JPH0696104B2 - Method for producing aromatic polysulfone hollow fiber membrane - Google Patents

Method for producing aromatic polysulfone hollow fiber membrane

Info

Publication number
JPH0696104B2
JPH0696104B2 JP18783185A JP18783185A JPH0696104B2 JP H0696104 B2 JPH0696104 B2 JP H0696104B2 JP 18783185 A JP18783185 A JP 18783185A JP 18783185 A JP18783185 A JP 18783185A JP H0696104 B2 JPH0696104 B2 JP H0696104B2
Authority
JP
Japan
Prior art keywords
hollow fiber
solvent
aromatic polysulfone
fiber membrane
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18783185A
Other languages
Japanese (ja)
Other versions
JPS6249911A (en
Inventor
永 池端
司 落海
和朗 中尾
昭男 岩間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP18783185A priority Critical patent/JPH0696104B2/en
Publication of JPS6249911A publication Critical patent/JPS6249911A/en
Publication of JPH0696104B2 publication Critical patent/JPH0696104B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、透水性と機械的強度のいずれにもすぐれた芳
香族ポリスルホン中空糸状半透膜の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an aromatic polysulfone hollow fiber semipermeable membrane which is excellent in both water permeability and mechanical strength.

(従来の技術) 芳香族ポリスルホンは、耐熱性及び耐薬品性にすぐれて
いるため、従来よりこれを素材とする中空糸状半透膜が
種々提案されている。しかし、従来より知られている方
法によれば、機械的強度が高く、且つ透水性にすぐれた
中空糸状膜を得ることができない。
(Prior Art) Since aromatic polysulfones have excellent heat resistance and chemical resistance, various hollow fiber semipermeable membranes made of them have been conventionally proposed. However, according to the conventionally known methods, a hollow fiber membrane having high mechanical strength and excellent water permeability cannot be obtained.

例えば、特開昭49−23183号公報には、内表面に緻密な
層を有し、外表面には重合体が欠落した径10μm以上の
空洞が開口している中空糸状半透膜が提案されている
が、かかる構造によれば特に機械的強度が小さい。この
ため、特開昭54−145379号公報には、内表面及び外表面
に共に緻密な層を有し、この緻密層から連続する多孔質
重合体層が膜表面から孔径が連続的に大きくなるような
構造の芳香族ポリスルホン中空糸状半透膜が提案されて
いる。しかし、この膜は、透水性の膜厚依存性が大き
く、特に、膜厚が200μmを越えるとき、透水性が著し
く悪くなる。
For example, JP-A-49-23183 proposes a hollow-fiber-like semipermeable membrane having a dense layer on the inner surface and having a cavity with a diameter of 10 μm or more in which the polymer is missing on the outer surface. However, such a structure has particularly low mechanical strength. Therefore, in JP-A-54-145379, both the inner surface and the outer surface have dense layers, and a porous polymer layer continuous from this dense layer has a pore size continuously increasing from the membrane surface. An aromatic polysulfone hollow fiber semipermeable membrane having such a structure has been proposed. However, this membrane has a large dependence of water permeability on the film thickness, and particularly when the film thickness exceeds 200 μm, the water permeability is significantly deteriorated.

他方、特開昭59−228017号公報には、既に本発明者らに
よつて、芳香族ポリスルホンを二重管型ノズルから押し
出して、湿式法にて中空糸状膜に成形する際に、膜の内
側表面に凝固液を接触させ、外側表面には所定の湿度の
空気を接触させ、次いで、水中に浸漬して脱溶剤し、凝
固させて、中空糸状膜を製造する方法が開示されてい
る。この方法によれば、特に、外側表面の微孔孔径を制
御しつつ、内側表面に外側表面よりも小さい孔径の微孔
を形成させた中空糸状膜を得ることができる。
On the other hand, in JP-A-59-228017, the present inventors have already described that when an aromatic polysulfone is extruded from a double-tube type nozzle and formed into a hollow fiber membrane by a wet method, A method for producing a hollow fiber membrane is disclosed in which a coagulating liquid is brought into contact with the inner surface, and air having a predetermined humidity is brought into contact with the outer surface, and then immersed in water to remove the solvent and coagulate to produce a hollow fiber membrane. According to this method, it is possible to obtain a hollow fiber membrane in which micropores having a pore diameter smaller than that of the outer surface are formed on the inner surface while controlling the micropore diameter of the outer surface.

本発明者らは、前記した従来の芳香族ポリスルホン中空
糸状膜における問題を解決するために、上記のようにし
て、中空糸状膜への成形の際に内外表面の凝固条件を異
ならせる方法による芳香族中空糸状膜の製造について更
に鋭意研究した結果、芳香族ポリスルホンを二重管型ノ
ズルから押し出して、湿式方にて中空糸状膜に成形する
際に、膜の内側表面に凝固液を接触させ、外側表面には
芳香族ポリスルホンの非溶剤の所定の蒸気圧の蒸気を接
触させることによつて、外側表面の微孔孔径を一層容易
に制御しつつ、内側表面に外側表面よりも小さい孔径の
微孔を形成させると共に、内外表面の間に厚い網状多孔
質層を形成させた中空糸状膜を得ることができ、従つ
て、かかる構造を有する中空糸状膜は、特に、破裂強度
にすぐれると共に、膜厚が厚い場合にも、実用上十分に
大きい透水性能をもつことを見出して、本発明に至つた
ものである。
In order to solve the above-mentioned problems in the conventional aromatic polysulfone hollow fiber membranes, the inventors of the present invention, as described above, use aroma by a method of changing the coagulation conditions of the inner and outer surfaces during molding into the hollow fiber membranes. As a result of further diligent research on the production of a group hollow fiber membrane, an aromatic polysulfone was extruded from a double tube type nozzle, and when forming a hollow fiber membrane by a wet method, a coagulating liquid was brought into contact with the inner surface of the membrane, By contacting the outer surface with vapor of a non-solvent of aromatic polysulfone having a predetermined vapor pressure, the pore diameter of the outer surface can be controlled more easily, while the inner surface has a smaller pore diameter than that of the outer surface. With forming pores, it is possible to obtain a hollow fiber membrane in which a thick reticulated porous layer is formed between the inner and outer surfaces, and thus the hollow fiber membrane having such a structure is particularly excellent in burst strength, If the thickness is thicker, and found to have a practical use sufficiently large water permeation performance, but was Itaritsu the present invention.

