JPS591961B2 - automatic focus detection device - Google Patents

automatic focus detection device

Info

Publication number
JPS591961B2
JPS591961B2 JP380775A JP380775A JPS591961B2 JP S591961 B2 JPS591961 B2 JP S591961B2 JP 380775 A JP380775 A JP 380775A JP 380775 A JP380775 A JP 380775A JP S591961 B2 JPS591961 B2 JP S591961B2
Authority
JP
Japan
Prior art keywords
amount
imaging
distance
optical system
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP380775A
Other languages
Japanese (ja)
Other versions
JPS5175466A (en
Inventor
正道 矢滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP380775A priority Critical patent/JPS591961B2/en
Publication of JPS5175466A publication Critical patent/JPS5175466A/en
Publication of JPS591961B2 publication Critical patent/JPS591961B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】 本発明は自動焦点検出装置、特に結像光学系と受光手段
とを備え被検体の該光学系による結像位置が光軸上、予
定結像位置を中心とする予め設定された所定範囲内にあ
れば前記結像位置の予定結像位置からの相違量(デフオ
ーカス量)に応じて受光手段から所定の相関出力が得ら
れ該出力を用いてデフオーカス量更には被検体までの距
離を算出できる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an automatic focus detection device, in particular, which includes an imaging optical system and a light receiving means, so that the imaging position of the subject by the optical system is on the optical axis, and is centered on the planned imaging position. If it is within the set predetermined range, a predetermined correlation output is obtained from the light receiving means according to the amount of difference (defocus amount) between the image forming position and the planned image forming position, and this output is used to determine the defocus amount and the object to be examined. This invention relates to a device that can calculate the distance to.

5 従来、距離検出装置のヘッド部と被測定物の距離が
所定の値になる様に前記ヘッド部を距離検出装置の出力
でサーボ制御し、ヘッド部が最終的に静止した時にこの
ヘッド部の基準位置からの移動量をエンコーダ等の測長
装置で計測し、この計測10値すなわちデフオーカス量
を基に被検体までの距離を測定していた。
5 Conventionally, the head section of the distance detecting device is servo-controlled by the output of the distance detecting device so that the distance between the head section and the object to be measured becomes a predetermined value, and when the head section finally comes to rest, the distance between the head section and the object to be measured becomes a predetermined value. The amount of movement from the reference position is measured with a length measuring device such as an encoder, and the distance to the subject is measured based on the measured 10 value, that is, the amount of defocus.

この方式によるとヘッド部と被潰1]定物との距離を所
定の値に保つために、かなりの質量を持つたヘッド部を
サーボ制御するので、ヘッド部の慣性力を考慮した高度
の技術と複雑な15機構を必要とする。ヘッド部は第1
図に示す様に、被検体から一定の距離を隔てた位置に静
止する場合、サーボ制御のために前記静止位置Pを中心
とした減衰運動により静止するので、ヘッド部が完全に
静止した状20態で測定するのに時間がかかるという大
きな欠点を有している。
According to this method, in order to maintain the distance between the head and the object to be crushed at a predetermined value, the head, which has a considerable mass, is servo-controlled, which requires advanced technology that takes into account the inertial force of the head. This requires 15 complex mechanisms. The head part is the first
As shown in the figure, when the head part is stationary at a position a certain distance away from the subject, it is stopped by a damping movement centered on the stationary position P due to servo control, so the head part remains completely stationary. The major drawback is that it takes time to measure the situation.

これは前記結像位置を予定結像位置まで追い込まなけれ
ばならないということに起因する。本発明は上記従来例
の欠点を解決した新規な自25動焦点検出装置を提供す
ることを目的とする。
This is due to the fact that the imaging position must be driven to the expected imaging position. SUMMARY OF THE INVENTION An object of the present invention is to provide a novel automatic 25-dynamic focus detection device that solves the drawbacks of the conventional example.

