JPS59200162A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS59200162A
JPS59200162A JP58072951A JP7295183A JPS59200162A JP S59200162 A JPS59200162 A JP S59200162A JP 58072951 A JP58072951 A JP 58072951A JP 7295183 A JP7295183 A JP 7295183A JP S59200162 A JPS59200162 A JP S59200162A
Authority
JP
Japan
Prior art keywords
heat exchanger
valve
tank
temperature
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58072951A
Other languages
Japanese (ja)
Inventor
明男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58072951A priority Critical patent/JPS59200162A/en
Publication of JPS59200162A publication Critical patent/JPS59200162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、二槽式超流動ヘリウム冷凍機(CA?an
det型)で使用される熱交換器に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] This invention relates to a two-vessel superfluid helium refrigerator (CA?an
det type).

〔従来技術とその問題点〕[Prior art and its problems]

加圧超流動ヘリウム冷凍機の概略を第1図に示す。装置
は、4.2KHeI槽(4)と、超電導磁石等の冷却対
象物が入る1、8KHel槽(5) 、 Hel1槽を
冷却するためのジーール・トムソン熱交換器(6)(以
下JT熱交換器と呼ぶ)、ジコール・トムソン弁(力(
以下JT弁と呼ぶ)、熱交換器(8)より構成されるコ
ゝJT熱交換器(6)の構造は第2図に示すような対向
流型である。
Figure 1 shows an outline of a pressurized superfluid helium refrigerator. The equipment consists of a 4.2K HeI tank (4), 1 and 8K HeI tanks (5) that contain objects to be cooled such as superconducting magnets, and a Ziehl-Thompson heat exchanger (6) (hereinafter referred to as JT heat exchanger) for cooling the HeI tank. (called a vessel), a Jicole-Thomson valve (called a force (
The structure of the JT heat exchanger (6), which is composed of a JT valve (hereinafter referred to as JT valve) and a heat exchanger (8), is of a counterflow type as shown in FIG.

4.2にヘリウムI槽から供給されるヘリウムはJT熱
交換器(6)でラムダ点2.17に近くまで冷やされた
後、JT弁(力を通ってジコール・トムソン膨張し、1
.8に以下の温度が下がる。この時ヘリウムの一部は気
化し、一部は液の首まである。液は1.5−、K He
■槽との熱交換器(8)で気化し、先に発生したガスと
ともにJT熱交換器(6)の低圧側をもどる。熱交換器
(8)およびJT熱交換器(6)の低圧側は真空ポンプ
(1)で1,8に以下の飽和蒸気圧に対応する圧力まで
減圧されている。
The helium supplied from the helium I tank in 4.2 is cooled in the JT heat exchanger (6) to near the lambda point of 2.17, then undergoes Gicole-Thomson expansion through the JT valve (force),
.. The temperature drops below 8. At this time, some of the helium vaporizes, and some of it reaches the top of the liquid. The liquid is 1.5-, K He
■It is vaporized in the heat exchanger (8) with the tank, and returns to the low pressure side of the JT heat exchanger (6) together with the previously generated gas. The low pressure sides of the heat exchanger (8) and the JT heat exchanger (6) are reduced in pressure by the vacuum pump (1) to a pressure corresponding to the saturated vapor pressure below.

この装置ではJT弁(7)の入口温度がラムダ点よりわ
ずか上であることが重要である。JT弁(力の入口温度
が超流動温度より下がると超流動成分が摩擦なしにJT
弁(7)を通りぬけるため流量が増加し、排気系との相
互作用で冷却が不簀定となる。逆にJT弁(力入ロ温度
が高すぎると冷凍能力が減少する。
In this device it is important that the inlet temperature of the JT valve (7) is slightly above the lambda point. JT Valve (When the force inlet temperature falls below the superfluid temperature, the superfluid component will release the JT valve without friction.
The flow rate increases because it passes through the valve (7), and cooling becomes unreliable due to interaction with the exhaust system. Conversely, if the JT valve (input temperature) is too high, the refrigeration capacity will decrease.