(発明の目的) 従つて、本発明は、一般的には、機械的強度及び透水性
のいずれにもすぐれる芳香族ポリスルホン中空糸状半透
膜を製造する方法を提供することを目的とし、特に、従
来の製造方法に比較して、外側表面の微孔孔径を一層容
易に制御しつつ、内側表面に外側表面よりも小さい孔径
の微孔を形成させてなり、従つて、構造が前記したよう
な従来の中空糸状膜とは基本的に異なり、その結果、機
械的強度及び透水性のいずれもすぐれる芳香族ポリスル
ホン中空糸状半透膜を製造する方法を提供することを目
的とする。
(Object of the invention) Accordingly, the present invention generally aims to provide a method for producing an aromatic polysulfone hollow fiber semipermeable membrane excellent in both mechanical strength and water permeability, and in particular, Compared with the conventional manufacturing method, while controlling the micropore diameter of the outer surface more easily, the micropores having a smaller pore diameter than that of the outer surface are formed on the inner surface. It is an object of the present invention to provide a method for producing an aromatic polysulfone hollow fiber semipermeable membrane which is basically different from the conventional hollow fiber membranes, and as a result has excellent mechanical strength and water permeability.

(発明の構成) 本発明による芳香族ポリスルホン中空糸状半透膜の製造
方法は、芳香族ポリスルホンを溶解する極性有機溶剤
と、この溶剤と混和するが、芳香族ポリスルホンを溶解
しない溶剤との混合溶剤に芳香族ポリスルホンを溶解し
て製膜溶液とし、二重管型ノズルの内管から凝固液を流
出させつつ、上記製膜溶液を外管から押出し、外側表面
には製膜溶液の温度における蒸気圧よりも15mmHg以上高
い蒸気圧を有する芳香族ポリスルホンの非溶剤の蒸気に
接触させた後、水中に浸漬して、中空糸に成形すると共
に、中空糸に残存する溶剤を脱溶剤し、内側表面に実質
的に10〜100Åの範囲にある微孔を有する緻密な表面を
形成し、外側表面に実質的に0.01〜0.5μmの範囲にあ
る微孔を有する緻密な表面を形成し、その間に、孔径が
上記いずれの表面の有する微孔よりも大きく、且つ、孔
径が実質的に0.05〜5μmの範囲にある細孔を有すると
共に、上記各表面に連続し、且つ、厚みが全膜厚の20〜
50%を占める網状多孔質層を形成することを特徴とす
る。
(Structure of the Invention) A method for producing an aromatic polysulfone hollow fiber semipermeable membrane according to the present invention is a mixed solvent of a polar organic solvent capable of dissolving aromatic polysulfone and a solvent which is miscible with the solvent but does not dissolve aromatic polysulfone. Aromatic polysulfone is dissolved in to form a film-forming solution, and while the coagulating liquid is allowed to flow out from the inner tube of the double-tube type nozzle, the above-mentioned film-forming solution is extruded from the outer tube, and the outer surface is vaporized at the temperature of the film-forming solution. After contacting with a non-solvent vapor of aromatic polysulfone having a vapor pressure higher than the pressure by 15 mmHg or more, it is immersed in water and molded into a hollow fiber, and the solvent remaining in the hollow fiber is desolvated to form an inner surface. To form a dense surface having micropores substantially in the range of 10 to 100Å, and to form a dense surface having micropores substantially in the range of 0.01 to 0.5 μm on the outer surface, Any of the above pore sizes Greater than microporous having a surface, and, and having a pore pore size is in the range of substantially 0.05 to 5 [mu] m, continuous with the respective surfaces, and, 20 to a thickness of the total thickness
It is characterized by forming a reticulated porous layer occupying 50%.

本発明による方法においては、芳香族ポリスルホンを溶
解する極性有機溶剤と、この溶剤と混和するが芳香族ポ
リスルホンを溶解しない溶剤との混合溶剤に芳香族ポリ
スルホンを溶解して製膜溶液とし、二重管型ノズルの外
管から押出してポリスルホンを脱溶剤凝固させて、中空
糸状膜に成形する際に、内側表面には凝固液を接触さ
せ、外側表面には所定の蒸気圧の芳香族ポリスルホン非
溶剤の蒸気を接触させ、次いで、水中に浸漬して、中空
糸に残存する溶剤を脱溶剤する。従つて、この方法にお
いては、二重管型ノズルから押出されたポリスルホン
は、内側表面は凝固液との置換によつて凝固され、外側
表面は非溶剤によつて凝固されるが、しかし、外側表面
は完全に凝固する必要はなく、この後に水中に浸漬され
ることによつて、外側表面も完全に凝固されると共に、
残存する溶剤が脱溶剤されて、本発明による中空糸状膜
を得ることができる。
In the method according to the present invention, the aromatic polysulfone is dissolved in a polar organic solvent, and a solvent that is miscible with the solvent but does not dissolve the aromatic polysulfone is used as a film-forming solution by dissolving the aromatic polysulfone into a film-forming solution. When the polysulfone is extruded from the outer tube of the tubular nozzle to solidify the solvent to form a hollow fiber membrane, the inner surface is contacted with the coagulating liquid and the outer surface is a non-solvent of aromatic polysulfone having a predetermined vapor pressure. Of steam, and then immersed in water to remove the solvent remaining in the hollow fiber. Therefore, in this method, the polysulfone extruded from the double-tube nozzle has an inner surface coagulated by displacement with a coagulating liquid and an outer surface coagulated by a non-solvent, but The surface does not have to be completely solidified, and by being subsequently immersed in water, the outer surface is also completely solidified,
The remaining solvent is removed to obtain the hollow fiber membrane according to the present invention.