斯かる目的を達成するため、本発明においては、被検体
の結像光学系による結像位置が光軸上、予定結像位置を
中心とする所定範囲内にあれば前記結像位置の予定結像
位置からの相違量すなわちデフ30 オーカス量は受光
手段の出力と所定の相関関係を有することとりわけ線型
関係を有することに着目し、前記結像位置での受光手段
の出力値より、該結像位置の予定結像位置からのデフオ
ーカス量を算出することを特徴とする。すなわち前記結
像位35置を予定結像位置まで追い込むことなくデフオ
ーカス量を求めることを特徴とする。更に本発明におい
ては、前記結像位置が前記所定範囲内にないとき該結像
位置を該所定範囲内に移動させその移動量をも検出する
ことを特徴とする。
In order to achieve such an object, in the present invention, if the imaging position of the subject by the imaging optical system is on the optical axis and within a predetermined range centered on the expected imaging position, Focusing on the fact that the amount of difference from the image position, that is, the differential 30 orcus amount, has a predetermined correlation, especially a linear relationship, with the output of the light receiving means, the image forming The method is characterized by calculating the amount of defocus from the expected imaging position. That is, the present invention is characterized in that the amount of defocus is determined without driving the image forming position 35 to the expected image forming position. Furthermore, the present invention is characterized in that when the image forming position is not within the predetermined range, the image forming position is moved within the predetermined range and the amount of movement thereof is also detected.

本発明によれば、被検体の結像光学系による結像位置が
前記所定範囲内にあれば、従来のように結像位置を最終
的に予定結像位置まで追い込むことなく、斯かる位置に
静止させたまま若しくは移動に際し制御を解除させた状
態で、デフオーカス量を直接出力とデフオーカス量の相
関関数より求めることができ、これを基に被検体までの
距離検出が迅速になされる。
According to the present invention, if the imaging position of the subject by the imaging optical system is within the predetermined range, the imaging position is not finally driven to the expected imaging position as in the conventional case, but the imaging position is moved to that position. The amount of defocus can be determined from the correlation function between the direct output and the amount of defocus while the object remains stationary or the control is released during movement, and based on this, the distance to the object can be quickly detected.

更に前記結像位置が前記所定範囲内にないときは公知の
駆動手段(例えばサーボ駆動)で該所定範囲内にあると
検出される任意位置まで移動させ、そのときの移動量を
検出し、同時にそのときの受光手段出力値よりデフオー
カス量との相関関数を用いてデフオーカス量を算出し、
両者を合わせてこれを基に被検体までの距離を検出する
ことにより、距離検出範囲を任意に拡大することが可能
となる。
Further, when the image forming position is not within the predetermined range, it is moved to an arbitrary position that is detected to be within the predetermined range by a known drive means (for example, a servo drive), the amount of movement at that time is detected, and at the same time Calculate the amount of defocus from the output value of the light receiving means at that time using a correlation function with the amount of defocus,
By combining both and detecting the distance to the subject based on this, it becomes possible to arbitrarily expand the distance detection range.

斯かる本発明によれば予め定められた被検体までの距離
とのずれ量が上述のデフオーカス量より或いは更に前記
移動量と加算することにより算出され、これを予め定め
られた被検体までの距離と加算して、被検体までの絶対
距離を測定することが可能である。
According to the present invention, the amount of deviation from the predetermined distance to the subject is calculated by adding it to the above-described amount of defocus or further to the amount of movement, and this is calculated as the distance to the predetermined subject. By adding this, it is possible to measure the absolute distance to the subject.

またデフオーカス量或いは、更に前記移動量と加算した
値を合焦光学系の合焦位置までの変位量として用いるこ
とも可能である。
It is also possible to use the amount of defocus or a value added to the amount of movement as the amount of displacement of the focusing optical system to the in-focus position.

以下、駆動手段としてサーボ駆動を用いた実施例を詳述
する。
Hereinafter, an embodiment using servo drive as the drive means will be described in detail.

なお本実施例ではサーボ駆動方向を弁別するための公知
の可変焦点距離の結像光学系が用いられている。
In this embodiment, a known variable focal length imaging optical system is used to discriminate the servo drive direction.

第2図に於いて、1は距離検出装置のヘツド部で、該ヘ
ツド部1内には対物レンズ2、その焦点距離がfを中心
とし、f+Δf1とf−ΔF2の間で変化する可焦点ミ
ラー3、該可焦点ミラーから一定の位置に置かれ、その
中心に孔4を有するピンホール板5、そして該ピンホー
ル板5の孔部4を通過して来る光束を受光する受光器6
を含んでいる。
In Fig. 2, reference numeral 1 denotes the head part of the distance detection device, and inside the head part 1 there is an objective lens 2, and a focal length mirror whose focal length is centered at f and changes between f+Δf1 and f-ΔF2. 3. A pinhole plate 5 placed at a fixed position from the focal mirror and having a hole 4 at its center, and a light receiver 6 that receives the light beam passing through the hole 4 of the pinhole plate 5.
Contains.

