JPS59200811A - Magnetic bearing - Google Patents

Magnetic bearing

Info

Publication number
JPS59200811A
JPS59200811A JP7536683A JP7536683A JPS59200811A JP S59200811 A JPS59200811 A JP S59200811A JP 7536683 A JP7536683 A JP 7536683A JP 7536683 A JP7536683 A JP 7536683A JP S59200811 A JPS59200811 A JP S59200811A
Authority
JP
Japan
Prior art keywords
rotor
stator
magnetic
recessed part
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7536683A
Other languages
Japanese (ja)
Inventor
Tsutomu Murakami
力 村上
Yoshiaki Ookami
嘉彰 狼
Osamu Okamoto
修 岡本
Atsushi Nakajima
厚 中島
Takashi Kida
木田 隆
Masao Inoue
正夫 井上
Noriyoshi Yabuuchi
賀義 薮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Mitsubishi Electric Corp
Original Assignee
National Aerospace Laboratory of Japan
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan, Mitsubishi Electric Corp filed Critical National Aerospace Laboratory of Japan
Priority to JP7536683A priority Critical patent/JPS59200811A/en
Publication of JPS59200811A publication Critical patent/JPS59200811A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/041Passive magnetic bearings with permanent magnets on one part attracting the other part
    • F16C32/0412Passive magnetic bearings with permanent magnets on one part attracting the other part for radial load mainly
    • F16C32/0414Passive magnetic bearings with permanent magnets on one part attracting the other part for radial load mainly with facing axial projections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings

Abstract

PURPOSE:To prevent the ring recessed part from deformation during assembling period and the like, and enable to control the accurate rotor positioning by a method wherein a non-magnetic material is embedded in a ring recessed part formed on the opposite surface against a stator of a rotor. CONSTITUTION:A recessed part 6 is formed on the opposite surface against a stator of a rotor 1, the recessed part causes to generate a crosswise attraction force on the rotor against the stator, also causes to generate a restoring force for returning of deviation of the rotor 1 toward previous position. The pole surface of the rotor 1 is made flat by embeding a non-magnetic material 16 such as a stainless material and the like in the recessed part 6, also prevented from the deformation due to contacting and the like during the assembling work. Therefore, a fine processing part for obtaining of stability in radial direction of the rotor 1 is prevented from large deformation, accordingly, the magnetic bearing having excellent performance can be obtained.

Description

【発明の詳細な説明】 この発明は、磁石2例えば永久磁石を利用した磁気軸受
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic bearing using a magnet 2 such as a permanent magnet.

従来、この種の装置として第1図に示すものがあった。Conventionally, there has been a device of this type as shown in FIG.

図において、(1)は磁性材2例えば鉄などで環状に構
成されたロータ、 (21、(3)は第1.第2のステ
ータで、磁性材によ多構成され、半径方向に着磁された
磁石9例えば永久磁石(4)を有する。(5)は第1、
第2のステータ(21、(31に巻かれた制御コイルで
ある。ロータ(1)は第1.第2のステータ+21 、
 (31の間に、所定の間隙(9a) 、 (9b)を
あけて配置され錦1.第2のステータ(21、(3)と
の対向面にはおう部(6)を有する。図中、Zはロータ
(1)の回転軸を示す。
In the figure, (1) is a rotor made of magnetic material 2, such as iron, in an annular shape, and (21, (3) are first and second stators, which are made of magnetic material and are magnetized in the radial direction. The magnet 9 includes a permanent magnet (4), for example a permanent magnet (5).
The second stator (21, (31) is a control coil wound around the rotor (1).
The brocade 1 is arranged with a predetermined gap (9a) and (9b) between the stators (31) and has a cover (6) on the surface facing the second stator (21, (3). , Z indicates the rotation axis of the rotor (1).

次に動作について説明する。永久磁石(4)は半径方向
に着磁されているので、ロータ(1)と第1.第2のス
テータ(2+ 、 (31との間に図の実線で示される
ような環状の磁束の流れを形成している。これら磁束流
は間隙(9a)においてはz軸の正方向9間隙(9b)
においてはz軸の負方向の向きを持つ。一方。
Next, the operation will be explained. Since the permanent magnets (4) are magnetized in the radial direction, the rotor (1) and the first. An annular magnetic flux flow as shown by the solid line in the figure is formed between the second stator (2+, 9b)
has a direction in the negative direction of the z-axis. on the other hand.

