JPS59200163A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS59200163A
JPS59200163A JP7382683A JP7382683A JPS59200163A JP S59200163 A JPS59200163 A JP S59200163A JP 7382683 A JP7382683 A JP 7382683A JP 7382683 A JP7382683 A JP 7382683A JP S59200163 A JPS59200163 A JP S59200163A
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
low
flow path
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7382683A
Other languages
Japanese (ja)
Inventor
明男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7382683A priority Critical patent/JPS59200163A/en
Publication of JPS59200163A publication Critical patent/JPS59200163A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Steering Mechanism (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の属する技術分野] この発明は液化機、冷凍機等で使用される熱交換器に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] This invention relates to a heat exchanger used in liquefiers, refrigerators, etc.

[従来技術とその問題点] 低温液化機の原理を第1図に示す。コンプレッサー(1
)で圧縮されて高温、高圧となったガスは熱交換器(2
)の高温用流路に流入する。ここで貯液容器(3)から
コンプレッサー(1)に戻る低温、低圧のガスが熱交換
器(2)の低温用流路に流入し、上記の高温、高圧のガ
スと熱交換を行ってこの高温、高圧ガスを逆転温度以下
に冷却する。この冷却された高圧ガスはジーール・トム
ソン弁(以下JT弁と呼ぶ)(4)によってジュール・
トムソン膨張されることによシ更に冷却され、一部が液
化して貯液容器(3)に貯液される。残りの冷却された
ガスは熱交換器(2)の低温用流路に流入して上記の高
温、高圧ガスと熱交換を行っ脂この高圧ガスを逆転温度
以下に冷却してコンプレッサー(1)に戻る。コンプレ
ッサー(1)に戻ったガスは再び圧縮されて上記の工程
を繰シ返す。
[Prior art and its problems] The principle of a low-temperature liquefaction machine is shown in Figure 1. Compressor (1
), the gas is compressed to high temperature and high pressure and is then transferred to a heat exchanger (2).
) flows into the high temperature flow path. Here, the low-temperature, low-pressure gas returning from the liquid storage container (3) to the compressor (1) flows into the low-temperature flow path of the heat exchanger (2), where it exchanges heat with the high-temperature, high-pressure gas. Cools high-temperature, high-pressure gas to below the reversal temperature. This cooled high-pressure gas is transferred to the Joule-Thompson valve (hereinafter referred to as JT valve) (4).
The liquid is further cooled by Thomson expansion, and a portion of the liquid is liquefied and stored in the liquid storage container (3). The remaining cooled gas flows into the low-temperature flow path of the heat exchanger (2) and exchanges heat with the above-mentioned high-temperature, high-pressure gas, cools this high-pressure gas to below the reversal temperature, and sends it to the compressor (1). return. The gas returned to the compressor (1) is compressed again and the above steps are repeated.

一般に熱交換器(2)の熱交換率が高ければ高いほどJ
T弁(4)の入口の温度が低くなるのでJT弁(4)の
ジーール・トムソン膨張による液化率、冷凍効率は向上
することになる。しかしながら、ヘリウムを液化してラ
ムダ点2.17に以下の超流動ヘリウムを発生させる場
合はJT弁(4)の入口の温度がラムダ点以下になる可
能性があシ、JT弁(4)の入口の温度がラムダ点以下
になると、ヘリウムf’s超流動状態となり、超流動状
態ではほとんど粘性がなくなる。従ってヘリウムの超流
動成分がJT弁(4)を多量に通過することになシ、急
速に貯液容器(4)内に超流動ヘリウムが貯液され、熱
交換器(2) K流入する蒸発ガスが急減し、熱交換器
(2)の槻能が低下する。すると今度は急速にJT弁(
4)の入口の温度が上昇し、貯液容器(3)内に貯液さ
れる超流動ヘリウムが急速に減ること(【なりきわめて
冷却が不安定となる。又、逆にJT弁(4)の入口の温
度が高すぎると液化率等の効率が減少する。
In general, the higher the heat exchange rate of the heat exchanger (2), the more J
Since the temperature at the inlet of the T valve (4) is lowered, the liquefaction rate and refrigeration efficiency due to Ziehl-Thompson expansion of the JT valve (4) are improved. However, when liquefying helium to generate the following superfluid helium at lambda point 2.17, the temperature at the inlet of JT valve (4) may drop below the lambda point. When the temperature at the inlet becomes below the lambda point, helium f's enters a superfluid state, and in the superfluid state there is almost no viscosity. Therefore, a large amount of the superfluid component of helium does not pass through the JT valve (4), and the superfluid helium is rapidly stored in the liquid storage container (4) and evaporates into the heat exchanger (2). Gas rapidly decreases, and the heat exchanger (2)'s capacity decreases. Then, this time, the JT valve (
4) will increase, and the superfluid helium stored in the liquid storage container (3) will rapidly decrease (this will make cooling extremely unstable. If the temperature at the inlet is too high, efficiency such as liquefaction rate will decrease.