JT弁(力の入口温度、すなわちJT熱交換器(6)の
出口温度はHeI槽(4)からの入口温度と排気側の入
口温度、熱交換効率によって決捷るが、熱交換効率は流
量によって変化し、また流路内のよごれにより経時変化
する。したがって適正な熱交換効率の、TT熱交換器を
設計・製作することはむずかしい。
The inlet temperature of the JT valve (force), that is, the outlet temperature of the JT heat exchanger (6), is determined by the inlet temperature from the HeI tank (4), the inlet temperature on the exhaust side, and the heat exchange efficiency, but the heat exchange efficiency is determined by the flow rate. It also changes over time due to dirt in the flow path.Therefore, it is difficult to design and manufacture a TT heat exchanger with appropriate heat exchange efficiency.

冷凍力を高めるだめにJT弁入口温度をラムダ点のわず
か上になるようによく設計された二槽式ヘリウム冷凍機
でもJT弁の開度がわずかにずれた場合、あるいは設計
温度条件に到る過程でJT弁入口温度がラムダ点以下に
下がり冷却が不安定となることが多い。
Even in a two-tank helium refrigerator, which is well designed to keep the JT valve inlet temperature slightly above the lambda point in order to increase the refrigeration power, if the opening of the JT valve deviates slightly, or the design temperature condition is reached. During the process, the JT valve inlet temperature often drops below the lambda point, making cooling unstable.

〔発明の目的〕[Purpose of the invention]

この発明は従来装置の上に述べたような冷却不安定性を
除去し、冷凍能力を冒めるため、  JT熱交換器の出
口温度がラムダ点のわずか上になるように制御すること
を目的とする。
The purpose of this invention is to control the outlet temperature of the JT heat exchanger to be slightly above the lambda point in order to eliminate the cooling instability mentioned above in the conventional system and to compromise the refrigerating capacity. do.

〔発明の概要〕[Summary of the invention]

この発明は、JT熱交換器とJT弁、JT熱交換器に液
を供給するHel槽の圧力を調整する圧力制御弁から構
成される。
This invention is comprised of a JT heat exchanger, a JT valve, and a pressure control valve that adjusts the pressure of a Hel tank that supplies liquid to the JT heat exchanger.

JT熱交換器はHe1I槽が作動温度]、、8 K ″
??JT 弁入口温度がラムダ点近傍となるように設計
・製作する。
For the JT heat exchanger, the operating temperature of the He1I tank], 8 K''
? ? JT Design and manufacture so that the valve inlet temperature is near the lambda point.

JT弁に液を供給する熱交換器の高圧側(〜1気圧)の
入口温度と出口温度をそれぞれTI 、T2 %排気側
の入口温度と出口温度をjl+t2、高圧側を流れるヘ
リウムの平均比熱をCph 、排気側のヘリウムガスの
平均比熱をCpc 、流量を智とするとmcph (T
)−T2 )=mCpc (t2− tl)−・・・−
■の関係が成りたつ。また、温度効率εをとすると、熱
交換器の熱通過率U1伝熱面積Aとの間に次の関係が成
りたつ。
The inlet and outlet temperatures on the high-pressure side (~1 atm) of the heat exchanger that supplies liquid to the JT valve are TI and T2, respectively.The inlet and outlet temperatures on the exhaust side are jl+t2, and the average specific heat of helium flowing on the high-pressure side is Cph, the average specific heat of helium gas on the exhaust side is Cpc, and the flow rate is mcph (T
)-T2)=mCpc (t2-tl)-...-
■The relationship holds true. Further, when temperature efficiency ε is assumed, the following relationship holds between heat transfer rate U1 and heat transfer area A of the heat exchanger.