制御コイルに流れる電流は図中の破線で示される磁束の
流れを形成するが、今仮に制御コイル(5)のプラス端
子からマイナス端子へ向って電流を流したとすると、こ
の11f、流のつ(る磁束流は間帥(9a)では永久磁
石(4)のつくっている磁束流と同じ方向なので、これ
を強め2間1εφ(9b)では逆方向なのでこれを弱く
する。この結果、ロータ(11に拗くz軸方向の吸引力
に差が生じ、ロータ(1)はZ軸の正方向に動かされる
ことになる。
The current flowing through the control coil forms a flow of magnetic flux shown by the broken line in the figure, but if the current were to flow from the positive terminal to the negative terminal of the control coil (5), this 11f, the flow (The magnetic flux flow created by the permanent magnet (4) is in the same direction as the magnetic flux flow created by the permanent magnet (4) at the gap (9a), so it is strengthened, and at the gap 2 and 1εφ (9b) it is in the opposite direction, so it is weakened. As a result, the rotor ( 11, there is a strong difference in the suction force in the Z-axis direction, and the rotor (1) is moved in the positive direction of the Z-axis.

逆にe iM’l イauコイル(5)のマイナス端子
からプラス端子へ′電流が流れる場合には、ロータ(1
)はz軸の負方向へ動かされる。
Conversely, if current flows from the negative terminal to the positive terminal of the coil (5), the rotor (1
) is moved in the negative direction of the z-axis.

このように、ロータ(1)の第1.第2のステータ+2
1 、 +31に対する傾きを恢出器(図示せず)によ
シυL出して、この信号な1blj 餠iコイル(51
ヘフイードノくツクすることによりロータ(11の回弘
軸に平行な方向の位置をttill帥することができる
一次にこの磁気軸受の半径方向の支持を第2図によって
説明する。
In this way, the first . 2nd stator +2
1, +31 is outputted by a generator (not shown), and this signal is applied to
The radial support of this magnetic bearing, which allows the position of the rotor (11) to be changed in a direction parallel to the axis of rotation by clicking the heft, will now be explained with reference to FIG.

図中、 (10a) 、 (10b)は第1.第2のス
テータ(21、(31とロータ(1)との間の外側の間
隔を示している。ロータ(1)が回転して、第2図r示
すように径方向にずれが生じた場合、ロータ(1)と第
1.第2のステータ(21、(3)の間の間隙(9a)
 、 (9t+) l (10a) +(10b)を通
る磁束流も図のようにずれる。この時第1.第2のステ
ータ+21 、 (31とロータ(1)の対向面かおう
突になっているため、お互いの突部の角において磁束か
おう部(6)へまわ9込み、ロータに横方向の吸引力を
生せしめる。この結果、ロータ(1)゛には矢印で示す
磁束の自然な復元力が加わり、ロータ(1)の変位をも
とに戻そうとするので、この磁気軸受は半径方向に安定
化される。
In the figure, (10a) and (10b) are the first. It shows the outer spacing between the second stator (21, (31) and the rotor (1). When the rotor (1) rotates and a deviation occurs in the radial direction as shown in Figure 2r. , the gap (9a) between the rotor (1) and the first and second stators (21, (3))
, (9t+) l (10a) + (10b) also shifts as shown in the figure. At this time, the first. Since the opposing surfaces of the second stator +21 and the rotor (1) are protruded, the magnetic flux flows into the magnetic flux shielding part (6) at the corners of the protrusions of each other, causing lateral attraction to the rotor. As a result, the natural restoring force of the magnetic flux shown by the arrow is applied to the rotor (1), and as it tries to return the displacement of the rotor (1) to its original position, this magnetic bearing will move in the radial direction. stabilized.

かかる磁気軸受においてはかようなロータ(1)の半径
方向の安定化の手段をとるために、ロータ(11と第1
.第2のステータ+2) 、 +31の対向する磁極を
例えは幅が数ミリの微細なおう突形状とする必要がある
。しかし、この加工が微細なため、変形しやすぐ、この
おう突形状の変形はロータ(1)の回転による半径方向
のずれに対する復元力を減少させ軸受の性能を太き(損
なうことになるという欠点があった。
In such a magnetic bearing, in order to take measures for stabilizing the rotor (1) in the radial direction, the rotor (11 and the first
.. It is necessary that the opposing magnetic poles of the second stators +2) and +31 have a fine convex shape with a width of several millimeters, for example. However, since this machining is minute, it easily deforms, and the deformation of this convex shape reduces the restoring force against radial deviation due to the rotation of the rotor (1), thereby increasing the performance of the bearing. There were drawbacks.