しだがってJT弁(4)の入口の温度がラムダ点以上の
ラムダ薇近傍の温度と々るように熱交換器(2)を設計
製作する必要があるが、熱交換器の熱交換効率は流量に
よって変化するし、又、流路内のよごれにより経時変化
する等の理由から適正な熱交換効率の熱交換器を設計製
作することはきわめてむずかしかった。
Therefore, it is necessary to design and manufacture the heat exchanger (2) so that the temperature at the inlet of the JT valve (4) reaches a temperature above the lambda point near the lambda point, but the heat exchange efficiency of the heat exchanger It has been extremely difficult to design and manufacture a heat exchanger with appropriate heat exchange efficiency because it changes depending on the flow rate and also changes over time due to dirt in the flow path.

[発明の目的] 本発明の目的は、上記の欠点を除去し、熱交換の温度を
制御することにより適正な熱交換効率を得ることがでへ
る熱交換器を提供することにある。
[Object of the Invention] An object of the present invention is to provide a heat exchanger that eliminates the above-mentioned drawbacks and can obtain appropriate heat exchange efficiency by controlling the heat exchange temperature.

[発明の概要] 本発明は、熱交換を行う流路の近傍にヒータを設け、と
のヒータの通電電流を変化させるとさにより熱交換の温
度を制御することができるようにしだ熱交換器にある。
[Summary of the Invention] The present invention provides a heat exchanger in which a heater is provided near a flow path for heat exchange, and the temperature of heat exchange can be controlled by changing the current flowing through the heater. It is in.

[発明の効果〕 本発明によれば、熱交換器の高温用流路の出口の温度を
所定の温度より低い温度に設計し、熱交換器のヒータの
通電電流を制御することにより熱交換器の高温用流路の
出口の温度を所定の温度に制御することができるのでこ
の熱交換器を特に超流動ヘリウム発生器等のラムダ点以
下に冷却する冷却装置に使用すれば冷却装置の効率は向
上する。
[Effects of the Invention] According to the present invention, the temperature at the outlet of the high-temperature flow path of the heat exchanger is designed to be lower than a predetermined temperature, and the energizing current of the heater of the heat exchanger is controlled. Since the temperature at the outlet of the high-temperature flow path can be controlled to a predetermined temperature, if this heat exchanger is used in a cooling device that cools down to below the lambda point, such as a superfluid helium generator, the efficiency of the cooling device can be improved. improves.

[発明の実施例] 本発明の代表的実施例を図面を参照して説明する。第2
図は本発明に係る熱交換器の概略構成図である。低温、
低圧ガスの流通する低温用流路(5)内に高温、高圧ガ
スの流通するコイル状の高温用流路(6)が収納されて
いる。ヒータ(7)は低温用流路(5)の外周に巻装さ
れている。低温、低圧ガスは低温用流路入口(8)から
流入し、低温用流路出口(9)か  ・1ら流出し、高
温、高圧ガスは高温用流路入口aO)から流入し高温用
流路出口a1)から流出する。
[Embodiments of the Invention] Representative embodiments of the present invention will be described with reference to the drawings. Second
The figure is a schematic configuration diagram of a heat exchanger according to the present invention. low temperature,
A coil-shaped high temperature flow path (6) through which high temperature and high pressure gas flows is housed within the low temperature flow path (5) through which low pressure gas flows. The heater (7) is wrapped around the outer periphery of the low temperature flow path (5). Low-temperature, low-pressure gas flows in from the low-temperature channel inlet (8) and flows out from the low-temperature channel outlet (9). It flows out from the road exit a1).

次に動作について説明する。Next, the operation will be explained.

