JPS59201410A - Infrared heat-treatment device - Google Patents

Infrared heat-treatment device

Info

Publication number
JPS59201410A
JPS59201410A JP7657083A JP7657083A JPS59201410A JP S59201410 A JPS59201410 A JP S59201410A JP 7657083 A JP7657083 A JP 7657083A JP 7657083 A JP7657083 A JP 7657083A JP S59201410 A JPS59201410 A JP S59201410A
Authority
JP
Japan
Prior art keywords
infrared
transmission
scattering
area
treatment device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7657083A
Other languages
Japanese (ja)
Inventor
Takashi Yahano
矢羽野 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7657083A priority Critical patent/JPS59201410A/en
Publication of JPS59201410A publication Critical patent/JPS59201410A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To equalize temperature distribution in a furnace, improve reliabilty of heat-treatment and save power consumption by providing an infrared transmission area and an infrared scattering area on a transmission and scattering plate and placing the infrared scattering area directly under an infrared lamp. CONSTITUTION:A transmission and scattering area 12 and a transmission area 13 of infrared rays are provided on both surfaces of a transmission and scattering plate which is used for infrared heat-treatment device. The transmission and scattering area 12 is placed directly under an infrared lamp 14 and rapid temperature rise is mitigated by scattering the infrared rays. On the other hand, the infrared travels straight through the transmission area 13. Thus, mean intensity of receiving rays on a semiconductor substrate which is internally placed is equalized, the reliability of the heat-treatment device is improved and the power consumption of the heat-treatment device is reduced.

Description

【発明の詳細な説明】 (al  発明の技術分野 本発明は半導体基板等の試料を熱処理する赤外線熱処理
装置に係り、特に均一な温度分布を得るに有効な近赤外
光照射系の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an infrared heat treatment apparatus for heat treating a sample such as a semiconductor substrate, and more particularly to an improvement in a near-infrared light irradiation system effective for obtaining a uniform temperature distribution.

tbl  技術の背景 半導体基板に施される各種の熱処理は半導体プロセスの
中でも信頼性を左右する重要な要素であり、例えばシリ
コン基板に熱酸化膜を形成する熱酸化法や、MO8fi
牛導体におけるイオン打込によって生ずる格子欠陥の削
減や不純物の活性化のためのア:−−ル処理、又は基板
上に形成した金属膜のステップカバレッヂの改善、更に
はmK膜の結晶粒子を粗大化する等の熱処理が施される
。一般的な熱処理装置に電気炉があり清浄な雰囲気とし
た炉内に基板を配置し、一定温度に刀日熱して炉内温度
分、Iffを均一化する。こ2″Lに対してハロゲンガ
スを封入した赤外線ランプを熱源とする熱処理装置は処
理の高速性即ち急熱、急冷のM別注から注目されつ\あ
る。
tbl Technology background Various heat treatments applied to semiconductor substrates are important elements that affect reliability in semiconductor processes. For example, thermal oxidation method that forms a thermal oxide film on a silicon substrate,
Aluminum treatment to reduce lattice defects and activate impurities caused by ion implantation in conductors, improve step coverage of metal films formed on substrates, and improve crystal grains of mK films. Heat treatment such as coarsening is performed. A typical heat treatment apparatus includes an electric furnace, and the substrate is placed in the furnace with a clean atmosphere and heated to a constant temperature to equalize If by the temperature inside the furnace. Heat treatment equipment that uses an infrared lamp filled with halogen gas as a heat source for this 2"L is attracting attention because of its high processing speed, that is, rapid heating and rapid cooling.