この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、磁石を有する円柱形の第1.第
2のステータ、第1.第2のステータの間に、同軸状に
、第1.第2のステータより所定の間隔をあけて配置し
た環状のロータ、このロータの第1.第2のステータと
の対向面に環状に設けたおう部、上記ロータの運動を検
出する検出器を備え、上記ロータの第1.第2のステー
タに対する傾きを検出して、上記ロータの位置を制御す
るようにした磁気軸受において、非磁性体を上記おり部
に埋設して、第1.第2のステータとロータとの対向す
る磁極の変形を防止することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above. a second stator, a first stator; coaxially between the second stator and the first stator. an annular rotor disposed at a predetermined distance from a second stator; The first stator of the rotor is provided with an annular cover provided on a surface facing the second stator, and a detector for detecting the movement of the rotor. In the magnetic bearing that controls the position of the rotor by detecting the inclination with respect to the second stator, a non-magnetic material is embedded in the cage part. The purpose of this is to prevent deformation of the opposing magnetic poles of the second stator and rotor.

以下、この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第3図において、tt+9はロータ(1)のおう部(6
)に埋められた例えばステンレスなどの非磁性金属体で
ある。
In Fig. 3, tt+9 is the rotor (1) cap (6
) is a non-magnetic metal such as stainless steel.

このように微細に加工されたおう部(6)に非磁性体(
匂を埋めることにより、ロータ(1)の磁極表面は平担
となシ1組立中の接触などによって変形しにくくなる。
A non-magnetic material (
By filling the magnetic pole surface of the rotor (1), the magnetic pole surface of the rotor (1) becomes flat and difficult to deform due to contact during assembly of the rotor (1).

従って、上記ロータ(1)の半径方向の安定性を与える
微細な加工部分が大きく変形されることはなくなり、性
能のよい磁気軸受が得られる。
Therefore, the finely machined portions that provide stability in the radial direction of the rotor (1) are not significantly deformed, and a magnetic bearing with good performance can be obtained.

なお、上記実施例では、非磁性体を磁極のおう部だけに
埋めたが、第4図に示すように、さらに磁極表面全体を
覆うように非磁性体をかぶせてもよい。
In the above embodiment, the non-magnetic material is buried only in the casing of the magnetic pole, but as shown in FIG. 4, the non-magnetic material may be further applied to cover the entire surface of the magnetic pole.

以上のようにこの発明によれば、磁石を有する円柱形の
第1.第2のステータ、第1.第2のステータの間に、
同軸状に、第11第2のステータより所定の間隔をあけ
て配置した環状のロータ。
As described above, according to the present invention, the cylindrical first cylindrical first magnet having a magnet. a second stator, a first stator; Between the second stator,
An annular rotor coaxially arranged at a predetermined distance from the eleventh and second stators.

このロータの第1.第2のステータと対向する磁極面に
環状に設けたおう部、上記ロータの運動を検出する検出
器を備え、上記ロータの第1.第2のステータに対する
傾きを検出して、上記ロータの位置を制御するようにし
た磁気軸受において。
The first rotor of this rotor. The first stator of the rotor is provided with an annular cover provided on the magnetic pole face facing the second stator, and a detector for detecting the movement of the rotor. A magnetic bearing that controls the position of the rotor by detecting an inclination with respect to a second stator.

非磁性体を上記おり部に埋設することによシ、ロータの
磁極面を保護し、性能劣化を防ぐ効果がある。
By burying a non-magnetic material in the cage, the magnetic pole surface of the rotor is protected and performance deterioration is prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気軸受の一例を示す断面斜視図、第2
図はこの従来の磁気軸受における半径方向の断面図、第
3図はこの発明の一実施例による磁気軸受のロータを示
す断面斜視図、第4図はこの発明の他の実施例による磁
気軸受のロータを示す断面斜視図である。 図において、(1)・・・ロータ、(2)・・・第1の
ステータ。 (3)・・・第2のステータ、(4)・・・磁石、(6
)・・・おう部、06)・・・非磁性金属体。 なお図中、同一符号は同一、又は相当部分を示す。 代理人大岩増雄 第1図 第2図 第3図 第1頁の続き 0発 明 者 藪内賀義 尼崎市塚口本町8丁目1番1号 三菱電機株式会社生産技術研究 所内 ■出 願 人 三菱電機株式会社 東京都千代田区丸の内2丁目2 番3号
Figure 1 is a cross-sectional perspective view showing an example of a conventional magnetic bearing;
3 is a cross-sectional perspective view showing a rotor of a magnetic bearing according to an embodiment of the present invention, and FIG. 4 is a sectional view of a magnetic bearing according to another embodiment of the present invention. FIG. 3 is a cross-sectional perspective view showing a rotor. In the figure, (1)... rotor, (2)... first stator. (3)...Second stator, (4)...Magnet, (6
)...Oval part, 06)...Nonmagnetic metal body. In the figures, the same reference numerals indicate the same or equivalent parts. Agent Masuo OiwaFigure 1Figure 2Figure 3Continued from page 10 Inventor Kayoshi Yabuuchi 8-1-1 Tsukaguchi Honmachi, Amagasaki City, Mitsubishi Electric Corporation Production Technology Laboratory ■Applicant Mitsubishi Electric Stock Company 2-2-3 Marunouchi, Chiyoda-ku, Tokyo