高温用流路入口(10)から熱交換器に流入する高温の
高圧ガスがコイル状の高混用流路(6)内を流通すると
、低温用流路入口(8)から低温用流路(5)に流入す
る低温の低圧ガスによって熱交換が行われ高圧ガスは冷
却される。そして高圧ガスは高圧側出口(11!から流
出し、又、低圧ガスは低温用流路出口(9)から流出す
る。この第2図の熱交換器を第1図に対応させると低温
用流路(9)がコンプレッサー(1)につながり、高温
用流路出口(lυはJT弁(4)につながる構成となる
。そして、ヒータ(7)の通電電流を変化させることで
高温の高圧ガスと低温の低圧ガスとの熱交換の温度を変
化させることができ、この温度制御された高圧ガスが高
温用流路出口α1)から流出し、第1図においてはJT
弁(4)に流入することになる。
When the high-temperature high-pressure gas flowing into the heat exchanger from the high-temperature channel inlet (10) flows through the coil-shaped high-mixing channel (6), it flows from the low-temperature channel inlet (8) to the low-temperature channel (5). ) The high-pressure gas is cooled by heat exchange with the low-temperature low-pressure gas flowing into the high-pressure gas. The high-pressure gas flows out from the high-pressure side outlet (11!), and the low-pressure gas flows out from the low-temperature flow path outlet (9).If the heat exchanger in Figure 2 corresponds to the one in Figure 1, the low-temperature flow path will flow out. The passage (9) is connected to the compressor (1), and the high temperature flow passage outlet (lυ) is connected to the JT valve (4).Then, by changing the current flowing through the heater (7), high temperature high pressure gas and The temperature of heat exchange with low-temperature low-pressure gas can be changed, and this temperature-controlled high-pressure gas flows out from the high-temperature flow path outlet α1).
It will flow into valve (4).

尚、第2図においてはヒータ(7)を低温の低圧ガスの
流通する低温用流路(5)の外壁に巻装したが、低温用
流路(5)の内壁でもよく、又、高温用流路(6)に巻
装してもよい。
In Fig. 2, the heater (7) is wrapped around the outer wall of the low-temperature flow path (5) through which low-temperature, low-pressure gas flows, but it may also be wrapped around the inner wall of the low-temperature flow path (5). It may be wrapped around the flow path (6).

次に第3図に本発明に係る熱交換器を用いたカロ圧超流
動ヘリウム冷凍機を示す。この加圧超流動へり・ラムは
真空容器0り内に4.2にのへ1ノウムエカS貯液され
るHeI槽α3)、超電導コイル等の冷却対象物fJ5
浸漬され、1.8にの超流動状態であるへ1ノウムIf
 fJ(貯液されるHe1l槽を具備している。He 
[槽(1(8)にはヘリウム冷凍機(2)から4.2に
の液体へIJウムfJ(供給される。He1槽03)と
Hei槽α荀とは細い接続ノくイブα6)で接続され、
この・畑ブα6)には安全弁aη01設を置すレ、コノ
安全弁(I7)ニヨリHei槽03)からHel槽(1
4)への熱侵入を減少させている。更にHel[N (
14)内の液体ヘリウムを冷却するために、Hel槽(
I3)内力・ら流出した液体ヘリウムを更に冷却してジ
ーール・トムソン膨張できる温度にするだめのジュール
・トムソン熱交換器σ8)(以下JT熱交換器と呼ぶ)
、JT弁Qgl及び熱交換器舛を備えているo崗、JT
熱交換器(lalKはヒータ(29が設けられており、
このヒータレηの通電電流を制御す/ることによりJT
熱交換器αaの高温用流路(イ)の出口゛(b)の温度
をI制御し、ヒータ(21)に通電していない状態では
JT熱交換器(181の高温用流路(22)の出口(b
)の温度がヘリウムのラムダ点以下となるようにJT熱
交換器0印を構成している。又、真空ポンプ(23)は
JT熱交換器錦の低温用流路(24)の出口(d)を減
圧するように配置している。
Next, FIG. 3 shows a Calorie superfluid helium refrigerator using a heat exchanger according to the present invention. This pressurized superfluid hem/ram is stored in a HeI tank α3) in which liquid is stored in a vacuum vessel of 4.2 times, and objects to be cooled such as superconducting coils fJ5.
1 If is immersed in a superfluid state of 1.8
fJ (Equipped with a He1l tank for storing liquid. He
[Helium tank (1 (8)) is supplied with liquid from helium refrigerator (2) to 4.2. He1 tank 03 and Hei tank α are connected by a thin connecting tube α6). connected,
This field block α6) is equipped with a safety valve aη01.
4) Reduces heat infiltration. Furthermore, Hel[N (
14) In order to cool the liquid helium in the Hel tank (
I3) Joule-Thomson heat exchanger σ8) (hereinafter referred to as JT heat exchanger) to further cool the liquid helium flowing out from the internal force to a temperature that allows Ziehl-Thomson expansion.
, JT valve Qgl and heat exchanger valve, JT
The heat exchanger (lalK is equipped with a heater (29),
By controlling the current flowing through this heater η, the JT
The temperature at the outlet (b) of the high temperature flow path (a) of the heat exchanger αa is controlled by I, and when the heater (21) is not energized, the high temperature flow path (22) of the JT heat exchanger (181) is controlled. exit (b
The JT heat exchanger 0 mark is configured so that the temperature of ) is below the lambda point of helium. Further, the vacuum pump (23) is arranged to reduce the pressure at the outlet (d) of the low temperature flow path (24) of the JT heat exchanger Nishiki.