tel  従来技術と問題点 第1図は従来の赤外線熱処理装置を示す構成図、第2図
は第1図の炉内の受光強度分布を示す分布曲線図である
。図において、赤外光を透過する石英で形成さiまたチ
ャンバlの上面、下面にタンクステンフィラメントを煤
層状に組込みハロゲンガスを封入した赤外線ランプ2を
複数個対向する位置に配設して構成される。チャンバ1
には反応ガスを導入するガス導入口3及び反応ガスを排
気する排気口4を備え、エンドキャップ5により密閉さ
れる。赤外線ランプ2には反射板6を備えて、近赤外光
の照射効率を高めチャンバ1内に配置した半導体基板7
の熱処理を行なう。このように赤外線ランプからの近赤
外光を熱源とする急熱急冷の、熱処理装置であって、チ
ャンバ1内の受光強度分布は上下(こ配置した赤外線ラ
ンプ2の対向するA点が高く、中間部即ち谷B点で低く
なりバラ\ツキが大きい。その分布曲線を第2図に示す
。X軸に温度Y軸にチャンバ1の中心における変位量を
とり、曲線で表はすと分布曲線8が得られA点が高くB
点が低い分布となり均一な受光強度分布が得られない。
tel Prior Art and Problems FIG. 1 is a block diagram showing a conventional infrared heat treatment apparatus, and FIG. 2 is a distribution curve diagram showing the received light intensity distribution in the furnace of FIG. In the figure, a chamber l is made of quartz that transmits infrared light, and tank stencil filaments are incorporated in the upper and lower surfaces of the chamber l in the form of a soot layer, and a plurality of infrared lamps 2 filled with halogen gas are arranged at opposing positions. be done. chamber 1
is provided with a gas inlet 3 for introducing a reaction gas and an exhaust port 4 for exhausting the reaction gas, and is sealed with an end cap 5. The infrared lamp 2 is equipped with a reflector 6 to increase the irradiation efficiency of near-infrared light, and the semiconductor substrate 7 disposed in the chamber 1
Heat treatment is performed. As described above, it is a heat treatment device that performs rapid heating and cooling using near-infrared light from an infrared lamp as a heat source, and the received light intensity distribution inside the chamber 1 is vertical (the point A facing the infrared lamps 2 arranged in this way is high; It becomes low at the middle part, that is, the valley B point, and there is a large variation.The distribution curve is shown in Figure 2.The temperature is on the X axis, and the displacement at the center of the chamber 1 is on the Y axis, and when expressed as a curve, the distribution curve is 8 was obtained and the A point was high and B
The distribution of points becomes low, and a uniform received light intensity distribution cannot be obtained.

このため赤外線ランプ2の直下に透過散乱板10を配し
赤外光を散乱させて均一な受光強度分布が得られるよう
にしている。透過散乱板10は石英ガラスの両面に砂目
を入猶、たスリガラスであり、これによって分布曲線9
が得られる0し71)シこの場合上分布曲線9より明か
なように強度差があり、高速高温で試料温度を上昇させ
た場合結晶欠陥(スリップラインノが発生し又試料を(
di  発明の目的 不発明は上記の点番こ鑑み赤外線ランプ力)らの近赤外
光を透過する透過域と散乱させる透過散乱域とを同一散
乱板上に設けてなる透過散乱機構を提供し、均一な温度
分布を得ることを目的とする。
For this reason, a transmission scattering plate 10 is disposed directly below the infrared lamp 2 to scatter the infrared light to obtain a uniform received light intensity distribution. The transmission scattering plate 10 is made of quartz glass with sand grains on both sides, so that the distribution curve 9
In this case, as shown in the upper distribution curve 9, there is a difference in strength, and when the sample temperature is increased at high speed and high temperature, crystal defects (slip lines) occur and the sample (
In view of the above points, an object of the invention is to provide a transmission scattering mechanism in which a transmission region for transmitting near-infrared light (infrared lamp power) and a transmission scattering region for scattering it are provided on the same scattering plate. , the purpose is to obtain a uniform temperature distribution.

(e)発明の構成 上記目的は本発明によれば赤外線ランプからの赤外光を
透過散乱板を介してチャンバ内を照射させ、該チャンバ
内に配置した試料を熱処理する赤外線熱処理装置に2い
て、該透過散乱板lこ該赤外元透過城と該赤外光散乱域
とを具備せしめ、該赤外ブC散乱域を前記赤外線ランプ
の直下に配して構成することによって達せられる。
(e) Structure of the Invention According to the present invention, the above object is to provide an infrared heat treatment apparatus for irradiating the inside of a chamber with infrared light from an infrared lamp through a transmission scattering plate and heat treating a sample placed in the chamber. This is achieved by configuring the transmitting and scattering plate to include the infrared source transmitting area and the infrared light scattering area, and arranging the infrared light scattering area directly below the infrared lamp.