Claims (2)

【特許請求の範囲】[Claims] (1)磁性材より成シ、磁石を有する円柱形の第1、第
2のステータ、磁性材よシ成シ、第1.第2のステータ
の間に、同軸状に、第1.第2のステータよシ所定の間
隔なめけて配置した環状のロータ、このロータの第1.
第2のステータと対向する磁極面に環状に設けたおう部
へ上記ロータの通勤を検出する検出器な備え、上記ロー
タの第1゜第2のステータに対する傾きを検出幣、上記
ロータの位置を制御するようにした磁気軸受において、
非磁性体を上記おり部に埋設したことを特徴とする磁気
軸受。
(1) Cylindrical first and second stators made of magnetic material and having magnets; first and second stators made of magnetic material; coaxially between the second stator and the first stator. an annular rotor disposed at a predetermined distance from the second stator;
A detector for detecting the commuting of the rotor to a ring-shaped part provided on the magnetic pole face facing the second stator, detects the inclination of the rotor with respect to the first and second stators, and detects the position of the rotor. In magnetic bearings that control
A magnetic bearing characterized in that a non-magnetic material is embedded in the cage portion.
(2)非磁性体をロータのおう部に埋設し、上記ロータ
と第1.第2のステータとの対向する磁極面全体をおお
うようにした特許請求の範囲第1項記載の磁気軸受。
(2) A non-magnetic material is buried in the rotor casing, and the rotor and the first. The magnetic bearing according to claim 1, which covers the entire magnetic pole face facing the second stator.
JP7536683A 1983-04-28 1983-04-28 Magnetic bearing Pending JPS59200811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7536683A JPS59200811A (en) 1983-04-28 1983-04-28 Magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7536683A JPS59200811A (en) 1983-04-28 1983-04-28 Magnetic bearing

Publications (1)

Publication Number Publication Date
JPS59200811A true JPS59200811A (en) 1984-11-14

Family

ID=13574146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7536683A Pending JPS59200811A (en) 1983-04-28 1983-04-28 Magnetic bearing

Country Status (1)

Country Link
JP (1) JPS59200811A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109340A (en) * 1974-02-08 1975-08-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109340A (en) * 1974-02-08 1975-08-28

Similar Documents

Publication Publication Date Title
CA1288461C (en) Structure of a flat-type brushless dc motor
US4949000A (en) D.C. motor
JPH0543749U (en) Rotor of rotating magnetic field type motor
JP2006158030A (en) Axial gap electric motor
JP2008211934A (en) Rotating electrical machine and rotator therefor
US4725752A (en) 1-phase self starting disk-type brushless motor with cogging element
JPS6146683B2 (en)
JPS59200811A (en) Magnetic bearing
JP2001128394A (en) Dynamo-electric machinery
JP2941010B2 (en) Electric rotating machine with multi-pole rotor
JPH07279961A (en) Dynamic pressure bearing device
JPS6280318A (en) Magnetic vibration damping device
JP4138957B2 (en) motor
JPS6225859A (en) Flat type brushless motor
US4914334A (en) Permanent magnet DC machine
JPH01234071A (en) Ultrasonic motor provided with magnetic encoder
JPS6211218B2 (en)
JPH03261358A (en) Dc brushless motor
JP2952599B2 (en) Small rotating magnetic field type motor
KR20060128367A (en) Non-contact revolving stage and a method for detecting the six degree-of-freedom position thereof
JP2616962B2 (en) Small DC motor
JPH0156627B2 (en)
JP2021087227A (en) Outer rotor type electric motor and manufacturing method of rotor yoke of outer rotor type electric motor
JPS59200810A (en) Magnetic bearing
JPH0715339Y2 (en) Brushless motor