次に動作について説明する。Next, the operation will be explained.

まず、ヘリウム冷凍機住9がらHel槽(13)及び接
続パイプ(16)を介してHel槽αaに4.2にの液
体ヘリウムを貯液し、貯液後安全弁αカで接続パイプ(
I6)を閉塞し、更にHel槽(13)に液体ヘリウム
を貯液する。この状態でけHe[槽IはHel槽(13
)によって1気圧よりもわずかに高い圧力で加圧されて
いる。
First, liquid helium of 4.2 is stored in the Hel tank αa through the Hel tank (13) and the connecting pipe (16) from the helium refrigerator housing 9, and after storing the liquid helium, the safety valve α is connected to the connecting pipe (
I6) and further store liquid helium in the Hel tank (13). In this state, He[tank I is Hel tank (13
) is pressurized at a pressure slightly higher than 1 atmosphere.

次に真空ポンプ(22がJT熱交換器珀の低温用流路(
241の出口(ψを1.8に以下のヘリウムの飽和蒸気
圧に対応する圧力まで減圧するとHeI 槽(13)か
ら4.2K。
Next, the vacuum pump (22 is the low temperature flow path of the JT heat exchanger)
When the pressure is reduced to the pressure corresponding to the saturated vapor pressure of helium below the outlet of 241 (ψ is 1.8), 4.2 K is released from the HeI tank (13).

1気圧の液体ヘリウムがJT熱交換器o81の高温用流
路0渇の入口(a)に流入してJT弁(1,9)に達す
るとジュール・トムソン膨張し、4.2に、1気圧の柊
゛体ヘリウムは1.8に以下の温度まで下がり、一部は
気化し一部は流体である超流動ヘリウムとなって熱交換
器(201に流入する。この液体の超流動ヘリウムは熱
交換器(201内でHe[槽(1ル内の液体ヘリウムと
熱交換して液体ヘリウムを冷却して気化し、上記の気化
したヘリウムと一緒にJT熱交換器θaの低温用流路(
24)の入口(C)に流入する。この低温用流路(24
)の入口(C)に流入するヘリウムガスは4.2 K以
下に冷却されているのでI−(el槽(13)からJT
熱交換器(18)の高温用流路(イ)の入口(a)に流
入する4、2にの液体ヘリウムと熱交換して冷却し、J
T熱交換器(18)の低温用流路(24)の出口(d)
から真空ポンプ(22)に戻っていく。
When liquid helium at a pressure of 1 atm flows into the inlet (a) of the high temperature flow path 0 of the JT heat exchanger o81 and reaches the JT valve (1, 9), it undergoes Joule-Thomson expansion to 4.2 and 1 atm. The molten helium cools to a temperature below 1.8 degrees, part of it vaporizes, and part of it becomes fluid superfluid helium and flows into the heat exchanger (201).This liquid superfluid helium is heated In the exchanger (201), the liquid helium is cooled and vaporized by heat exchange with the liquid helium in the He [tank (1 liter), and the low-temperature flow path (
24) into the inlet (C). This low temperature flow path (24
Since the helium gas flowing into the inlet (C) of ) is cooled to below 4.2 K, it is
The J
Outlet (d) of the low temperature flow path (24) of the T heat exchanger (18)
From there, it returns to the vacuum pump (22).