可焦点ミラー3は発振回路101からの信号により焦点
距離を変化させるものである。受光素子6からの信号は
交流増幅回路102で交流増1福され、前記発振回路1
01からの信号と共に同期整流回路103に入力し同期
整流される。被検体7とヘツド部1の距離がDである場
合、同期整流回路103からの出力Eは零となる様に設
けられている。この様な電気処理回路(101,102
,103)は既に広く用いられている方法である。本発
明は一般に被検体7とヘツド部1の間の距離が前記距離
Dに比べてその差(デフオーカス量)dが少ない場合、
このデフオーカス量dと前記同期整流回路103からの
出力Eの間に相関関係とりわけ第3図に示す様な線型の
関係が成り立つことに注目した。第3図においては縦軸
に出力E、横軸にデフオーカス量dを取つてありデフオ
ーカス量dが−d1とD2の間にある場合、出力Eとデ
フオーカス量dは線型の関係にある。そして、デフオー
カス量dが−d1の時出力Eは、−E1、dがD2の時
、出力EはE2となる。この時逆に出力Eの値が−E1
とE2の間にあれば、この出力Eからデフオーカス量d
を導くことができる。従つて同期整流回路からの出力E
が−E1とE2の間にあることを検知すれば、その時の
出力Eの値からデフオーカス量dが分り、前記Dの値に
ヘツド部1の移動量とデフオーカス量dを加えてやるこ
とにより被検体までの距離が求められる。
The focal length mirror 3 changes its focal length in response to a signal from the oscillation circuit 101. The signal from the light-receiving element 6 is amplified by AC in an AC amplifier circuit 102 and sent to the oscillation circuit 1.
The signal is input to the synchronous rectifier circuit 103 together with the signal from 01 and synchronously rectified. When the distance between the subject 7 and the head section 1 is D, the output E from the synchronous rectifier circuit 103 is set to zero. Such electrical processing circuits (101, 102
, 103) is already a widely used method. In general, the present invention is applicable when the difference (defocus amount) d between the subject 7 and the head section 1 is smaller than the distance D,
Attention was paid to the fact that a correlation, especially a linear relationship as shown in FIG. 3, holds between the amount of defocus d and the output E from the synchronous rectifier circuit 103. In FIG. 3, the vertical axis represents the output E, and the horizontal axis represents the amount of defocus d. When the amount of defocus d is between -d1 and D2, the output E and the amount of defocus d have a linear relationship. When the defocus amount d is -d1, the output E becomes -E1, and when d is D2, the output E becomes E2. At this time, conversely, the value of output E is -E1
and E2, from this output E to the differential focus amount d
can lead to. Therefore, the output E from the synchronous rectifier circuit
If it is detected that E is between -E1 and E2, the amount of differential focus d can be determined from the value of the output E at that time, and the amount of movement of the head section 1 and the amount of differential focus d can be calculated by adding the amount of movement of the head section 1 and the amount of differential focus d to the value of D. The distance to the specimen is determined.

故にこの検出回路を用いれはサーボ機構により駆動され
るヘツド部が静止するまで待つ必要がないのである。上
述した本発明の原理を用いた電気処理回路は第2図の1
04から109であり、この回路のフローチヤートを示
したものが第4図に示されている。以下第4図を併用し
、上記104から109の回路を説明する。
Therefore, when using this detection circuit, there is no need to wait until the head section driven by the servo mechanism comes to rest. An electrical processing circuit using the principle of the present invention described above is shown in 1 in FIG.
04 to 109, and a flowchart of this circuit is shown in FIG. Hereinafter, the circuits 104 to 109 described above will be explained with reference to FIG.

104は制御完了検知回路で同期整流回路103からの
出力Eが上記デフオーカス量dと線型な関係にある領域
−E,≦E≦E2内にあるかどうかを検知するものであ
る。
Reference numeral 104 denotes a control completion detection circuit which detects whether the output E from the synchronous rectification circuit 103 is within a region -E, ≦E≦E2, which has a linear relationship with the above-mentioned defocus amount d.

この領域−E1≦E≦E2は検出系により固有の値を示
すもので、了め同期整流回路Eとデフオーカス量dの関
係を調べて、上記ElFE2の値を決めなければならな
い。
This region -E1≦E≦E2 indicates a value specific to the detection system, and the value of ElFE2 must be determined by examining the relationship between the end synchronous rectifier circuit E and the amount of defocus d.

制御検知回路104で上記Eの値が−E1とE2の間に
なかつた時、出力Eはサーボ,駆動回路105に入力す
る。
When the control detection circuit 104 determines that the value of E is not between -E1 and E2, the output E is input to the servo/drive circuit 105.

