JPH02170007A - Plate thickness measuring instrument - Google Patents

Plate thickness measuring instrument

Info

Publication number
JPH02170007A
JPH02170007A JP32545388A JP32545388A JPH02170007A JP H02170007 A JPH02170007 A JP H02170007A JP 32545388 A JP32545388 A JP 32545388A JP 32545388 A JP32545388 A JP 32545388A JP H02170007 A JPH02170007 A JP H02170007A
Authority
JP
Japan
Prior art keywords
movable mirror
steel plate
thickness
plate
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32545388A
Other languages
Japanese (ja)
Inventor
Akinobu Ogasawara
小笠原 昭宣
Shuji Naito
修治 内藤
Hidetaka Kominami
小南 秀隆
Takanori Yamamoto
孝則 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SERUTETSUKU SYST KK
Nippon Steel Corp
Original Assignee
SERUTETSUKU SYST KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SERUTETSUKU SYST KK, Nippon Steel Corp filed Critical SERUTETSUKU SYST KK
Priority to JP32545388A priority Critical patent/JPH02170007A/en
Publication of JPH02170007A publication Critical patent/JPH02170007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To accurately measure the thickness of a plate material such as a steel plate, aluminum plate, and a nonmetallic plate over a wide range by incorporating an adjusting mechanism for holding the length of an optical path constant following up the thickness-directional variation of an object of measurement. CONSTITUTION:Mechanisms B which detect the thickness-directional variation position of the steel plate S is provided opposite both surfaces of the steel plate S and coupled through a synchronizer 17. The laser light 6 from a light source 5 is projected on the surface of the steel plate S through a fixed mirror 1 and a movable mirror 2 and its reflected light is made incident on an optical position detecting element 12 through the fixed mirror 1 and movable mirror 2. The position of the movable mirror 2 is accurately detected by a position detector 3 and moved at right angles to the surface of the steel plate S by a linear motor which is driven according to the variation of the steel plate S. The thickness of the plate material S is calculated from the movement distance of the movable mirror 2 by controlling the movement of the movable mirror 2 corresponding to the thickness-directional variation of the plate material S which is generated in thickness measurement so that the length of the optical path reaching an optical position detecting element 12 from the light source 5 through the surface of the plate material S is constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非接触方式で鋼板等の板材の厚みを精度良く
測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for accurately measuring the thickness of a plate material such as a steel plate in a non-contact manner.

〔従来の技術〕[Conventional technology]

厚み測定装置としては、測定対象に放射線を照射し、こ
の放射線が測定対象を透過するときの強度減衰量が厚さ
に比例して変化することを利用した放射線方式が知られ
ている。たとえば、特開昭61−219808号公報で
は、放射線検出器の出力の所定単位時間当りの積分値を
、その時間より短い時間ずらせて順次求めることにより
、凹凸を検出している。
As a thickness measuring device, a radiation method is known that utilizes the fact that a measurement target is irradiated with radiation and the amount of intensity attenuation when the radiation passes through the measurement target changes in proportion to the thickness. For example, in Japanese Unexamined Patent Publication No. 61-219808, unevenness is detected by sequentially determining the integral value of the output of a radiation detector per a predetermined unit time by shifting it by a shorter time than that time.

また、測定対象に光を照射し、その反射光を検出する光
学方式も知られている。たとえば、特開昭60−572
03号公報では、測定対象である板材の上下に設けた走
行レールに配置した光学距離センサーで、板材及びそれ
に対応する位置に設けた標準板との比較測定を行うこと
により、測定精度を向上させている。
Also known is an optical method in which a measurement target is irradiated with light and the reflected light is detected. For example, JP-A-60-572
In Publication No. 03, measurement accuracy is improved by using optical distance sensors placed on running rails installed above and below the plate material to be measured, and performing comparative measurements with the plate material and a standard plate provided at the corresponding position. ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

放射線方式の厚み測定装置では、透過による減衰量から
板厚を測定するため、測定対象が厚み方向に変動した場
合でも、その変動が測定結果に悪影響を与えず、高精度
の測定が可能である。しかし、この方式の厚み測定装置
は、光学方式に比較して格段に高価であるため、非常に
高度の測定精度が要求される特殊な用途に使用が限定さ
れている。
Radiation-based thickness measurement equipment measures plate thickness from the amount of attenuation due to transmission, so even if the measurement target changes in the thickness direction, the fluctuation does not have a negative effect on the measurement results, making it possible to measure with high precision. . However, this type of thickness measuring device is much more expensive than the optical type, so its use is limited to special applications that require a very high degree of measurement accuracy.