(fl  発明の実施例 以下本発明の実施例を図−一こより詳述する。第3図は
本発明の一実施例である透過散乱板を示す斜視図、第4
図は赤外線ランプの直下に配した透過散乱板を示す要部
断面図、第5図は本発明の透過散乱域によって得られる
受光強度分布を示す曲線図である。図において透過散乱
板11の両面に斜線で示す透過散乱域12と透過域13
を形成する。透過散乱域12を第4図で示す赤外線ラン
プ14の直下に来るように取付けて赤外光を散乱させ急
激な温度上昇を緩和する。他の透過域13では赤外光は
直進する0散乱板の形成は予じめ透過散乱域12を求め
砂目を設けるか或いは博膜のカーボンN(b i C)
をコートしてもよい。このような構成とすることにより
従来の全面砂目を設けた透過散乱域に比し、全体的に受
光強度が高くなり、バラツキが減少する。第5図の受光
強度分布曲線15によって明らかなように平均受元頚度
16は従来に比して高温となりしかもバラツキは減少す
る。従って温度分布は略均−化しスリップライン或いは
そり等のない信頼性ある熱処理を施すことができる。し
かも受光強度が増す力)ら従来に比して消費電力の削減
が可能となり高温高、4性にM利となる。
(fl Embodiments of the Invention The embodiments of the present invention will be described in detail below with reference to Figure 1. Fig. 3 is a perspective view showing a transmission scattering plate which is an embodiment of the invention, and Fig. 4
The figure is a cross-sectional view of a main part showing a transmission scattering plate placed directly below an infrared lamp, and FIG. 5 is a curve diagram showing the received light intensity distribution obtained by the transmission scattering region of the present invention. In the figure, a transmission and scattering region 12 and a transmission region 13 are indicated by diagonal lines on both sides of the transmission and scattering plate 11.
form. The transmission scattering region 12 is installed directly below the infrared lamp 14 shown in FIG. 4 to scatter the infrared light and alleviate a sudden temperature rise. In the other transmission region 13, infrared light travels straight.To form a scattering plate, find the transmission and scattering region 12 in advance and provide grain, or use Hakuba's Carbon N (b i C).
May be coated with With such a configuration, compared to a conventional transmission scattering region in which grains are provided on the entire surface, the received light intensity is increased as a whole, and variations are reduced. As is clear from the received light intensity distribution curve 15 in FIG. 5, the average receiver neck value 16 is higher than in the past, and the variation is reduced. Therefore, the temperature distribution is approximately equalized, and reliable heat treatment without slip lines or warpage can be performed. In addition, the ability to increase the intensity of received light makes it possible to reduce power consumption compared to conventional methods, resulting in M benefits in terms of high temperature and high performance.

(−発明の効果 以上詳細に発明したように本発明の透過散乱板を用いた
赤外線熱処理装置とすることにより炉内温度分布の均一
化が得られるから信頼度の高い熱処理が可能となり、消
費電力も節約される等大きな効果がある。
(-Effects of the Invention As detailed above, by using an infrared heat treatment apparatus using the transmission scattering plate of the present invention, the temperature distribution inside the furnace can be made uniform, making it possible to perform highly reliable heat treatment, and power consumption. It also has great effects, such as saving money.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の赤外線熱処理装置を示す構成図、第2図
は第1図の炉内の受光強度分布を示す分布曲線図、第3
図は本発明の一実施例である透過散乱板を示すfr+視
図、第4図は赤外線ランプの直下に配した透過散乱板を
示す要部断面図、第5図は本発明の透過散乱板によって
得られる受光強度分布を示す曲線図である。 図中1・・・・・・チャンバ、2.14・・・・・・赤
外線ランプ、3・・・・・・反応ガス導入口、4・・・
・・・排気口、5・・−・・エンドキャップ、6・・・
・・・反射板、7・・・・・・半導基板、8゜9.15
・・・・・・受光強度曲線、10.11・・・・・・透
過散乱板、12・・・・・・透過散乱域、13・・−・
・透過域、16・・・・・・平均受光強度。 あ2 図 Y 第ダ閉 □1
Figure 1 is a configuration diagram showing a conventional infrared heat treatment apparatus, Figure 2 is a distribution curve diagram showing the received light intensity distribution in the furnace of Figure 1,
The figure is a fr+ view showing a transmission scattering plate according to an embodiment of the present invention, FIG. 4 is a cross-sectional view of a main part showing a transmission scattering plate placed directly under an infrared lamp, and FIG. 5 is a transmission scattering plate of the present invention. It is a curve diagram showing the received light intensity distribution obtained by. In the figure, 1...chamber, 2.14...infrared lamp, 3...reactive gas inlet, 4...
...Exhaust port, 5...End cap, 6...
...Reflector, 7...Semiconductor substrate, 8°9.15
...Received light intensity curve, 10.11... Transmission scattering plate, 12... Transmission scattering region, 13...
- Transmission range, 16... Average received light intensity. A2 Figure Y Close □1