サーボ駆動回路105において、入力値Eが正又は負で
あるかの区別により、サーボ駆動装置がヘツド部1を被
検体7の方向に近づける様に駆動するか又は逆にヘツド
部1を被検体7から遠ざけるように駆動する。この様な
サーボ駆動のくり返しにより、上記Eの値がデフオーカ
ス量dと線型な関係を有する領域に入つた時、制御検知
回路からの信号は距離変換回路106と測長装置107
に入る。距離変換回路106はE,≦E≦E2にあるE
の値からデフオーカス量dを算出する回路である。一方
測長装置107は制御検知回路の信号により、ヘツド1
が被検体からの標準位置、即ち被検体7とヘツド部1の
距離がDの状態から、どれ程ずれたかというずれ量δを
計測する装置でエンコーダ等が用いられる。上記距離変
換回路106からのデフオーカス量dと測長装置107
からのずれ量δは加算回路108に入力し、上述した被
検体7とヘツド部1間の一定距離Dに加味される。加算
回路108からの信号は表示回路109に入力し、被検
体とヘツド部1の距離が表示される。上記実施例におい
ては可焦点光学系を用いた自動距離測定方式について述
べたが、上述した点から明らかな様に本発明においては
どの様な光学系を用いた自動測距方式にでも応用できる
In the servo drive circuit 105, depending on whether the input value E is positive or negative, the servo drive device drives the head unit 1 so as to move it closer to the subject 7, or vice versa. Drive away from the vehicle. By repeating such servo driving, when the value of E enters a region having a linear relationship with the amount of defocus d, the signal from the control detection circuit is transmitted to the distance conversion circuit 106 and the length measuring device 107.
to go into. The distance conversion circuit 106 is E, which is E, ≦E≦E2.
This circuit calculates the defocus amount d from the value of . On the other hand, the length measuring device 107 detects the head 1 by the signal from the control detection circuit.
An encoder or the like is used in a device that measures the amount of deviation δ from the standard position from the subject, that is, the distance D between the subject 7 and the head portion 1. Defocus amount d from the distance conversion circuit 106 and length measuring device 107
The amount of deviation δ is input to the addition circuit 108, and is added to the above-described constant distance D between the subject 7 and the head section 1. The signal from the adder circuit 108 is input to a display circuit 109, and the distance between the subject and the head section 1 is displayed. In the above embodiment, an automatic distance measuring method using a focusable optical system has been described, but as is clear from the above points, the present invention can be applied to an automatic distance measuring method using any optical system.