これに対し、光学方式の厚み測定装置は、三角測量方式
を基本としており、投光部、測定対象及び受光部で作ら
れる三角形が変わることで測定対象の変位を求めている
。この方式では、測定対象上で光を小さく絞る光学系を
使用しているため、変位測定機構と測定対象との間の距
離(基準距離)が短すぎても長すぎても、光の拡散が生
じる。また、受光素子の精度を上げようとすると、たと
え光の広りが小さい場合にあっても、測定可能な範囲に
限界がある。たとえば、測定対象が厚み方向に変動した
場合、一方の面の変位測定対象位置が受光素子に近くな
り過ぎ、他方の面の変位測定対象位置が遠くなり過ぎる
。その結果、表裏両面共に測定不能になる。
On the other hand, optical thickness measuring devices are based on a triangulation method, and determine the displacement of the measurement object by changing the triangle formed by the light projecting section, the measurement object, and the light receiving section. This method uses an optical system that narrows the light onto the measurement target, so if the distance (reference distance) between the displacement measurement mechanism and the measurement target is too short or too long, the light will not be diffused. arise. Furthermore, when trying to improve the accuracy of the light receiving element, there is a limit to the measurable range even if the spread of light is small. For example, when the measurement target changes in the thickness direction, the displacement measurement target position on one surface becomes too close to the light receiving element, and the displacement measurement target position on the other surface becomes too far away. As a result, both the front and back surfaces become unmeasurable.

そこで、本発明は、測定対象の厚み方向への変動に追従
して光路を変更させる調整機構を組み込むことによって
、広範囲にわたって鋼板、アルミ板、非金属板等の板材
の厚みを精度良く測定することを目的とする。
Therefore, the present invention is capable of accurately measuring the thickness of plate materials such as steel plates, aluminum plates, non-metal plates, etc. over a wide range by incorporating an adjustment mechanism that changes the optical path in accordance with changes in the thickness direction of the object to be measured. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の板厚測定装置は、その目的を達成するために、
厚み測定される板材の両面に対向して配置された固定ミ
ラーと、該固定ミラーの背面に設けられた可動ミラーと
、該可動ミラー及び前記固定ミラーを経て測定用光を前
記板材の表面に照射する光源と、前記板材の表面で反射
された測定用光が前記固定ミラー及び前記可動ミラーを
経て入射する光位置検出素子を備えた受光部と、光路長
が一定になるように前記板材の変位に応じて前記可動ミ
ラーを移動させるモータと、前記可動ミラーの位置を検
出して演算器に出力する位置検出器とからなる変位検出
機構を備えており、板材の両側に配置されている前記変
位検出機構が同調器で接続されていることを特徴とする
In order to achieve the purpose, the plate thickness measuring device of the present invention has the following features:
A fixed mirror arranged to face both sides of the plate material whose thickness is to be measured, a movable mirror provided on the back side of the fixed mirror, and a measurement light irradiated onto the surface of the plate material through the movable mirror and the fixed mirror. a light receiving section including a light position detection element through which measurement light reflected on the surface of the plate material enters through the fixed mirror and the movable mirror, and a displacement of the plate material so that the optical path length is constant. A displacement detection mechanism is provided, which includes a motor that moves the movable mirror according to the position of the movable mirror, and a position detector that detects the position of the movable mirror and outputs it to a computing unit, and the displacement detection mechanism is arranged on both sides of the plate material. It is characterized in that the detection mechanism is connected by a tuner.

〔作用〕[Effect]

本発明においては、光源から測定対象物である板材の表
面を経て受光部に至る光路の長さを変えないように、固
定ミラーで折り曲げられた測定用光が入射される可動ミ
ラーを光路の途中に設けている。そして、この可動ミラ
ーの移動量を、厚み測定時に生じる板材の厚み方向の変
動に対応させて制御している。そのため、受光部の光位
置検出素子上に、常に鮮明な結像が得られる。また、こ
のときの可動ミラーの移動距離を基にして、板材の肉厚
を算出する。
In the present invention, in order to avoid changing the length of the optical path from the light source to the light receiving section via the surface of the plate material that is the object to be measured, a movable mirror is placed midway along the optical path into which the measurement light that has been bent by the fixed mirror is incident. It is set up in The amount of movement of this movable mirror is controlled in response to variations in the thickness direction of the plate material that occur during thickness measurement. Therefore, a clear image can always be formed on the optical position detection element of the light receiving section. Furthermore, the wall thickness of the plate material is calculated based on the moving distance of the movable mirror at this time.