以上の工程を繰り返すとHe1l槽0(イ)内の液体ヘ
リウムの冷却が促進し、JT熱交換器相の高温用流路(
22)の出口(b)の温度がラムダ点以下になる場合が
でてくる。この高温用流路(22の出口(b)の温度を
図示しガいゲルマニウム温度計算によって測定し。
By repeating the above steps, the cooling of the liquid helium in the He1l tank 0 (a) is accelerated, and the high temperature flow path of the JT heat exchanger phase (
There are cases where the temperature at the outlet (b) of 22) becomes below the lambda point. The temperature at the outlet (b) of this high-temperature channel (22) is shown and measured by germanium temperature calculation.

この測定温度によってヒータ(2υの通電電流を制御す
ることによりJT熱交換器(18)の高温用流路(22
の出口(b)における液体ヘリウムの温度itsラムダ
点以・1 下にならないように制御できる。
The high temperature flow path (22) of the JT heat exchanger (18) is controlled by controlling the current of the heater (2υ) based on this measured temperature
The temperature of the liquid helium at the outlet (b) can be controlled so that it does not fall below the lambda point.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱交換器を用いた液化機の流れ図、第2
図は本発明に係る熱交換器の概略構成図、第3図は本発
明に係る熱交換器を用いた加圧超流動ヘリウム冷凍機の
概略構成図である。 5.24・・・低温用流路、 6.22・・高温用流路、 7.21・・・ヒータ。 305 第  1  図 第  2  図 第  3  図
Figure 1 is a flowchart of a liquefier using a conventional heat exchanger, Figure 2
FIG. 3 is a schematic diagram of a heat exchanger according to the present invention, and FIG. 3 is a schematic diagram of a pressurized superfluid helium refrigerator using the heat exchanger according to the present invention. 5.24...Low temperature channel, 6.22...High temperature channel, 7.21...Heater. 305 Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 熱交換を行う流路の近傍にヒータを設け、とのヒータの
通電電流を変化させることにより熱交換の温度を制御す
るごとく構成してなることを特徴とする熱交換器。
A heat exchanger characterized in that a heater is provided near a flow path for heat exchange, and the temperature of heat exchange is controlled by changing the current flowing through the heater.
JP7382683A 1983-04-28 1983-04-28 Heat exchanger Pending JPS59200163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7382683A JPS59200163A (en) 1983-04-28 1983-04-28 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7382683A JPS59200163A (en) 1983-04-28 1983-04-28 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS59200163A true JPS59200163A (en) 1984-11-13

Family

ID=13529336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7382683A Pending JPS59200163A (en) 1983-04-28 1983-04-28 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS59200163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185641A (en) * 2009-02-13 2010-08-26 Kobe Steel Ltd Pressurized superfluid helium cryostat and control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185641A (en) * 2009-02-13 2010-08-26 Kobe Steel Ltd Pressurized superfluid helium cryostat and control method

Similar Documents

Publication Publication Date Title
US4766741A (en) Cryogenic recondenser with remote cold box
US6477847B1 (en) Thermo-siphon method for providing refrigeration to a refrigeration load
US3415077A (en) Method and apparatus for continuously supplying refrigeration below 4.2deg k.
US4048814A (en) Refrigerating plant using helium as a refrigerant
EP0578241B1 (en) Cryogenic refrigeration system and refrigeration method therefor
USRE33878E (en) Cryogenic recondenser with remote cold box
JPS59200163A (en) Heat exchanger
US20230304731A1 (en) Facility and method for refrigerating a fluid
JP2841955B2 (en) Supercritical helium cooling device and operating method thereof
JPH10246524A (en) Freezing device
JPH09113052A (en) Freezer
JPH02136687A (en) Utilization of cold heat effected by accumulating coil heat of low-temperature liquefied gas
JP2617172B2 (en) Cryogenic cooling device
JPS60178260A (en) Cryogenic refrigerator
JPH05118728A (en) Supercooler for supercooled water manufacturing device
Liu et al. A Separated two stage helium liquefier using a 4 K GM cryocooler
US3470065A (en) Production of cold neutrons
Wagner Refrigeration
JPS6317360A (en) Cryogenic refrigerating method
JP3176087B2 (en) Cryogenic refrigeration equipment
JP2669629B2 (en) Hydrogen liquefaction machine using metal hydride
JPH06283769A (en) Superconducting magnet refrigerating system
JPS6069462A (en) Method of cooling cryogenic cooling device
JPH05322343A (en) Freezer device with reservoir tank
JPH06323664A (en) Refrigerator