かかる本発明の方法によれば、膜の内側表面に実質的に
10〜100Åの孔径の微孔を有する緻密な表面を形成し、
膜の外側表面に実質的に0.01〜0.5μm、通常、0.1〜0.
3μmの範囲の孔径の微孔を有する他方の緻密な表面を
形成すると共に、その間に、上記いずれの表面の有する
微孔よりも大きく、且つ、孔径が実質的に0.05〜5μの
範囲にある細孔を有して、上記各表面にそれぞれ連続す
る網状多孔質層と、この網状多孔質層に連続してほぼ膜
の中間に位置すると共に、膜のほぼ半径方向に延びる空
洞を有する指状構造層とからなる機械的強度及び透水性
にすぐれる芳香族ポリスルホン中空糸状半透膜を得るこ
とができる。
According to such a method of the present invention, the inner surface of the membrane is substantially
Form a dense surface with fine pores of 10 to 100Å,
Substantially 0.01-0.5 μm, usually 0.1-0.
While forming the other dense surface having micropores having a pore diameter in the range of 3 μm, a fine pore having a pore diameter substantially in the range of 0.05 to 5 μ is formed between them while forming the other dense surface. A finger-like structure having pores and a continuous network porous layer on each of the above-mentioned surfaces, and a cavity continuous with the network porous layer located approximately in the middle of the membrane and extending substantially in the radial direction of the membrane. It is possible to obtain an aromatic polysulfone hollow fiber-shaped semipermeable membrane having a layer and excellent in mechanical strength and water permeability.

特に、本発明の方法によれば、得られる中空糸状半透膜
の全膜厚は、通常、50〜500μmであり、このうち、網
状多孔質層が、通常、全膜厚の20〜50%、殆どの場合、
25〜40%を占め、この網状多孔質層にはポリスルホンが
欠落した空洞は全く存在しない。従つて、本発明による
中空糸状膜は、特に、機械的強度及び耐圧密化性にすぐ
れている。また、指状構造層の有する空洞の横断方向の
径は、通常、10mμ以上である。
In particular, according to the method of the present invention, the total thickness of the obtained hollow fiber semipermeable membrane is usually 50 to 500 μm, of which the reticulated porous layer is usually 20 to 50% of the total thickness. , In most cases,
It accounts for 25 to 40%, and there are no cavities lacking polysulfone in this reticulated porous layer. Therefore, the hollow fiber membrane according to the present invention is particularly excellent in mechanical strength and pressure densification. The diameter of the cavity of the finger structure layer in the transverse direction is usually 10 mμ or more.

尚、網状多孔質層は外表面よりも粗大な多孔質層であつ
て、網状多孔質層の有する細孔の孔径は、通常、外表面
の有する微孔の孔径の約10倍又はそれ以上である。
Incidentally, the reticulated porous layer is a porous layer coarser than the outer surface, the pore size of the pores of the reticulated porous layer is usually about 10 times or more than the pore size of the micropores of the outer surface. is there.

本発明の方法において、芳香族ポリスルホンは代表的に
は次のような繰返し単位を有する。
In the method of the present invention, the aromatic polysulfone typically has the following repeating units.

但し、X1〜X6はメチル基、エチル基等のアルキル基、塩
素、臭素等のハロゲンに例示される非解離性の置換基を
示し、l、m、n、o、p及びqは0〜4の整数を示
す。一般的には、l、m、n、o、p及びqのすべてが
0であるポリスルホンが入手しやすく、本発明において
も好ましく用いられる。しかし、本発明で用いるポリス
ルホンは上記に限定されるものではない。
However, X 1 to X 6 represent non-dissociative substituents exemplified by alkyl groups such as methyl group and ethyl group, halogens such as chlorine and bromine, and l, m, n, o, p and q are 0. Indicates an integer of ˜4. Generally, polysulfone in which all of l, m, n, o, p and q are 0 is easily available and is preferably used in the present invention. However, the polysulfone used in the present invention is not limited to the above.

本発明の方法において、芳香族ポリスルホンを含む製膜
溶液は、芳香族ポリスルホンをこれを溶解する極性有機
溶剤と、これを溶解しない非溶剤との混合溶剤に溶解さ
せて調製される。上記極性有機溶剤としては、N−メチ
ル−2−ピロリドン、ジメチルホルムアミド、ジメチル
アセトアミド等が好ましく用いられ、また、非溶剤とし
ては、グリセリン、エチレングリコール、プロピレング
リコール等のような脂肪族多価アルコール、ジエチレン
グリコール、ポリエチレングリコール等のポリアルキレ
ングリコール、メタノール、エタノール、イソプロピル
アルコール等の低級脂肪族アルコール、ジオキサン、テ
トラヒドロフラン等の環状エーテル、アセトン、メチル
エチルケトン等の低級脂肪族ケトン等が好ましく用いら
れる。
In the method of the present invention, a film-forming solution containing aromatic polysulfone is prepared by dissolving aromatic polysulfone in a mixed solvent of a polar organic solvent capable of dissolving it and a non-solvent not capable of dissolving it. As the polar organic solvent, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide and the like are preferably used, and as the non-solvent, glycerin, ethylene glycol, aliphatic polyhydric alcohols such as propylene glycol and the like, Preferably used are polyalkylene glycols such as diethylene glycol and polyethylene glycol, lower aliphatic alcohols such as methanol, ethanol and isopropyl alcohol, cyclic ethers such as dioxane and tetrahydrofuran, lower aliphatic ketones such as acetone and methyl ethyl ketone.