〔実施例〕〔Example〕

以下、図面を参照しながら、実施例により本発明の特徴
を具体的に説明する。
Hereinafter, the features of the present invention will be specifically explained using examples with reference to the drawings.

本実施例の板厚測定装置は、第1図で示したような光路
を測定対象である鋼板Sの両側に構成する。すなわち、
鋼板Sの両面に固定ミラー1a、 lbを配置し、その
背面側に可動ミラー2a、 2bを配置する。この可動
ミラー2a、 2bは、位置検出器3a。
The plate thickness measuring apparatus of this embodiment has optical paths as shown in FIG. 1 on both sides of the steel plate S to be measured. That is,
Fixed mirrors 1a and lb are arranged on both sides of the steel plate S, and movable mirrors 2a and 2b are arranged on the back side thereof. These movable mirrors 2a and 2b are position detectors 3a.

3bでその位置が正確に検出され、また鋼板Sの変動に
応じて駆動されるリニアモータ4a、 4bによって、
鋼板S表面に対して直角な方向に沿って移動する。
3b, the position of which is accurately detected, and by linear motors 4a and 4b that are driven according to the fluctuations of the steel plate S.
It moves along the direction perpendicular to the surface of the steel plate S.

それぞれの測定機構は、一方の機構を示した第2図の構
成となっている。光源となる半導体レーザー5から出射
されたレーザー光6は、コリメートレンズ7で細いビー
ムに絞られて、測定対象である鋼板Sに照射される。こ
の照射光は、固定ミラー1の反射面8で外側に反射され
、可動ミラー2に入射される。この可動ミラー2は、二
枚のミラー9a、 9bの反射面を内側にして所定の角
度で接合されている。そして、ミラー9a、 9bの各
反射面を、固定ミラー1の反射面8と対向させている。
Each measuring mechanism has the configuration shown in FIG. 2, which shows one of the mechanisms. A laser beam 6 emitted from a semiconductor laser 5 serving as a light source is focused into a narrow beam by a collimating lens 7, and is irradiated onto a steel plate S to be measured. This irradiation light is reflected outward by the reflective surface 8 of the fixed mirror 1 and is incident on the movable mirror 2. This movable mirror 2 is made up of two mirrors 9a and 9b joined together at a predetermined angle with their reflective surfaces inside. The reflective surfaces of the mirrors 9a and 9b are opposed to the reflective surface 8 of the fixed mirror 1.

可動ミラー2は、矢印六方向に移動自在となっており、
鋼板Sの測定初期位置或いは測定基準位置からの変位に
よるコリメートレンズ7と鋼板Sとの間及び鋼板Sと受
光レンズ10との間の光路長の変化を吸収する。すなわ
ち、レーザー光6は、第3図に示すように固定ミラー1
の反射面8で直角に折り曲げられた後、可動ミラー2で
折り返され、固定ミラー1を透過し鋼板Sに照射される
The movable mirror 2 is movable in six directions of arrows,
It absorbs changes in the optical path length between the collimating lens 7 and the steel plate S and between the steel plate S and the light receiving lens 10 due to displacement of the steel plate S from the measurement initial position or the measurement reference position. That is, the laser beam 6 is directed to the fixed mirror 1 as shown in FIG.
The light is bent at a right angle by the reflective surface 8 of the light beam, then is folded back by the movable mirror 2, passes through the fixed mirror 1, and is irradiated onto the steel plate S.

鋼板S表面で乱反射したレーザー光6の一部は、可動ミ
ラー2及び固定ミラー1で反射され、受光レンズ10に
より、干渉フィルタ11を経て光位置検出素子12上に
微少スポット光として結像される。
A part of the laser beam 6 that is diffusely reflected on the surface of the steel plate S is reflected by the movable mirror 2 and the fixed mirror 1, and is imaged by the light receiving lens 10 as a minute spot light on the optical position detection element 12 via the interference filter 11. .

ここで、鋼板S及び可動ミラー2が第3図の実線位置に
あるとき、光位置検出素子12上の微少スポット光が光
位置検出素子12中央の受光点、すなわち結像基準位置
にくるように調整しておく。また、第3図の点線で示し
たように鋼板Sが変位した場合に、鋼板Sの変位量δの
半分に相当する距離β(−δ/2)だけ可動ミラー2を
移動させる。
Here, when the steel plate S and the movable mirror 2 are at the solid line position in FIG. Adjust it. Further, when the steel plate S is displaced as shown by the dotted line in FIG. 3, the movable mirror 2 is moved by a distance β (-δ/2) corresponding to half of the displacement amount δ of the steel plate S.

