JPS59201947A - Air-fuel ratio controller for internal-combustion engine - Google Patents

Air-fuel ratio controller for internal-combustion engine

Info

Publication number
JPS59201947A
JPS59201947A JP7687983A JP7687983A JPS59201947A JP S59201947 A JPS59201947 A JP S59201947A JP 7687983 A JP7687983 A JP 7687983A JP 7687983 A JP7687983 A JP 7687983A JP S59201947 A JPS59201947 A JP S59201947A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
signal
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7687983A
Other languages
Japanese (ja)
Inventor
Toru Kumasaka
徹 熊坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP7687983A priority Critical patent/JPS59201947A/en
Publication of JPS59201947A publication Critical patent/JPS59201947A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1483Proportional component

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make an air-fuel ratio matchable to a theoretical air-fuel ratio automatically whereby controllable in a stable manner, by storing an integral action time constant prior to one period and a proportional constant in memory, while controlling each of these constants with correction in order. CONSTITUTION:On the basis of each output signal out of a suction pressure sensor 2, a water temperature sensor 3 and an engine speed sensor 4, every operation takes place at a central processing unit 9, and an optimum fuel feed quantity to secure a theoretical air-fuel ratio is calculated. Then, in time of judgment that a feedback control mode is in a state of being executed, an output signal of an O2 sensor 1 is inputted, then a differential portion with the theoretical air- fuel ratio is found, and a solenoid valve 13 is controlled so as to make a fuel feed quantity into feedback control. At this time, an integral action time constant and a proportional constant both are corrected in regular sequence so as to be approximated to the theoretical air-fuel ratio every control at each time. With this constitution, duty as a fuel control signal to an O2 signal is set down to a signal to be constricted along with the elapse of time, thus stable fuel feed control is made possible to be done.

Description

【発明の詳細な説明】 技術分野 本発明は内燃機関の空燃比制御装置に関し、特に帰還制
御に於ける制御量の振動防止に関するものである。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to an air-fuel ratio control device for an internal combustion engine, and particularly to prevention of vibration of a controlled variable in feedback control.

背景技術 近年、電子技術の急速な発達に伴なって、各種装置が電
子制御化されている。例えば自動車に於いては、負荷変
動に応じて燃料供給量を制御することによシ、常に理想
空燃比に近ずけて燃費の改善を行なっている。この場合
、従来一般に用いられている内燃機関用空燃比制御装(
はは、排気路中に設けられた酸素濃度検出センサー(以
下02センサーと称す)によって、排気ガスに含まれる
酸素濃度を検出して酸素c度信号を取シ出している。そ
してとの階床濃度信号は、理想空燃比に於ける酸素濃度
信号を基準として比較されることによって第1図(a)
に示す信号に変換されている。そして、この変換信号は
、その“H′部分および”L″部分積分されて燃料供給
制御信号に変換され、この燃料供給制御信号に応じて燃
料供給用の電磁弁に対する開閉比(デユーティ)が制御
される構成されている。
Background Art In recent years, with the rapid development of electronic technology, various devices have been electronically controlled. For example, in automobiles, by controlling the amount of fuel supplied in accordance with load fluctuations, fuel efficiency is improved by always bringing the air-fuel ratio close to the ideal air-fuel ratio. In this case, the conventionally commonly used air-fuel ratio control system for internal combustion engines (
Haha, an oxygen concentration detection sensor (hereinafter referred to as 02 sensor) provided in the exhaust passage detects the oxygen concentration contained in the exhaust gas and outputs an oxygen degree signal. The floor concentration signals of and are compared with the oxygen concentration signal at the ideal air-fuel ratio as shown in Fig.
The signal is converted into the signal shown in . This conversion signal is then integrated into the "H" and "L" parts and converted into a fuel supply control signal, and the opening/closing ratio (duty) of the fuel supply solenoid valve is controlled according to this fuel supply control signal. is configured.