ここでR= Cph/ Cpc < 1JT弁の入口温
度T2がラムダ点以下に下った時JT熱交換器に液を供
給する飽和ヘリウム槽の圧力を高めると、JT熱交換器
の入口温度T1は飽和蒸気圧に対応する温度まで上昇す
る。■■よりT2=(1−εR)T、十εRtl   
  ・・・・・甲・■である。高圧側の圧力を変えた場
合のCphの変化はわずかであるからRは一定とみなせ
る。
Here, R = Cph/Cpc < 1 When the inlet temperature T2 of the JT valve falls below the lambda point, if the pressure of the saturated helium tank that supplies liquid to the JT heat exchanger is increased, the inlet temperature T1 of the JT heat exchanger will become saturated. The temperature rises to correspond to the vapor pressure. From ■■, T2 = (1-εR)T, 1εRtl
・・・・・・A・■. Since the change in Cph when the pressure on the high pressure side is changed is slight, R can be considered to be constant.

1−εR>0 であるから0式よりTIをあげることにより、JT弁の
入口温度T2をラムダ点以上にもどすことができる。
Since 1-εR>0, by increasing TI from equation 0, the JT valve inlet temperature T2 can be returned to above the lambda point.

〔発明の効果〕〔Effect of the invention〕

この発明により、排気側の飽和蒸気圧を左右するJT弁
の開度を変えることなく JT弁の入口温度をラムダ点
以上に制御でき、安定した冷凍運転が可能となる。
According to this invention, the inlet temperature of the JT valve can be controlled above the lambda point without changing the opening degree of the JT valve, which affects the saturated vapor pressure on the exhaust side, and stable refrigeration operation becomes possible.

〔発明の実施例〕[Embodiments of the invention]

この発明の実施例を第3図に示す。装置は超電導磁石等
の冷却対象物が入る1、8KHe n #+(5)、H
e1l槽(5)を冷却するためのJT熱交換器(6)と
JT弁(7)、熱交換器+8)、 JT熱交換器(6)
にヘリウムを供給する〜4.2にのHeI (4)、H
el槽(4)の圧力を調整するだめの制御バルブ(18
1、Hel槽(4)加圧用の加圧バルブf191から構
成される。
An embodiment of this invention is shown in FIG. The device contains objects to be cooled such as superconducting magnets.
JT heat exchanger (6) and JT valve (7) for cooling e1l tank (5), heat exchanger +8), JT heat exchanger (6)
Supplying helium to ~4.2 HeI (4), H
Control valve (18) for adjusting the pressure of the EL tank (4)
1. Hel tank (4) Consists of a pressurizing valve f191 for pressurizing.

HeI @(4) ヘの熱浸入により、Hel槽(4)
内の液は常に蒸発し、制御バルブ(18)を通して回収
系に回収されている。
HeI @(4) Due to heat infiltration, HeI tank (4)
The liquid inside is constantly evaporated and collected into the recovery system through the control valve (18).

JT弁(力の入口温度がラムダ点以下に下った場合は制
御バルブ(18)をしぼり、または締め切ることにより
Hel槽(4)の圧力を上げ、JT弁(力の入口温麓を
ラムダ点以上に制御する。加圧パルブリーは制御バルブ
1181の補助用であり、制御バルブ(18)を締め切
っても圧力が不足の場合に使用する。
JT valve (If the temperature at the inlet of the force falls below the lambda point, increase the pressure in the Hel tank (4) by squeezing or closing the control valve (18), The pressurizing valve is used to assist the control valve 1181, and is used when the pressure is insufficient even after the control valve (18) is closed.

尚圧側の圧力制御バルブを備えた熱換器を用いたこの発
明で安定した冷凍運転が可能となる。
This invention, which uses a heat exchanger equipped with a pressure control valve on the pressure side, enables stable refrigeration operation.