この可動ミラー2の移動によって、鋼板Sの変位量δは
、光路の往復で吸収される。その結果、レーザー光6は
、鋼板Sが実線位置にあるときと同様に光位置検出素子
12上の結像基準位置に微少スポット光として結像され
る。
Due to this movement of the movable mirror 2, the amount of displacement δ of the steel plate S is absorbed in the reciprocation of the optical path. As a result, the laser beam 6 is imaged as a minute spot light at the imaging reference position on the optical position detection element 12, similarly to when the steel plate S is at the solid line position.

したがって、可動ミラー2の移動距離lを測定すること
によって、鋼板Sの変位量δを知ることができる。可動
ミラー2の移動量制御は、次のようにして行われる。す
なわち、鋼板Sが変位することによって光路長が変わる
とき、光位置検出素子12の上に結ばれる光径が大きく
なり、また結像位置が基準位置からずれる。そこで、第
2図に示した位置検出器13で光径及び結像位置を検出
し、演算器14に人力する。また、光径を小さくし且つ
結像位置を基準位置に戻す信号を位置制御器15に出力
する。そして、位置制御器15からリニアモータ4に、
鋼板Sの変位量δに対応した移動距離βだけ可動ミラー
2を移動させる信号を発する。
Therefore, by measuring the moving distance l of the movable mirror 2, the amount of displacement δ of the steel plate S can be determined. The movement amount of the movable mirror 2 is controlled as follows. That is, when the optical path length changes due to the displacement of the steel plate S, the diameter of the light focused on the optical position detection element 12 increases, and the imaging position shifts from the reference position. Therefore, the optical diameter and imaging position are detected by the position detector 13 shown in FIG. It also outputs a signal to the position controller 15 to reduce the light diameter and return the imaging position to the reference position. Then, from the position controller 15 to the linear motor 4,
A signal is generated to move the movable mirror 2 by a moving distance β corresponding to the displacement amount δ of the steel plate S.

リニアモータ4で可動ミラー2を移動させることにより
、鋼板Sの変位量δを吸収して光路長が一定となるため
、レーザー光60反射光は、受光レンズ10の結像基準
位置に微少スポット光として結像される。このときの可
動ミラー2の移動距離βを、位置検出器3で検出し、演
算器14に入力する。そして、可動ミラー2の移動距離
!を2倍することにより、鋼板Sの変位量δが求められ
る。
By moving the movable mirror 2 with the linear motor 4, the displacement amount δ of the steel plate S is absorbed and the optical path length becomes constant. imaged as. The moving distance β of the movable mirror 2 at this time is detected by the position detector 3 and input to the calculator 14. And the moving distance of movable mirror 2! By doubling , the displacement amount δ of the steel plate S can be obtained.

なお、半導体レーザー5と位置検出器13との間には、
変調信号発生器16が設けられている。この変調信号発
生器16は、半導体レーザー5に発信指令を出力するも
のである。また、変調信号発生器16は、出力タイミン
グをとるため、位置検出器13にも電気的に連結されて
いる。
Note that between the semiconductor laser 5 and the position detector 13,
A modulation signal generator 16 is provided. This modulation signal generator 16 outputs a transmission command to the semiconductor laser 5. Further, the modulation signal generator 16 is also electrically connected to the position detector 13 in order to determine the output timing.

以上に説明した鋼板Sの変位量δを検出する機構は、鋼
板Sの両面に対向して設けられている。
The mechanism for detecting the displacement amount δ of the steel plate S described above is provided facing both sides of the steel plate S.

これら一対の変位検出機構Bは、同調器17を介して結
ばれている。同調器17は、被検鋼板Sの同一板厚方向
の両面の変位を同一タイミングで検出するために設けら
れたものであり、前記鋼板Sの両面に設けた変位検出機
構Bを連結している。
These pair of displacement detection mechanisms B are connected via a tuner 17. The tuner 17 is provided to detect displacements on both sides of the steel plate S to be tested in the same plate thickness direction at the same timing, and connects displacement detection mechanisms B provided on both sides of the steel plate S. .