本発明の方法においては、製膜溶液における非溶剤は、
得られる芳香族ポリスルホン中空糸状膜の透水性を高め
るために用いられる。かかる非溶剤と極性有機溶剤との
混合溶剤中の非溶剤の含有量は、得られる混合溶剤が均
一である限りは特に制限されないが、通常、5〜50重量
%の範囲である。通常、混合溶剤中の非溶剤の割合を高
める程、得られる中空糸状透膜の透水性が高まる。反対
に、製膜溶液に非溶剤を用いない場合は、得られる膜の
透水性は、製膜溶液の成分として非溶剤を用いて得られ
る膜の1/2乃至1/10程度である。しかし、混合溶剤にお
いて、非溶剤の割合を余りに多くすることは、混合溶剤
へのポリスルホンの溶解を困難とすると共に、得られる
中空糸状膜にピンホール等の膜欠陥を形成させることが
あるので、好ましくない。
In the method of the present invention, the non-solvent in the film forming solution is
It is used to enhance the water permeability of the resulting aromatic polysulfone hollow fiber membrane. The content of the non-solvent in the mixed solvent of the non-solvent and the polar organic solvent is not particularly limited as long as the obtained mixed solvent is uniform, but is usually in the range of 5 to 50% by weight. Generally, the higher the proportion of non-solvent in the mixed solvent, the higher the water permeability of the obtained hollow fiber permeable membrane. On the contrary, when a non-solvent is not used in the film-forming solution, the water permeability of the obtained film is about 1/2 to 1/10 of that of the film obtained by using the non-solvent as a component of the film-forming solution. However, in the mixed solvent, if the proportion of the non-solvent is too large, it becomes difficult to dissolve the polysulfone in the mixed solvent, and the resulting hollow fiber membrane may form film defects such as pinholes. Not preferable.

製膜溶液中の芳香族ポリスルホンの濃度は、通常、5〜
35重量%、好ましくは10〜30重量%である。35重量%を
越えるときは、得られる半透膜の透水性が実用的には小
さすぎるからであり、一方、5重量%より少ないとき
は、得られる膜が機械的強度に劣るようになるからであ
る。
The concentration of the aromatic polysulfone in the film forming solution is usually 5 to
It is 35% by weight, preferably 10 to 30% by weight. When it exceeds 35% by weight, the water permeability of the obtained semipermeable membrane is too small for practical use, while when it is less than 5% by weight, the obtained membrane becomes inferior in mechanical strength. Is.

次に、二重管型ノズルの内管に流出させる凝固液として
は、一般的には水が用いられるが、前記したように、芳
香族ポリスルホンを溶解しないが、前記極性有機溶剤と
混和する溶剤であれば任意に用いることができ、例え
ば、前記した非溶剤又はこれと水との混合溶剤であつて
もよい。更に、芳香族ポリスルホンを単独では溶解する
溶剤であつても、他の溶剤と混合することにより、ポリ
スルホンを溶解しない範囲であれば、凝固液として用い
ることができる。このように、製膜溶液が二重管型ノズ
ルから非溶剤蒸気中に押し出されてから水中に浸漬され
るまでの時間は、製膜溶液の組成やノズルから押し出さ
れる際の製膜溶液の厚みにもよるが、通常、0.1秒以
上、好ましくは0.5〜10秒の範囲である。
Next, as the coagulating liquid flowing out to the inner pipe of the double pipe type nozzle, water is generally used, but as described above, a solvent that does not dissolve the aromatic polysulfone but is miscible with the polar organic solvent. Any non-solvent mentioned above or a mixed solvent of water and water may be used. Further, even a solvent that dissolves aromatic polysulfone alone can be used as a coagulating liquid as long as it is in a range that does not dissolve polysulfone by mixing with another solvent. In this way, the time from when the film-forming solution is extruded into the non-solvent vapor from the double-tube nozzle until it is immersed in water depends on the composition of the film-forming solution and the thickness of the film-forming solution when extruded from the nozzle. Depending on the condition, it is usually 0.1 seconds or longer, preferably 0.5 to 10 seconds.

本発明の方法においては、製膜溶液をポリスルホンの非
溶剤蒸気中に押し出す際の非溶剤蒸気としては、水蒸気
のほか、製膜溶液の調製のために用いられる非溶剤有機
溶剤の蒸気も用いられる。特に、本発明においては、か
かる非溶剤蒸気としては、水蒸気及びメタノール、エタ
ノール、イソプロピルアルコール等の低級脂肪族アルコ
ールの蒸気が好ましい。
In the method of the present invention, as the non-solvent vapor when the film-forming solution is extruded into the non-solvent vapor of polysulfone, in addition to water vapor, the vapor of the non-solvent organic solvent used for the preparation of the film-forming solution is also used. . Particularly, in the present invention, the non-solvent vapor is preferably steam and vapor of a lower aliphatic alcohol such as methanol, ethanol, isopropyl alcohol.