即ち、同期整流回路からの出力をE1デフオーカス量を
dとする時、−d1≦d≦D2の間でE−φ(d)の関
係があり、φ(−d1)=−E1、φ(D2)E2(E
1〈E2)である時、dく−D,、D2くdの範囲でE
く−E1、E2くEである様に設計された距離検出回路
において使用可能である。以上、本発明によれば被検体
の結像光学系による結像位置を最終的に予定結像位置ま
で追い込むことなく、その手前の位置でデフオーカス量
検出ができ、移動機構としてサーボ制御を用いる場合に
は予定結像位置近傍での制御をフリーにし或いはストツ
プさせることが可能となり、装置が簡略化され検出時間
が短縮化される。更に本発明によれば前記結像位置が予
定結像位置を中心とする所定範囲内にない場合にもエン
コーダ等でひとまず該所定範囲内に移動させその移動量
を加昧することにより距離検出ができ、距離検出範囲す
なわちダイナミツクレンジを任意に拡大できる効果をも
有する。
That is, when the output from the synchronous rectifier circuit is E1 and the defocus amount is d, there is a relationship of E-φ(d) between -d1≦d≦D2, and φ(-d1)=-E1, φ(D2 )E2(E
1<E2), then E in the range of d - D, , D2 - d
It can be used in distance detection circuits designed to be E1, E2 and E2. As described above, according to the present invention, it is possible to detect the amount of differential focus at a position before the final imaging position of the object by the imaging optical system without driving it to the expected imaging position, and when using servo control as the movement mechanism. In addition, it becomes possible to free or stop control near the planned imaging position, simplifying the apparatus and shortening the detection time. Furthermore, according to the present invention, even if the image formation position is not within a predetermined range centered on the expected image formation position, distance detection is performed by first moving it within the predetermined range using an encoder or the like and adding the amount of movement. This also has the effect of arbitrarily expanding the distance detection range, that is, the dynamic range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はサーボ制御装置の特性を表わす図、第2図は本
発明の一実施例を表わす図、第3図、第4図は本発明を
説明する為の図。 1・・・ヘツド部、3・・・可焦点ミラー、7・・・被
検体、101・・・発振回路、102・・・交流増幅回
路、103・・・同期整流回路、104・・・制御完了
検知回路、105・・・サーボ駆動回路、106・・・
距離変換回路、107・・・測長装置、108・・・加
算回路、109・・・表示回路。
FIG. 1 is a diagram showing characteristics of a servo control device, FIG. 2 is a diagram showing an embodiment of the present invention, and FIGS. 3 and 4 are diagrams for explaining the present invention. DESCRIPTION OF SYMBOLS 1... Head part, 3... Focal mirror, 7... Subject, 101... Oscillation circuit, 102... AC amplifier circuit, 103... Synchronous rectifier circuit, 104... Control Completion detection circuit, 105... Servo drive circuit, 106...
Distance conversion circuit, 107... Length measuring device, 108... Addition circuit, 109... Display circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 結像光学系と、前記結像光学系による被検体の結像
状態に応じた信号を出力する受光手段と、前記結像光学
系による被検体の結像位置が光軸上、予定結像位置から
所定範囲内にあるかどうかを前記受光手段から出力され
た信号を用いて判別する判別手段と、前記判別手段が前
記結像光学系による被検体の結像位置が予定結像面から
所定範囲内にあると判断したとき、その結像位置と予定
結像面とのデイフオーカス量を算出する演算手段と、前
記判別手段が前記結像光学系による被検体の結像位置が
予定結像面から所定範囲内にないと判断したとき、前記
結像光学系の少なくとも一部を駆動させる駆動手段とを
有することを特徴とする自動焦点検出装置。
1. an imaging optical system, a light receiving means that outputs a signal according to the imaging state of the subject by the imaging optical system, and a position where the imaging position of the subject by the imaging optical system is on the optical axis, and the planned imaging a determining means for determining whether or not the position is within a predetermined range from a predetermined imaging plane using a signal output from the light receiving means; a calculation means for calculating the amount of defocus between the imaging position and the planned imaging plane when it is determined that the imaging position of the subject by the imaging optical system is within the range; an automatic focus detection device comprising: a drive means for driving at least a part of the imaging optical system when it is determined that the imaging optical system is not within a predetermined range.
JP380775A 1974-12-25 1974-12-25 automatic focus detection device Expired JPS591961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP380775A JPS591961B2 (en) 1974-12-25 1974-12-25 automatic focus detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP380775A JPS591961B2 (en) 1974-12-25 1974-12-25 automatic focus detection device

Publications (2)

Publication Number Publication Date
JPS5175466A JPS5175466A (en) 1976-06-30
JPS591961B2 true JPS591961B2 (en) 1984-01-14

Family

ID=11567452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP380775A Expired JPS591961B2 (en) 1974-12-25 1974-12-25 automatic focus detection device

Country Status (1)

Country Link
JP (1) JPS591961B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650353A (en) * 1979-10-02 1981-05-07 Ricoh Co Ltd Minute gap holding unit
JPH07107481B2 (en) * 1987-05-21 1995-11-15 アンリツ株式会社 Displacement measuring device

Also Published As

Publication number Publication date
JPS5175466A (en) 1976-06-30

Similar Documents

Publication Publication Date Title
US4764016A (en) Instrument for measuring the topography of a surface
KR940027659A (en) Auto Focusing Device
JPH0234003B2 (en)
US5202740A (en) Method of and device for determining the position of a surface
JPS591961B2 (en) automatic focus detection device
JPH05164556A (en) Focusing type non-contact displacement gage
JPH05227465A (en) Automatic focusing device
JPH04161912A (en) Automatic focusing device for electronic camera
JP2709486B2 (en) Image plane moving speed prediction device and automatic focus adjustment device
JPH0752626Y2 (en) Lightwave distance measuring device
JPS61235809A (en) Automatic focusing device
JP2973017B2 (en) Focus detection device
JPS6111944A (en) Automatic focus controller
JPS61240103A (en) Optical minute displacement meter
JPS59111611A (en) Automatic focusing device
SU1288500A1 (en) Method of determining shell surface displacement speed
JPS61247910A (en) Distance measuring method
JPH04190104A (en) Outer-diameter measuring apparatus
JPH0968407A (en) Displacement detector
JPH09230229A (en) Predictive focusing device
JPH02170007A (en) Plate thickness measuring instrument
JPH0440319A (en) Monocontact type optical displacement measuring instrument with focusing mechanism
JPS5533629A (en) Gap measurement and device therefor
KR19990015441A (en) Automatic focusing device of OHP and method thereof
JPS6341486B2 (en)