第3図に示すように鋼板Sが右側に変位したとき、右側
の可動ミラー2aを変位量δに対応する移動距離βだけ
後退させ、左側の可動ミラー2bを移動距離!だけ前進
させる。これによって、鋼板Sが厚み方向に変動した場
合にあっても、同一時点で鋼板Sの両面の位置を正確に
検出することができる。そして、両側の可動ミラー2a
、 2b間の予め判っている距離りから、可動ミラー2
a、2bと鋼板S表面間の距離り、、  L2を引くこ
とによって、鋼板Sの厚みがL−(Ll+L2>として
求められる。
As shown in FIG. 3, when the steel plate S is displaced to the right, the movable mirror 2a on the right is moved back by a moving distance β corresponding to the amount of displacement δ, and the movable mirror 2b on the left is moved the distance ! only move forward. Thereby, even if the steel plate S changes in the thickness direction, the positions of both sides of the steel plate S can be accurately detected at the same time. And movable mirrors 2a on both sides
, 2b, the movable mirror 2
By subtracting L2, the distance between a and 2b and the surface of the steel plate S, the thickness of the steel plate S is determined as L-(Ll+L2>).

このとき、鋼板Sの変位量δに応じて光路長が変わるた
め、鋼板Sがたとえば走行時に板厚方向に変位しても、
鋼板Sの表面で反射したレーザー光6は、光位置検出素
子12の結像基準位置で極給て鮮明に結像される。その
ため、検出精度が±0.1%と放射線方式と同程度まで
高くなり、また光位置検出素子12の検出範囲に制約さ
れることがなく測定範囲が大幅に拡大される。
At this time, since the optical path length changes according to the amount of displacement δ of the steel plate S, even if the steel plate S is displaced in the thickness direction during running, for example,
The laser beam 6 reflected on the surface of the steel plate S is focused and clearly imaged at the imaging reference position of the optical position detection element 12. Therefore, the detection accuracy is as high as ±0.1%, which is comparable to that of the radiation method, and the measurement range is greatly expanded without being restricted by the detection range of the optical position detection element 12.

なお、以上の例においては、固定ミラー1として、可動
ミラー2からの反射光を透過させる形状をもつものを使
用した。しかし、本発明は、これに拘束されるものでは
なく、反射面8だけを備えた固定ミラー、或いは可動ミ
ラー2からの反射光を更に反射させるミラーを備えたも
の等を使用することができる。また、測定用の光として
は、レーザー光に限らず、たとえばLEDのように他の
光源を使用することもできる。
In the above example, the fixed mirror 1 has a shape that allows the reflected light from the movable mirror 2 to pass therethrough. However, the present invention is not limited to this, and it is possible to use a fixed mirror provided with only the reflecting surface 8, or a mirror provided with a mirror that further reflects the reflected light from the movable mirror 2. Further, the light for measurement is not limited to laser light, and other light sources such as LED can also be used.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、板材の変位
量に応じて可動ミラーを移動させ、測定用光の出射から
受光までの光路長を一定に維持している。そして、光位
置検出素子の上で鮮明な結像が得られるときの可動ミラ
ーの移動量から、板材の両表面位置を検出し、この検出
値から肉厚を算出している。このようにして、厚み測定
時に板材が肉厚方向に変動している場合にあっても、板
材の肉厚を正確に測定することが可能となる。
As explained above, in the present invention, the movable mirror is moved according to the amount of displacement of the plate material, and the optical path length from the emission of the measurement light to the reception of the measurement light is maintained constant. Then, the positions of both surfaces of the plate are detected from the amount of movement of the movable mirror when a clear image is formed on the optical position detection element, and the wall thickness is calculated from the detected values. In this way, even if the plate material changes in the thickness direction during thickness measurement, it is possible to accurately measure the wall thickness of the plate material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に従って鋼板の厚みを測定している状態
を示し、第2図は一方の変位検出機構を示し、第3図は
本発明の詳細な説明するための図である。 1、 la、 lb:固定ミラー 2.2a、 2b:
可動ミラー3、3a、 3b:位置検出器 4.4a、
 4b:リニアモータ5:半導体レーザー  6゛レー
ザー光7:コリメートレンズ 89反射面 9a、9b:ミラ−10:受光ワンス 11゛干渉フィルタ   12:光位置検出素子13:
位置検出器    14:演算器15:位置制御器 17:同調器 δ:鋼板の変位量 16:変調信号発生器 S:鋼板(測定対象) !=可動ミラーの移動距離
FIG. 1 shows a state in which the thickness of a steel plate is being measured according to the present invention, FIG. 2 shows one displacement detection mechanism, and FIG. 3 is a diagram for explaining the present invention in detail. 1, la, lb: fixed mirror 2.2a, 2b:
Movable mirror 3, 3a, 3b: position detector 4.4a,
4b: Linear motor 5: Semiconductor laser 6゛Laser beam 7: Collimating lens 89 Reflective surfaces 9a, 9b: Mirror 10: Light receiving once 11゛Interference filter 12: Optical position detection element 13:
Position detector 14: Arithmetic unit 15: Position controller 17: Tuner δ: Steel plate displacement 16: Modulation signal generator S: Steel plate (measurement target)! = Moving distance of movable mirror