本発明の方法において、非溶剤の蒸気圧は、得られる中
空糸状膜における網状多孔質層の厚みを全膜厚の20〜50
%とするために、用いる製膜溶液の温度における蒸気圧
よりも15mmHg以上、好ましくは20mmHg以上高いことが必
要である。非溶剤の蒸気圧が、用いる製膜溶液の温度に
おける蒸気圧よりも15mmHgよりも低い場合は、特に、外
側表面の網状多孔質層の厚みが薄く、その結果、相対的
に指状構造の占める厚みが大きいうえに、更に、外側表
面における微孔の分散密度が小さいので、かかる中空糸
状膜は、高い透水性能をもたず、しかも、機械的強度及
び耐圧密化性に劣る。このように、網状多孔質層が全膜
厚の20%よりも少ないときは、膜が実用上十分な機械的
強度及び耐圧密化性を有しない。
In the method of the present invention, the vapor pressure of the non-solvent is 20 to 50 of the total thickness of the reticulated porous layer in the resulting hollow fiber membrane.
%, It is necessary to be higher than the vapor pressure at the temperature of the film-forming solution used by 15 mmHg or more, preferably 20 mmHg or more. Especially when the vapor pressure of the non-solvent is lower than 15 mmHg than the vapor pressure at the temperature of the film-forming solution to be used, the thickness of the reticulated porous layer on the outer surface is thin, and as a result, the relative finger-like structure occupies. Since the thickness is large and the dispersion density of the fine pores on the outer surface is small, such a hollow fiber membrane does not have high water permeability, and is inferior in mechanical strength and pressure-resistant densification. As described above, when the reticulated porous layer is less than 20% of the total film thickness, the film does not have practically sufficient mechanical strength and pressure densification property.

第1図は、本発明の方法による芳香族ポリスルホン中空
糸状半透膜の一実施例であつて、内側表面がより小さい
孔径の微孔を有し、外側表面がより大きい孔径の微孔を
有する膜の断面構造を示す電子顕微鏡写真(200倍)で
ある。第2図は、実質的に0.01〜0.5μmの孔径の微孔
を有する中空糸状膜の外側表面の電子顕微鏡写真(5000
倍)を示す。第3図及び第4図は、製膜溶液を二重管型
ノズルから芳香族ポリスルホン非溶剤雰囲気中に押し出
す際に、製膜溶液の温度における蒸気圧よりも15mmHgよ
り小さい蒸気圧を有する非溶剤蒸気中に押し出して得ら
れた比較例としての中空糸状膜の断面の電子顕微鏡写真
(200倍)、及び外側表面の電子顕微鏡写真(5000倍)
を示す。比較例としての中空糸状膜は、外側表面の網状
多孔質層の厚みが薄く、且つ、微孔孔径が一様でないと
共に、外側表面における微孔の分散密度が小さいことが
明らかである。
FIG. 1 shows an embodiment of an aromatic polysulfone hollow fiber semipermeable membrane according to the method of the present invention, in which the inner surface has smaller pores and the outer surface has larger pores. It is an electron micrograph (200 times) showing the cross-sectional structure of a film. FIG. 2 is an electron micrograph (5000) of the outer surface of the hollow fiber membrane having micropores having a pore size of substantially 0.01 to 0.5 μm.
Times). 3 and 4 show that when a film-forming solution is extruded from a double-tube nozzle into an aromatic polysulfone non-solvent atmosphere, it has a vapor pressure of less than 15 mmHg than the vapor pressure at the temperature of the film-forming solution. Electron micrograph (200x) of the cross section of a hollow fiber membrane as a comparative example obtained by extrusion into steam, and electron micrograph (5000x) of the outer surface
Indicates. In the hollow fiber membrane as a comparative example, it is apparent that the thickness of the net-like porous layer on the outer surface is thin, the pore diameters of the pores are not uniform, and the dispersion density of the pores on the outer surface is small.

(発明の効果) このように、本発明の膜によれば、膜の緻密な内外表面
における微孔孔径が異なるため、小さい孔径の微孔を有
する膜内側に処理すべき液体を供給すれば、一様な大き
い孔径の微孔を多数有する外側表面は流体の通過抵抗を
形成しないので、高い透水性能を得ることができる。ま
た、網状多孔質層が全膜厚の20〜50%、殆どの場合に25
〜40%を占めるので、本発明の方法による中空糸状膜
は、機械的強度及び耐圧密化性にもすぐれている。
(Effect of the invention) As described above, according to the membrane of the present invention, since the fine pore diameters on the dense inner and outer surfaces of the membrane are different, if the liquid to be treated is supplied to the inner side of the membrane having the fine pores of small pore diameter, Since the outer surface having a large number of uniformly large pores does not form a passage resistance of fluid, high water permeability can be obtained. In addition, the reticulated porous layer accounts for 20 to 50% of the total thickness, and in most cases 25
Since it occupies -40%, the hollow fiber membrane prepared by the method of the present invention is also excellent in mechanical strength and pressure densification.

尚、網状多孔質層及び指状構造層の有する細孔や空洞の
径の大きさは電子顕微鏡写真により評価されるが、緻密
層の微孔孔径はポリエチレングリコール、デキストラ
ン、種々の分子量を有するタンパク質等に対する除去率
から評価される。
Incidentally, the size of the pores and cavities of the reticulated porous layer and the finger-like structure layer is evaluated by an electron micrograph, but the micropore diameter of the dense layer is polyethylene glycol, dextran, proteins having various molecular weights. It is evaluated from the removal rate for

一般に、中空糸状半透膜は、空洞を有しないときに機械
的強度及び耐圧密化性にすぐれるといわれているが、本
発明の中空糸状半透膜は上記したように、網状多孔質層
が全膜厚の20〜50%、殆どの場合に25〜40%を占める厚
い層を形成し、他方、相対的に指状構造の占める厚さが
薄いために、空洞を有しながら機械的強度及び耐圧密化
性にすぐれており、特に、厚みが大きい場合にも透水性
にもすぐれている特徴を有する。
Generally, a hollow fiber-shaped semipermeable membrane is said to have excellent mechanical strength and pressure-resistant densification when it does not have cavities, but the hollow fiber-shaped semipermeable membrane of the present invention has a reticulated porous layer as described above. Form a thick layer that occupies 20 to 50% of the total film thickness, and in most cases 25 to 40%, while the thickness of the finger-like structure is relatively small It has excellent strength and pressure-resistant densification property, and in particular, has a feature of excellent water permeability even when the thickness is large.