しかしながら、上記構成による帰還制御による内燃機関
用空燃比制御装置に於いては、積分部分Xの積分時定数
と比例部分Yの比例時定数が常に一定であるために、燃
料供給量は理想空燃比近辺に於いて振動するだけであっ
て、理想空燃比となる一定値に収斂させることが出来ず
、燃費および排出ガス特性が低下する問題を有している
However, in the air-fuel ratio control device for an internal combustion engine using feedback control with the above configuration, since the integral time constant of the integral part X and the proportional time constant of the proportional part Y are always constant, the fuel supply amount is equal to The problem is that the air-fuel ratio only vibrates in the vicinity and cannot be converged to a constant value that is the ideal air-fuel ratio, resulting in a decrease in fuel efficiency and exhaust gas characteristics.

発明の開示 従って、本発明による目的は、空燃費の帰還制御に於い
て生ずる制御量の振動現象を時間の経過するとともに、
理想空燃比に自動的に収斂してデ定した制御が行なえる
内燃機関用空燃比制御装置dを提供することである。
DISCLOSURE OF THE INVENTION Accordingly, an object of the present invention is to reduce the oscillation phenomenon of the control amount that occurs during air/fuel efficiency feedback control as time passes.
It is an object of the present invention to provide an air-fuel ratio control device d for an internal combustion engine that can automatically converge to an ideal air-fuel ratio and perform predetermined control.

このような目的を達成するために、本発明による内燃機
関用空燃比制御装置は、1周期前の積分時定数および比
例定数を記憶しておき、この積分時定数および比例定数
を制御毎に減少さぜることによシ、理想空燃比に収斂さ
せるものである。
In order to achieve such an object, the air-fuel ratio control device for an internal combustion engine according to the present invention stores an integral time constant and a proportional constant from one cycle before, and decreases the integral time constant and proportional constant for each control. By stirring, the air-fuel ratio is converged to the ideal air-fuel ratio.

よって、上記構成による内燃機関用空燃比制御装置に於
いては、燃料制御量の振動現象が防止されて、理想空燃
比に自動的に収斂されるために、燃費が向上するととも
に排出ガス特性が改善される優れた効果を有する。
Therefore, in the air-fuel ratio control device for an internal combustion engine with the above configuration, the oscillation phenomenon of the fuel control amount is prevented and the air-fuel ratio is automatically converged to the ideal air-fuel ratio, so that fuel efficiency is improved and exhaust gas characteristics are improved. It has an excellent effect of improving.

発明を実施するだめの最良の形態 第2図は本発明による内燃機関用空燃比制御装置の一実
施例を示す回路図である。同図に於いて1は排気通路の
一部に設けられた02センザー、2は吸気通路に設けら
2tて吸気負圧を検出する負圧センサー、3は温度セン
サーであって、内燃機関の冷却水温を測定している。4
は内燃機関の回転を検出する回転センサーである。5〜
7はアナログ・ディジタル変換回路であって、前記02
センサーl、負圧センサー2および水温センサー3のア
ナログ出力イロ号をそれぞれディジタル信号に変換して
出力する。8は回転速度検出回路であって、回転センサ
ー4から供給されるパルス信号の周波数から回転速度を
算出してディジタル信号として出力する。9は中央処理
装置であって、前記アナログ・ディジタル変換器5〜7
および回転速度検出回路8の出力信号をそれぞれ入力ポ
ートPl−P4から取り込んでいる。10.11はリー
ドオンリーメモリ(以下ROMと称す)およびランダム
アクセスメモリ(以下IL A Mと称す)であって、
中央処理装置1%9の入力ポートP、および入出力ボー
トP6に接続されている。なお、ROMl0および几A
、 M 11に対するアドレスは省略しである。
BEST MODE FOR CARRYING OUT THE INVENTION FIG. 2 is a circuit diagram showing an embodiment of an air-fuel ratio control device for an internal combustion engine according to the present invention. In the figure, 1 is a 02 sensor installed in a part of the exhaust passage, 2 is a 2t negative pressure sensor installed in the intake passage and detects intake negative pressure, and 3 is a temperature sensor, which is used to cool the internal combustion engine. Measuring water temperature. 4
is a rotation sensor that detects the rotation of the internal combustion engine. 5~
7 is an analog-to-digital conversion circuit, and 02
The analog outputs of sensor 1, negative pressure sensor 2, and water temperature sensor 3 are converted into digital signals and output. 8 is a rotational speed detection circuit which calculates the rotational speed from the frequency of the pulse signal supplied from the rotation sensor 4 and outputs it as a digital signal. 9 is a central processing unit, and the analog/digital converters 5 to 7
and output signals of the rotational speed detection circuit 8 are taken in from input ports Pl-P4, respectively. 10.11 is a read only memory (hereinafter referred to as ROM) and a random access memory (hereinafter referred to as ILAM),
It is connected to the input port P of the central processing unit 1%9 and the input/output port P6. In addition, ROM10 and 几A
, M11 are omitted.