Claims (1)

【特許請求の範囲】[Claims] 1、厚み測定される板材の両面に対向して配置された固
定ミラーと、該固定ミラーの背面に設けられた可動ミラ
ーと、該可動ミラー及び前記固定ミラーを経て測定用光
を前記板材の表面に照射する光源と、前記板材の表面で
反射された測定用光が前記固定ミラー及び前記可動ミラ
ーを経て入射する光位置検出素子を備えた受光部と、光
路長が一定となるように前記板材の変位に応じ前記可動
ミラーを移動させるモータと、前記可動ミラーの位置を
検出して演算器に出力する位置検出器とからなる変位検
出機構を備えており、板材の両側に配置されている前記
変位検出機構が同調器で接続されていることを特徴とす
る板厚測定装置。
1. A fixed mirror placed facing both sides of the plate material whose thickness is to be measured, a movable mirror provided on the back side of the fixed mirror, and a measuring light directed to the surface of the plate material through the movable mirror and the fixed mirror. a light source that irradiates the surface of the plate; a light receiving unit that includes a light position detection element through which the measurement light reflected on the surface of the plate enters through the fixed mirror and the movable mirror; A displacement detection mechanism includes a motor that moves the movable mirror according to the displacement of the movable mirror, and a position detector that detects the position of the movable mirror and outputs it to a computing unit. A plate thickness measuring device characterized in that a displacement detection mechanism is connected by a tuner.
JP32545388A 1988-12-22 1988-12-22 Plate thickness measuring instrument Pending JPH02170007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32545388A JPH02170007A (en) 1988-12-22 1988-12-22 Plate thickness measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32545388A JPH02170007A (en) 1988-12-22 1988-12-22 Plate thickness measuring instrument

Publications (1)

Publication Number Publication Date
JPH02170007A true JPH02170007A (en) 1990-06-29

Family

ID=18177035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32545388A Pending JPH02170007A (en) 1988-12-22 1988-12-22 Plate thickness measuring instrument

Country Status (1)

Country Link
JP (1) JPH02170007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514815U (en) * 1991-08-02 1993-02-26 財団法人鉄道総合技術研究所 Trolley wire wear measuring machine
JP2009085766A (en) * 2007-09-28 2009-04-23 Reitetsukusu:Kk Apparatus for inspecting outer circumference of disk

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514815U (en) * 1991-08-02 1993-02-26 財団法人鉄道総合技術研究所 Trolley wire wear measuring machine
JP2009085766A (en) * 2007-09-28 2009-04-23 Reitetsukusu:Kk Apparatus for inspecting outer circumference of disk

Similar Documents

Publication Publication Date Title
CA2591885C (en) Thin film thickness measurement method and apparatus
JPS60127403A (en) Thickness measuring apparatus
US3491240A (en) Noncontacting surface sensor
JPH02170007A (en) Plate thickness measuring instrument
JPH0914935A (en) Measuring device for three-dimensional object
JP2003215149A (en) Optical shift detector, and conveying system
JPH0479522B2 (en)
JP3192461B2 (en) Optical measuring device
JPS6334963B2 (en)
JPH08193810A (en) Device for measuring displacement
JPH01267407A (en) Displacement measuring apparatus
JPH0642929A (en) Surface displacement sensor
JPH0534437A (en) Laser distance measuring apparatus
JPH01267406A (en) Optical detector
JPH09113234A (en) Sensor for measuring two-dimensional shape
JPH0558483B2 (en)
JPH03130639A (en) Optical-axis aligning method for mtf measuring apparatus
RU1796901C (en) Device for contact-free measuring items profile
JPH05280947A (en) Optical apparatus for measurement
JP2502413B2 (en) Non-contact displacement measuring device
JPS6112203B2 (en)
JPH0545895B2 (en)
JPH06129840A (en) Surface measuring device
JPH07181006A (en) Laser length measuring equipment
JPS6271810A (en) Displacement transducer