Claims (1)

【特許請求の範囲】[Claims] 赤外線ランプからの赤外光を透過散乱板を介してチャン
バ内を照射させ、該チャンバ内に配置した試料を熱処理
する赤外線熱処理装置に?いて、該透過散乱板に該赤外
光透過域と該赤外光散乱域とを具備せしめ、該赤外光散
乱域を前記赤外線ランプの直下!ピ配して構成されてい
ることを特徴とする赤外線熱処理装置。
An infrared heat treatment device that irradiates the inside of a chamber with infrared light from an infrared lamp through a transmission scattering plate and heat-treats a sample placed inside the chamber? The transmitting and scattering plate is provided with the infrared light transmitting region and the infrared light scattering region, and the infrared light scattering region is located directly below the infrared lamp! An infrared heat treatment device characterized in that it is configured in a piston arrangement.
JP7657083A 1983-04-30 1983-04-30 Infrared heat-treatment device Pending JPS59201410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7657083A JPS59201410A (en) 1983-04-30 1983-04-30 Infrared heat-treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7657083A JPS59201410A (en) 1983-04-30 1983-04-30 Infrared heat-treatment device

Publications (1)

Publication Number Publication Date
JPS59201410A true JPS59201410A (en) 1984-11-15

Family

ID=13608887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7657083A Pending JPS59201410A (en) 1983-04-30 1983-04-30 Infrared heat-treatment device

Country Status (1)

Country Link
JP (1) JPS59201410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093911A (en) * 1997-05-27 2000-07-25 Hitachi, Ltd. Vacuum heating furnace with tapered portion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093911A (en) * 1997-05-27 2000-07-25 Hitachi, Ltd. Vacuum heating furnace with tapered portion

Similar Documents

Publication Publication Date Title
US6064800A (en) Apparatus for uniform gas and radiant heat dispersion for solid state fabrication processes
TWI595673B (en) Method and apparatus for reduction of solar cell lid
JPH0263293B2 (en)
US5751896A (en) Method and apparatus to compensate for non-uniform film growth during chemical vapor deposition
JPH0917742A (en) Heat-treating apparatus
JP2001023916A (en) Method for treating material with electromagnetic wave and apparatus
JPS59201410A (en) Infrared heat-treatment device
JPS61129834A (en) Heat treatment apparatus
US20050136576A1 (en) Plasma treatment method and plasma treatment apparatus
JP3789366B2 (en) Heat treatment equipment
JPH0325928A (en) Lamp type thermal treatment equipment for semiconductor wafer
JPS62166529A (en) Formation of thin film
JPH05206048A (en) Lamp anneal device
JPH036018A (en) Lamp annealing apparatus for semiconductor device manufacture
JPH0234824Y2 (en)
JPH0729844A (en) Infrared heating method and equipment for semiconductor substrate
JPH06283503A (en) Heat-treating device for semiconductor substrate and method
JPS6352421A (en) Heat treatment method and device for wafer
JPS6381921A (en) Heat treatment device
JPH03207861A (en) Heater
JPH0240480Y2 (en)
JPH11154649A (en) Rapid heat processor
TWI542030B (en) Processing Apparatus and Processing Method for Solar Cells
JPS6074633A (en) Method for heating sample of load lock device
JPH04176126A (en) Method and apparatus for treating substrate