12は中央処理装置に9の出力ポートP7に接続された
電磁弁以4動回路であって、中央処理装置9の指示にし
たがって、内燃機関への燃料供給針を制御する′電磁弁
13を駆動する。以下、」二記構成による回路の動作を
第3図に示すフローチャートを用いて酸1明する。
Reference numeral 12 denotes a solenoid valve circuit connected to the output port P7 of 9 in the central processing unit, which drives the solenoid valve 13 that controls the fuel supply needle to the internal combustion engine according to instructions from the central processing unit 9. do. Hereinafter, the operation of the circuit according to the configuration described in "2" will be explained using the flowchart shown in FIG.

捷ず、内燃機関が始動されると、各センサー1〜4およ
び各回路に電源が供給されて作動を開始する。そして、
02センサー1は排気ガス中に含捷れる散素鍼度に対応
したレベルの出力が発生され、この出力信号はアナログ
拳ディジタル変換回路5に於いてディジタル値に変換さ
れた後に中央処理装置9の入力ポートPlに供給される
。また、負圧センサー2は吸気負圧を検出して出力し、
この出力信号はアナログ・ディジタル変換回路6に於い
てディジタル値に変換された後に中央処理装置の入力ポ
ートP2に供給される。まだ、水温センサー3は冷却水
の温度を検出して出力し、この出力信号はアナログ・デ
ィジタル変換回路7に於いてディジタル値に変換された
後に中央処理装置9の入力ポートPaに供給される。更
に、回転センサー4は、例えばクランク軸の回転を検出
して回転パルスを発生しておシ、この回転、oルスは回
転速度検出回路8に於いてその周波数からディジタル値
の回転速度信号が出力されて中央処理装置9の入カポ)
 P4に供給される。中央処理装置9は、1ず入カポ−
) P2 、P3.P4に供給される負圧信号。
When the internal combustion engine is started without interruption, power is supplied to each of the sensors 1 to 4 and each circuit to start operation. and,
02 sensor 1 generates an output at a level corresponding to the degree of dispersion contained in the exhaust gas, and this output signal is converted into a digital value in the analog fist digital conversion circuit 5 and then sent to the central processing unit 9. It is supplied to input port Pl. In addition, the negative pressure sensor 2 detects and outputs intake negative pressure,
This output signal is converted into a digital value in the analog-to-digital conversion circuit 6 and then supplied to the input port P2 of the central processing unit. The water temperature sensor 3 still detects and outputs the temperature of the cooling water, and this output signal is converted into a digital value in the analog-to-digital conversion circuit 7 and then supplied to the input port Pa of the central processing unit 9. Further, the rotation sensor 4 detects, for example, the rotation of the crankshaft and generates a rotation pulse, and the rotation speed detection circuit 8 outputs a digital rotation speed signal based on the frequency of this rotation. input capo of the central processing unit 9)
Supplied to P4. The central processing unit 9 has a first input capo.
) P2, P3. Negative pressure signal supplied to P4.