【図面の簡単な説明】 第1図は従来の熱交換器を備えた冷凍機の概略構成図、
第2図は従来の熱交換器の概略図、第3図は本発明に係
る熱交換器を備えた冷凍機を示す概略図である。 (1)・・・コンプレッサ、(2)・・・ヘリウム冷凍
機、(3)・・・真空容器、   (4)・・・Hel
槽、(5) −He II槽、     (6)−JT
熱交換器、(力・・・JT弁、(8)・・・熱交換器、
(9)・・・安全弁、00)・・・接続パイプ、(II
J・・・高圧側流路、+12)・・・低圧側流路、(1
9・・・高圧側入口、   ■・・・高圧側出口、(1
5)・・・低圧側入口、’11(i)・・・低圧側出口
、aη・・・ヘリウム液注入口、 +181・・・制御
パルプ、(1坤・・・加圧パルプ、(20)・・・ヘリ
ウムボンベ。 代理人 弁理士 則 近 憲 佑 (ほか1名)
[Brief explanation of the drawings] Figure 1 is a schematic diagram of a refrigerator equipped with a conventional heat exchanger;
FIG. 2 is a schematic diagram of a conventional heat exchanger, and FIG. 3 is a schematic diagram of a refrigerator equipped with a heat exchanger according to the present invention. (1)...Compressor, (2)...Helium refrigerator, (3)...Vacuum container, (4)...Hel
tank, (5) -He II tank, (6) -JT
Heat exchanger, (power...JT valve, (8)...heat exchanger,
(9)...Safety valve, 00)...Connection pipe, (II
J...High pressure side flow path, +12)...Low pressure side flow path, (1
9...High pressure side inlet, ■...High pressure side outlet, (1
5)...Low pressure side inlet, '11(i)...Low pressure side outlet, aη...Helium liquid inlet, +181...Control pulp, (1kun...Pressure pulp, (20) ...Helium cylinder. Agent: Patent attorney Noriyuki Chika (and one other person)

Claims (1)

【特許請求の範囲】[Claims] 入口圧力を変えて出口温度を制御することを特徴とする
熱交換器。
A heat exchanger characterized by controlling outlet temperature by changing inlet pressure.
JP58072951A 1983-04-27 1983-04-27 Heat exchanger Pending JPS59200162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58072951A JPS59200162A (en) 1983-04-27 1983-04-27 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58072951A JPS59200162A (en) 1983-04-27 1983-04-27 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS59200162A true JPS59200162A (en) 1984-11-13

Family

ID=13504193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58072951A Pending JPS59200162A (en) 1983-04-27 1983-04-27 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS59200162A (en)

Similar Documents

Publication Publication Date Title
JPS59200162A (en) Heat exchanger
JPS63131960A (en) Loss operation method of cryogenic liquefying refrigerator
JPS60178260A (en) Cryogenic refrigerator
JP3113990B2 (en) Helium liquefaction refrigeration apparatus and operating method thereof
JP3048817B2 (en) Non-condensable gas discharge device
JP2980624B2 (en) Cooling method using heat storage type liquid receiver and liquid pump, and cooling and heating methods
JP3086594B2 (en) Single double effect absorption refrigerator
JP3429906B2 (en) Absorption refrigerator
JPS6176861A (en) Absorption refrigerator
JPS602581B2 (en) absorption refrigerator
JPS6284260A (en) Heating apparatus
JPS627979Y2 (en)
JPS586229Y2 (en) absorption refrigerator
JPS63204080A (en) Absorption refrigerator
JPS5918345A (en) Heat pump type refrigerator
JPS5817390B2 (en) Heat recovery type absorption chiller/heater
JPS60207875A (en) Refrigeration cycle
JPH09210503A (en) Concentration difference heat accumulator and heat cycle constitution method
JPH0972624A (en) Non-power driving thermal transfer type cooling device and its driving method
JPS58127054A (en) Ice link refrigerator
JPS62134463A (en) Heat pump device
JPS5811361A (en) Absorption type refrigerator
JPS58138961A (en) Absorption heat pump device
JPS59200163A (en) Heat exchanger
JPS61262575A (en) Method of effectively utilizing heat of vaporization in liquefied-gas evaporator