(実施例) 以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。尚、以
下において、中空糸状膜の特性は、次のようにして求め
た。膜に圧力1kg/cm2、温度25℃にて純水を透過させ、1
5分後の透水速度の測定値を純水透水速度とした。ま
た、膜の除去率は、ポリエチレングリコール(平均分子
量20000)の水溶液を平均圧力1kg/cm2、温度25℃にて供
給し、15分後の測定値を除去率とした。
(Examples) Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. In the following, the properties of the hollow fiber membrane were determined as follows. Allow pure water to permeate the membrane at a pressure of 1 kg / cm 2 and a temperature of 25 ° C, and
The measured value of the water permeation rate after 5 minutes was defined as the pure water permeation rate. The removal rate of the membrane was determined by supplying an aqueous solution of polyethylene glycol (average molecular weight 20000) at an average pressure of 1 kg / cm 2 and a temperature of 25 ° C., and measuring the value after 15 minutes as the removal rate.

また、破裂強度は、膜の内側から水圧を加えて、破裂し
たときの圧力とした。
The burst strength was defined as the pressure at which the film was burst by applying water pressure from the inside of the film.

以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。
The present invention is described below with reference to examples, but the present invention is not limited to these examples.

実施例1 N−メチル−2−ピロリドン58重量部とジエチレングリ
コール25重量部との混合溶剤に、式 で表わされる繰返し単位を有する芳香族ポリスルホン17
重量部を溶解して製膜溶液を得た。
Example 1 In a mixed solvent of 58 parts by weight of N-methyl-2-pyrrolidone and 25 parts by weight of diethylene glycol, Aromatic polysulfone 17 having a repeating unit represented by
A part by weight was dissolved to obtain a film forming solution.

製膜溶液の25℃の温度における蒸気圧よりも25mmHg高い
蒸気圧を有する水蒸気下に二重管型ノズルの外管から上
記製膜溶液を温度25℃にて押し出すと共に、内管から温
度25℃の水を流出させて、1秒間上記雰囲気に保ち、そ
の内外両表面から凝固させ、次に、水中に浸漬、脱溶剤
して、内径0.5mm、外径0.9mmの中空糸状半透膜を得た。
この膜の全膜厚は200μmであり、網状多孔質層の厚み
は、膜厚全体の約25%であつた。
The film-forming solution is extruded at a temperature of 25 ° C from the outer tube of the double-tube nozzle at a temperature of 25 ° C under the steam having a vapor pressure of 25 mmHg higher than the vapor pressure of the film-forming solution at a temperature of 25 ° C. Water is allowed to flow out and kept in the above atmosphere for 1 second to be solidified from both its inner and outer surfaces, then immersed in water and desolvated to obtain a hollow fiber semipermeable membrane with an inner diameter of 0.5 mm and an outer diameter of 0.9 mm. It was
The total film thickness of this film was 200 μm, and the thickness of the reticulated porous layer was about 25% of the total film thickness.

この中空糸状膜は、純水透水速度600/m2・時・気圧で
あり、分子量20000のポリエチレングリコールに対する
除去率は88%であつた。また、破裂強度は30kg/cm2であ
つた。
This hollow fiber membrane had a pure water permeation rate of 600 / m 2 · hour · atmospheric pressure, and the removal rate for polyethylene glycol having a molecular weight of 20,000 was 88%. The burst strength was 30 kg / cm 2 .

また、上で得た中空糸状半透膜の断面の電子顕微鏡写真
(200倍)を第1図に、外側表面の電子顕微鏡写真(500
0倍)を第2図に示す。
An electron micrograph (200 times) of the cross section of the hollow fiber semipermeable membrane obtained above is shown in Fig. 1, and an electron micrograph of the outer surface (500) is shown.
0 times) is shown in FIG.

比較例1 実施例1において用いたのと同じ製膜溶液を用い、製膜
溶液の温度における蒸気圧よりも10mmHg高い蒸気圧を有
する水蒸気雰囲気中に製膜溶液を二重管型ノズルから押
し出して、同様にして中空糸状膜を製造した。この膜に
おける網状多孔質層の厚みは、膜厚全体の約16%であつ
た。
Comparative Example 1 Using the same film-forming solution as used in Example 1, the film-forming solution was extruded from a double-tube nozzle in a steam atmosphere having a vapor pressure 10 mmHg higher than the vapor pressure at the temperature of the film-forming solution. A hollow fiber membrane was manufactured in the same manner. The thickness of the reticulated porous layer in this film was about 16% of the total film thickness.

この中空糸状膜は、純水透水速度400/m2・時・気圧、
分子量20000のポリエチレングリコールに対する除去率
は85%であり、破裂強度は18kg/cm2であつた。従つて、
この膜は、実施例1による中空糸状膜に比較して、純水
透水速度が低く、更に、破裂強度が著しく小さいことが
明らかである。
This hollow fiber membrane has a pure water permeation rate of 400 / m 2 · hour · atmospheric pressure,
The removal rate for polyethylene glycol having a molecular weight of 20,000 was 85%, and the burst strength was 18 kg / cm 2 . Therefore,
It is clear that this membrane has a lower pure water permeation rate and a significantly lower burst strength than the hollow fiber membrane according to Example 1.

また、上で得た中空糸状半透膜の断面の電子顕微鏡写真
(200倍)を第3図に、外側表面の電子顕微鏡写真(500
0倍)を第4図に示す。
An electron micrograph (200 times) of a cross section of the hollow fiber semipermeable membrane obtained above is shown in Fig. 3, and an electron micrograph of the outer surface (500 times).
0 times) is shown in FIG.

実施例2 N,N-ジメチルホルムアミド63重量部とエチレングリコー
ル19重量部との混合溶剤に実施例1と同じ芳香族ポリス
ルホン18重量部を溶解して製膜溶液を得た。
Example 2 18 parts by weight of the same aromatic polysulfone as in Example 1 was dissolved in a mixed solvent of 63 parts by weight of N, N-dimethylformamide and 19 parts by weight of ethylene glycol to obtain a film forming solution.

製膜溶液の25℃の温度における蒸気圧よりも30mmHg高い
蒸気圧を有するイソプロピルアルコール蒸気下に二重管
型ノズルの外管から上記製膜溶液を温度25℃にて押し出
すと共に、内管から温度25℃の水を流出させて、1秒間
上記雰囲気に保ち、その内外両表面から凝固させ、次
に、水中に浸漬、脱溶剤して、全膜厚200〜500μm、内
径1.0mm、外径1.4〜2.0mmの種々の膜厚を有する中空糸
状半透膜を得た。
The film-forming solution is extruded at a temperature of 25 ° C from the outer tube of the double-tube type nozzle under isopropyl alcohol vapor having a vapor pressure of 30 mmHg higher than the vapor pressure of the film-forming solution at a temperature of 25 ° C, and at the same time the temperature from the inner tube is increased. Water at 25 ° C is allowed to flow out and kept in the above atmosphere for 1 second to be solidified from both its inner and outer surfaces, then immersed in water and desolvated to obtain a total film thickness of 200 to 500 μm, an inner diameter of 1.0 mm and an outer diameter of 1.4. Hollow fiber semipermeable membranes with various thicknesses up to 2.0 mm were obtained.

これら中空糸状膜について、膜厚と純水透水速度及びポ
リエチレングリコール除去率との関係を第5図に、ま
た、膜厚に対する網状多孔質層の厚みと破裂強度との関
係を第6図にそれぞれ示す。本発明による中空糸状膜に
よれば、破裂強度が高く、且つ、膜厚が厚くなつても、
高い透水速度を維持することが明らかである。
Regarding these hollow fiber membranes, the relationship between the membrane thickness, the water permeation rate of pure water and the polyethylene glycol removal rate is shown in FIG. 5, and the relation between the thickness of the reticulated porous layer and the burst strength relative to the membrane thickness is shown in FIG. Show. According to the hollow fiber membrane according to the present invention, the burst strength is high, and even if the film thickness increases,
It is clear to maintain a high water penetration rate.

比較例2 実施例1において、イソプロピルアルコール蒸気圧を製
膜溶液の温度における蒸気圧よりも11mmHg高くした以外
は、実施例2と同様にして、中空糸状膜を得た。これら
の膜について、膜厚と純水透水速度及びポリエチレング
リコール除去率との関係を第5図に、また、膜厚に対す
る網状多孔質層の厚みと破裂強度との関係を第6図にそ
れぞれ示す。
Comparative Example 2 A hollow fiber membrane was obtained in the same manner as in Example 2 except that the vapor pressure of isopropyl alcohol was increased by 11 mmHg from the vapor pressure at the temperature of the membrane forming solution. Regarding these films, the relationship between the film thickness, the pure water permeation rate and the polyethylene glycol removal rate is shown in FIG. 5, and the relationship between the thickness of the reticulated porous layer and the burst strength with respect to the film thickness is shown in FIG. .

これらの中空糸状膜は、膜厚が同じである本発明による
膜に比較して、純水透水速度が小さく、また、膜厚全体
に占める網状多孔質層の厚みが薄いために、破裂強度が
著しく小さいことが明らかである。
These hollow fiber membranes have a lower pure water permeation rate than the membranes of the present invention having the same film thickness, and the reticular porous layer occupying the entire film thickness is thin, so that the burst strength is high. Obviously it is significantly smaller.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明による中空糸状膜及び比較例しての中
空糸状膜について、純水透水速度及びポリエチレングリ
コールの除去率の膜厚依存性を示すグラフ、第2図は、
上記本発明による中空糸状膜及び比較例としての中空糸
状膜について、膜厚に対する網状多孔質層厚み及び破裂
強度との関係を示すグラフである。
FIG. 1 is a graph showing the film thickness dependence of the pure water permeation rate and the removal rate of polyethylene glycol for the hollow fiber membranes of the present invention and the hollow fiber membranes of Comparative Examples, and FIG.
3 is a graph showing the relationship between the thickness of the reticulated porous layer and the burst strength with respect to the film thickness of the hollow fiber membrane according to the present invention and the hollow fiber membrane as a comparative example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 D01F 6/76 D 7199−3B (72)発明者 岩間 昭男 大阪府茨木市下穂積1丁目1番2号 日東 電気工業株式会社内 (56)参考文献 特開 昭60−246812(JP,A) 特開 昭61−209011(JP,A) 特開 昭58−174618(JP,A) 特開 昭59−209615(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location D01F 6/76 D 7199-3B (72) Inventor Akio Iwama 1-1-Shimohozumi, Ibaraki-shi, Osaka No. 2 within Nitto Denki Kogyo Co., Ltd. (56) Reference JP-A-60-246812 (JP, A) JP-A-61-209011 (JP, A) JP-A-58-174618 (JP, A) JP-A-59 -209615 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】芳香族ポリスルホンを溶解する極性有機溶
剤と、この溶剤と混和するが、芳香族ポリスルホンを溶
解しない溶剤との混合溶剤に芳香族ポリスルホンを溶解
して製膜溶液とし、二重管型ノズルの内管から凝固液を
流出させつつ、上記製膜溶液を外管から押出し、外側表
面には製膜溶液の温度における蒸気圧よりも15mmHg以上
高い蒸気圧を有する芳香族ポリスルホンの非溶剤の蒸気
に接触させた後、水中に浸漬して、中空糸に成形すると
共に、中空糸に残存する溶剤を脱溶剤し、内側表面に実
質的に10〜100Åの範囲にある微孔を有する緻密な表面
を形成し、外側表面に実質的に0.01〜0.5μmの範囲に
ある微孔を有する緻密な表面を形成し、その間に、孔径
が上記いずれの表面の有する微孔よりも大きく、且つ、
孔径が実質的に0.05〜5μmの範囲にある細孔を有する
と共に、上記各表面に連続し、且つ、厚みが全膜厚の20
〜50%を占める網状多孔質層を形成することを特徴とす
る芳香族ポリスルホン中空糸状膜の製造方法。
1. A film forming solution by dissolving aromatic polysulfone in a mixed solvent of a polar organic solvent capable of dissolving aromatic polysulfone and a solvent which is miscible with the solvent but does not dissolve aromatic polysulfone, thereby forming a double tube. While letting the coagulating liquid flow out from the inner tube of the mold nozzle, the film forming solution is extruded from the outer tube, and the non-solvent of aromatic polysulfone having a vapor pressure higher than the vapor pressure at the temperature of the film forming solution by 15 mmHg or more on the outer surface. After being contacted with the steam of the above, it is immersed in water to form a hollow fiber, and the solvent remaining in the hollow fiber is desolvated, and the inner surface is dense with micropores in the range of 10 to 100Å. A fine surface is formed, and a fine surface having micropores substantially in the range of 0.01 to 0.5 μm is formed on the outer surface, while the pore diameter is larger than the micropores of any of the above surfaces, and
It has pores whose pore size is substantially in the range of 0.05 to 5 μm, is continuous with each of the above surfaces, and has a thickness of 20% of the total thickness.
A method for producing an aromatic polysulfone hollow fiber membrane, which comprises forming a reticulated porous layer occupying ˜50%.
【請求項2】非溶剤蒸着が水蒸気であることを特徴とす
る特許請求の範囲第1項記載の芳香族ポリスルホン中空
糸状膜の製造方法。
2. The method for producing an aromatic polysulfone hollow fiber membrane according to claim 1, wherein the non-solvent vapor deposition is steam.
【請求項3】非溶剤蒸気が低級脂肪族アルコール蒸気で
あることを特徴とする特許請求の範囲第1項記載の芳香
族ポリスルホン中空糸状膜の製造方法。
3. The method for producing an aromatic polysulfone hollow fiber membrane according to claim 1, wherein the non-solvent vapor is a lower aliphatic alcohol vapor.
【請求項4】網状多孔質層が全膜厚の25〜40%を占める
ことを特徴とする特許請求の範囲第1項記載の芳香族ポ
リスルホン中空糸状膜の製造方法。
4. The method for producing an aromatic polysulfone hollow fiber membrane according to claim 1, wherein the reticulated porous layer occupies 25 to 40% of the total thickness.
JP18783185A 1985-08-26 1985-08-26 Method for producing aromatic polysulfone hollow fiber membrane Expired - Lifetime JPH0696104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18783185A JPH0696104B2 (en) 1985-08-26 1985-08-26 Method for producing aromatic polysulfone hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18783185A JPH0696104B2 (en) 1985-08-26 1985-08-26 Method for producing aromatic polysulfone hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPS6249911A JPS6249911A (en) 1987-03-04
JPH0696104B2 true JPH0696104B2 (en) 1994-11-30

Family

ID=16212999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18783185A Expired - Lifetime JPH0696104B2 (en) 1985-08-26 1985-08-26 Method for producing aromatic polysulfone hollow fiber membrane

Country Status (1)

Country Link
JP (1) JPH0696104B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1012486C2 (en) * 1999-07-01 2001-01-03 Search B V S A method of manufacturing multichannel membranes, multichannel membranes and their use in separation methods.
US8137800B2 (en) * 2005-10-13 2012-03-20 Asahi Kasei Chemicals Corporation Porous multilayered hollow-fiber membrane and process for producing the same
KR20220074956A (en) * 2019-10-10 2022-06-03 엔테그리스, 아이엔씨. Porous polymer membranes and related filters and methods

Also Published As

Publication number Publication date
JPS6249911A (en) 1987-03-04

Similar Documents

Publication Publication Date Title
US4612119A (en) Hollow fiber filter medium and process for preparing the same
Dzinun et al. Morphological study of co-extruded dual-layer hollow fiber membranes incorporated with different TiO2 loadings
JP2566973B2 (en) Method for forming hollow fiber irregular gas separation membrane
GB2031792A (en) Ethylene-vinyl alcohol copolymer membranes
JPS58132111A (en) Polysulfone hollow fiber
JPH08257381A (en) Fluid separation membrane prepared of blend of polyimide polymer
WO2017043233A1 (en) Film-forming stock solution for use in non-solvent-induced phase separation methods, and method for producing porous hollow fiber membrane using same
JPS6356802B2 (en)
JP4057217B2 (en) Method for producing solvent-resistant microporous polybenzimidazole thin film
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
JPH0478729B2 (en)
JP2005523146A (en) Hollow fiber
JPH0696104B2 (en) Method for producing aromatic polysulfone hollow fiber membrane
JPH0790154B2 (en) Method for producing aromatic polysulfone composite semipermeable membrane
JP2688882B2 (en) Method for producing composite membrane for gas separation
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JPH03258330A (en) Porous hollow fiber membrane
JP4015653B2 (en) Method for producing porous separation membrane
JPH0696105B2 (en) Method for producing aromatic polysulfone hollow fiber membrane
JP2002126479A (en) Porous membrane, gas separating membrane and method of manufacturing for the same
JPH0468010B2 (en)
JPS59228017A (en) Preparation of hollow yarn membrane of aromatic polysulfone
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
JPH06343842A (en) Cellulose acetate hollow fiber separation membrane
JPS62277105A (en) Aromatic polysulfone composite semipermeable membrane and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term