水温信号および回転速度信号を基として各種演算を実行
することによシ、理想を燃比を得るだめの最適燃料供給
量を算出し、この算出値に応じた供給量となる様に電磁
弁駆動回路12を制御して電磁弁13の駆動を行なわせ
る。この場合、電磁弁13による流量制御は、゛電磁弁
13の開と閉の比、つまシデューテイを可変することに
よって行なわれる。次に、中央処理装置9は、ステップ
Slに於いて帰還制御モード指命の有無を判別し、YE
Sであった場合のみステップS2に移行してアナログ・
ディジタル変換器5から入力ボートPr Ik供給され
る酸素濃度信号の取り込みを実行する。そして、ステッ
プS2の処理が完了したならば、ステップS3に移行し
てステップS2に於いて取シ込まれた02信号が理想空
燃比に於ける基準値よシも大きいか否かの判別を行なう
。そして、このステップS3に於ける判別結果がNoで
あった場合には、ステップS4に移行して比例制御部分
であるか否かの判別を行なう。ここで、ステップS4に
於ける判別がN。
By performing various calculations based on the water temperature signal and rotational speed signal, the optimum fuel supply amount to obtain the ideal fuel ratio is calculated, and the solenoid valve drive circuit is configured to supply the fuel amount according to this calculated value. 12 to drive the solenoid valve 13. In this case, the flow rate control by the solenoid valve 13 is performed by varying the opening/closing ratio and duty of the solenoid valve 13. Next, the central processing unit 9 determines whether a feedback control mode instruction is given in step Sl, and determines whether the feedback control mode is instructed or not.
Only if it is S, the process moves to step S2 and the analog
The oxygen concentration signal supplied from the digital converter 5 to the input port PrIk is captured. When the process of step S2 is completed, the process moves to step S3, and it is determined whether the 02 signal taken in in step S2 is larger than the reference value at the ideal air-fuel ratio. . If the determination result in step S3 is No, the process proceeds to step S4, where it is determined whether or not it is a proportional control portion. Here, the determination in step S4 is N.

であった場合には、積分制御部分であるためにステップ
S5に移行する。そして、このステップS5に於いては
、几AMIIから前回の積分時定数を読み出し、ROM
1Oから定数σ′を抗み出して上記積分時定数から減じ
る処理を実行する・。
If so, the process moves to step S5 since it is an integral control part. Then, in this step S5, the previous integration time constant is read out from the AMII and stored in the ROM.
Execute the process of extracting the constant σ' from 1O and subtracting it from the above integral time constant.

そして、ここで修正された積分時定数を用いて積分制御
部に対する積分動作を実行するとともに、次の制御時に
用いるだめに修正された積分時定数をRAMに格納して
ステップS6に移行する。また、ステップS4に於ける
判別がYESであった場合には、ステップS7に移行し
て前回の比例定数をRAMIIから読み出し、これをR
OMl0から読み出した定数σだけ減じて修正する。そ
して、この修正された比例定数を用いて比例部分の処理
を実行するとともに、修正された比例定数を再びRAM
に格絡する処理を実行してステップS6に移行する。
Then, the integral time constant modified here is used to execute the integral operation for the integral control section, and the modified integral time constant is stored in the RAM for use in the next control, and the process moves to step S6. Further, if the determination in step S4 is YES, the process moves to step S7, reads out the previous proportionality constant from RAMII, and stores it in R
Correct by subtracting the constant σ read from OM10. Then, the process of the proportional part is executed using this modified proportionality constant, and the modified proportionality constant is stored in the RAM again.
Then, the process proceeds to step S6.

一方、前述したステップS3に於ける判別がYESであ
った場合には、ステップS8に移行して比例制御部分で
あるか否かの判別を実行する。
On the other hand, if the determination in step S3 mentioned above is YES, the process moves to step S8, where it is determined whether or not it is a proportional control portion.

そして、ステップS8に於ける判別がNOであった場合
には、ステップS9に移行してステップS5と同一の処
理を実行した後にステップS6に移行する。まだ、ステ
ップS8の判別がYESTあった揚イ、デには、ステッ
プS+oに移行してステップS7と同一の処理を実行し
た後にステップS6に移行する動作を実行する。つi!
、シ、各回の制御毎に理ゼ空燃比に近ずくように積分時
定数σ′および比例定数σをj1狂j次イ6正している
ために、例えば第4し1(a)に示す02情号に対する
燃料制御信号としてデユーティは、第4図(b)に示す
様に時間の経過とともに収斂される信号となり、所定時
間イ〃にほぼ一定値を示す安定した信号と々る。
If the determination in step S8 is NO, the process moves to step S9, where the same process as step S5 is executed, and then the process moves to step S6. If the determination in step S8 is still YES, the process moves to step S+o, executes the same process as step S7, and then moves to step S6. Tsui!
, shi, Since the integral time constant σ' and the proportionality constant σ are corrected by j1 deviation j order i6 so as to approach the ideal air-fuel ratio for each control, for example, as shown in 4th part 1(a). The duty as a fuel control signal for the 02 information becomes a signal that converges over time as shown in FIG. 4(b), and reaches a stable signal showing a substantially constant value for a predetermined time period A.

以上説明した様に、上記構7吸による内燃機関用窒燃比
制御卸装置〆は、各回の燃料供給制御に於いて02セン
サーの信号をフィードバックして理想空燃比に近ずける
10制御を行なうとともに、各回の制御に於いて比例定
数および積分時定シυをlit次1σ止しながら制御を
実行するものであるために、時間の経過とともに理想空
燃比となる1辺に制御りが自動的に収斂されて一定化さ
れるために、従来の様な振動現家が防止されて安定な制
御が行なえる。また、燃料の供給制御が叉屋化されるこ
とから、燃費が向上するとともに排ガスの特性も改善さ
れる。
As explained above, the nitrous fuel ratio control device for an internal combustion engine using the above-mentioned structure 7 performs 10 control to approach the ideal air fuel ratio by feeding back the signal from the 02 sensor during each fuel supply control. In each control, the proportional constant and the integral time constant υ are stopped at the lit order 1σ, so the control automatically adjusts to the ideal air-fuel ratio as time progresses. Since it is converged and made constant, the vibrations that occur in the conventional system are prevented and stable control can be performed. Furthermore, since the fuel supply control is carried out in parallel, fuel efficiency is improved and exhaust gas characteristics are also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は従来の内燃機関用空燃比1
iIll +nil装置の動作を説明するだめの波形図
、第2図(は本発明による内燃機関用望燃比fIi制御
装置6の一実施例を示す回路図、第3図は第2図に示す
回路の動作を説明するだめのフローチーF 、61< 
’L図(a) 、 (b)は第2し」に示す回路の動作
を75す波形図である。 l・・・酸素センサー(02センザーン、2・・負圧セ
ンサー、3・・温度センサー、4 回転センサー、5〜
8・・・アナログ・ディジタル変侯回1.!:5.8・
・・回転速度検出回路、9・・・中央処lp4!装置t
ji 、 10・・・リードオンリーメモリ(ROM)
%11・・・ジンダムアクセスメモリ(ltAM )、
12・・71.’ 48弁駆動回路、13・・電磁弁。 1)尻白  人 新日本’rM気株式会社代表取締役 
 佐々木 陽 三
Figures 1 (a) and (b) show the air-fuel ratio of 1 for conventional internal combustion engines.
FIG. 2 is a circuit diagram showing an embodiment of the desired fuel-fuel ratio fIi control device 6 for an internal combustion engine according to the present invention, and FIG. 3 is a waveform diagram for explaining the operation of the iIll +nil device. Flowchie F, 61<
Figures (a) and (b) are waveform diagrams illustrating the operation of the circuit shown in the second figure. l...Oxygen sensor (02 Senzan, 2...Negative pressure sensor, 3...Temperature sensor, 4 Rotation sensor, 5~
8...Analog-digital transformation 1. ! :5.8・
...Rotation speed detection circuit, 9...Central processing lp4! device t
ji, 10...Read only memory (ROM)
%11... Jindam access memory (ltAM),
12...71. '48 valve drive circuit, 13... solenoid valve. 1) Shiribahito, Representative Director of New Japan'rMki Co., Ltd.
Yozo Sasaki

Claims (1)

【特許請求の範囲】[Claims] (1)吸入負圧信号および回転速度信号を少なくとも含
む各種信号を中央処理装置に於いて演算処理することに
よシ最適燃料供給量を算出して制御するとともに、排気
ガス中の酸素濃度を示す酸素濃度信号を前記中央処理装
置に供給することによシ、理想空燃比との差分に応じて
帰還制御を実行する内燃機関の空燃比制御に於いて、各
燃料の制御回毎に理想空燃比に向う様に各種定数を順次
可変して制御することによシ、燃料供給量を理想空燃比
となる様に自動的に収斂させて燃料制御を安定にかつ高
棺度化することを特徴とする内燃機関用空燃比制御装置
(1) The central processing unit calculates and controls the optimum fuel supply amount by processing various signals including at least the intake negative pressure signal and the rotational speed signal, and also indicates the oxygen concentration in the exhaust gas. By supplying the oxygen concentration signal to the central processing unit, in the air-fuel ratio control of the internal combustion engine that executes feedback control according to the difference from the ideal air-fuel ratio, the ideal air-fuel ratio is determined every time the fuel is controlled. By sequentially varying and controlling various constants so as to achieve the desired air-fuel ratio, the fuel supply amount is automatically converged to the ideal air-fuel ratio, making fuel control stable and highly efficient. Air-fuel ratio control device for internal combustion engines.
JP7687983A 1983-04-30 1983-04-30 Air-fuel ratio controller for internal-combustion engine Pending JPS59201947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7687983A JPS59201947A (en) 1983-04-30 1983-04-30 Air-fuel ratio controller for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7687983A JPS59201947A (en) 1983-04-30 1983-04-30 Air-fuel ratio controller for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS59201947A true JPS59201947A (en) 1984-11-15

Family

ID=13617912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7687983A Pending JPS59201947A (en) 1983-04-30 1983-04-30 Air-fuel ratio controller for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59201947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029926A (en) * 1988-06-27 1990-01-12 Daihatsu Motor Co Ltd Air-fuel ratio controller for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196942A (en) * 1983-04-14 1984-11-08 Mazda Motor Corp Air-fuel ratio controlling apparatus for engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196942A (en) * 1983-04-14 1984-11-08 Mazda Motor Corp Air-fuel ratio controlling apparatus for engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029926A (en) * 1988-06-27 1990-01-12 Daihatsu Motor Co Ltd Air-fuel ratio controller for internal combustion engine

Similar Documents

Publication Publication Date Title
EP0023632B1 (en) Method for controlling the amount of fuel supply for an engine
JPH03271544A (en) Control device of internal combustion engine
JPS63176643A (en) Air-fuel ratio controller
JPS58150038A (en) Fuel injection method of electronically controlled engine
JPH0518234A (en) Secondary air control device for internal combustion engine
JPS6346264B2 (en)
JPS647217B2 (en)
EP0866222A2 (en) Ignition timing control system for industrial engines
JPH0452384B2 (en)
JPS59201947A (en) Air-fuel ratio controller for internal-combustion engine
JP2006009603A (en) Gas engine device
JPH07151000A (en) Control device for air-fuel ratio of internal combustion engine
JPS6095166A (en) Starting air-fuel ratio control device
KR20020039034A (en) A method for controlling fuel injection on acceleration and a system thereof
JPS6244108Y2 (en)
JPS6045745A (en) Method of controlling learning of air-fuel ratio of electronically-controlled engine
JPH0684732B2 (en) Engine idle speed controller
JPS63105264A (en) Ignition timing control device for electronic controlled fuel injection type internal combustion engine
JPS63205443A (en) Air-fuel ratio controller for internal combustion engine
JPS6056138A (en) Air-fuel ratio adjusting apparatus for internal- combustion engine
JPS5841231A (en) Method of electronic controlling for fuel injection
JP2655639B2 (en) Air-fuel ratio control method for internal combustion engine
JPH0874614A (en) Throttle valve control device for internal combustion engine
JPS6123845A (en) Air-fuel ratio controller
JPS5941643A (en) Electronically-controlled fuel injector for internal- combustion engine