26 | Method for producing aromatic polysulfone hollow fiber membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6249911A true JPS6249911A (en) | 1987-03-04 |
JPH0696104B2 JPH0696104B2 (en) | 1994-11-30 |
Family
ID=16212999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18783185A Expired - Lifetime JPH0696104B2 (en) | 1985-08-26 | 1985-08-26 | Method for producing aromatic polysulfone hollow fiber membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0696104B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1012486C2 (en) * | 1999-07-01 | 2001-01-03 | Search B V S | A method of manufacturing multichannel membranes, multichannel membranes and their use in separation methods. |
JP2010227932A (en) * | 2005-10-13 | 2010-10-14 | Asahi Kasei Chemicals Corp | Porous multilayered hollow-fiber membrane and process for producing the same |
JP2022552198A (en) * | 2019-10-10 | 2022-12-15 | インテグリス・インコーポレーテッド | Porous polymer membranes and related filters and methods |
-
1985
- 1985-08-26 JP JP18783185A patent/JPH0696104B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1012486C2 (en) * | 1999-07-01 | 2001-01-03 | Search B V S | A method of manufacturing multichannel membranes, multichannel membranes and their use in separation methods. |
WO2001002085A1 (en) * | 1999-07-01 | 2001-01-11 | S. Search B.V. | Method for manufacturing multiple channel membranes, multiple channel membranes and the use thereof in separation methods |
US6787216B1 (en) | 1999-07-01 | 2004-09-07 | Inge Ag | Method for manufacturing multiple channel membranes, multiple channel membranes and the use thereof in separation methods |
JP2010227932A (en) * | 2005-10-13 | 2010-10-14 | Asahi Kasei Chemicals Corp | Porous multilayered hollow-fiber membrane and process for producing the same |
JP2022552198A (en) * | 2019-10-10 | 2022-12-15 | インテグリス・インコーポレーテッド | Porous polymer membranes and related filters and methods |
Also Published As
Publication number | Publication date |
---|---|
JPH0696104B2 (en) | 1994-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2474625C (en) | Poly(ethylene chlorotrifluoroethylene) membranes | |
US4612119A (en) | Hollow fiber filter medium and process for preparing the same | |
JPS58132111A (en) | Polysulfone hollow fiber | |
WO1997022405A1 (en) | Hollow fiber type filtration membrane | |
JPH0647058B2 (en) | Gas selective permeable membrane | |
JPS63116723A (en) | Method of forming hollow fiber irregular gas separating film | |
JPWO2015008668A1 (en) | Hydrophilic vinylidene fluoride porous hollow fiber membrane and method for producing the same | |
JPS6356802B2 (en) | ||
KR100557264B1 (en) | Hollow fiber membrane and process for producing the same | |
JPH0478729B2 (en) | ||
JPS6138208B2 (en) | ||
JPS6249911A (en) | Production of aromatic polysulfone hollow yarn membrane | |
JPH08108053A (en) | Cellulose acetate hollow-fiber separation membrane and its production | |
JPS59228016A (en) | Hollow yarn membrane of aromatic polysulfone | |
JPH03258330A (en) | Porous hollow fiber membrane | |
JP2002126479A (en) | Porous membrane, gas separating membrane and method of manufacturing for the same | |
JP2013031832A (en) | Method for manufacturing porous membrane, and microfiltration membrane | |
JPH0696105B2 (en) | Method for producing aromatic polysulfone hollow fiber membrane | |
JPH0468010B2 (en) | ||
JP3169404B2 (en) | Method for producing semipermeable membrane with high water permeability | |
JPH07155570A (en) | Laminated membrane | |
JP2592725B2 (en) | Manufacturing method of hollow fiber membrane | |
JPH06343842A (en) | Cellulose acetate hollow fiber separation membrane | |
JPS5857963B2 (en) | Manufacturing method of composite permeable membrane | |
JPS6253414A (en) | Production of aromatic polysulfone hollow fiber membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |