JPH05227465A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPH05227465A
JPH05227465A JP3054937A JP5493791A JPH05227465A JP H05227465 A JPH05227465 A JP H05227465A JP 3054937 A JP3054937 A JP 3054937A JP 5493791 A JP5493791 A JP 5493791A JP H05227465 A JPH05227465 A JP H05227465A
Authority
JP
Japan
Prior art keywords
focus
image
signal
focusing
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3054937A
Other languages
Japanese (ja)
Inventor
Yasuhiro Komiya
康宏 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3054937A priority Critical patent/JPH05227465A/en
Publication of JPH05227465A publication Critical patent/JPH05227465A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide an automatic focusing device whose focusing time is short, and is capable of the predictive AF of a moving body, and further, does not give a photographer an unpleasant feeling during focusing operation. CONSTITUTION:Focus signal detectors 41p, 41q for extracting only a prescribed frequency band out of a picture signal, and detecting plural focus signals corresponding to focusing degrees at plural positions of different optical path differences from the extracted signal, and a focusing controller 43 to judge the focusing state based on of plural focus signals from these detectors 41p, 41q, and simultaneously, detect a focusing position are provided. Then, a drive circuit 40 to change the relative position of image pickup elements 39p, 39q and a photographing optical system is controlled by this output.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は一眼レフカメラ、電子カ
メラ等に利用される自動合焦装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic focusing device used for a single-lens reflex camera, an electronic camera or the like.

【0002】[0002]

【従来の技術】従来より知られている自動合焦装置とし
て、撮像素子から得られる画像信号から所定の周波数成
分を抽出し、その抽出した周波数成分が最大となる位置
に撮影光学系を移動させることにより合焦調節を行うい
わゆる山登り方式がある。
2. Description of the Related Art As a conventionally known automatic focusing device, a predetermined frequency component is extracted from an image signal obtained from an image sensor, and a photographing optical system is moved to a position where the extracted frequency component is maximum. There is a so-called hill-climbing method in which the focus is adjusted accordingly.

【0003】この山登り方式を適用した自動合焦装置
は、焦点調節用に専用の光学部品が不用であることから
小型化が可能であると共に、複写体のパターンに依存せ
ずに高精度の合焦が可能であるといった利点を有してい
る。山登り方式を利用した自動合焦装置は、例えばNH
K技術報告、昭和40年、第17巻、第1号通巻第86
号(P21〜P37)に詳述されている。
The automatic focusing device to which the hill climbing method is applied can be miniaturized because no dedicated optical component for focus adjustment is required, and a highly accurate focusing can be achieved without depending on the pattern of the copy. It has the advantage that it can be burnt. An automatic focusing device using the mountain climbing method is, for example, NH
K Technical Report, 1965, Volume 17, No. 1 through Volume 86
No. (P21 to P37).

【0004】ところで合焦位置付近の複数の周波数成分
値から補間演算により合焦位置を算出することにより、
山登り方式における合焦速度、及び合焦精度の向上を図
った自動合焦が本出願人により既に出願済みである(特
願平1−319473号)。そして、更に高精度の合焦
調節を行うために、補間演算の補間間隔を、撮影光学系
のFナンバー、焦点距離、抽出する周波数成分の周波数
帯域等のパラメーターから最適に設定する方法も本出願
人により既に出願済みである(特願平02−10987
6号)。
By calculating an in-focus position by interpolation calculation from a plurality of frequency component values near the in-focus position,
The present applicant has already applied for automatic focusing for improving the focusing speed and the focusing accuracy in the mountain climbing method (Japanese Patent Application No. 1-319473). Further, in order to perform the focus adjustment with higher accuracy, a method of optimally setting the interpolation interval of the interpolation calculation from parameters such as the F number of the photographing optical system, the focal length, and the frequency band of the frequency component to be extracted is also applied. It has already been filed by a person (Japanese Patent Application No. 02-10987).
No. 6).

【0005】かかる自動合焦装置の概略について図19
を参照して説明する。図19において撮影光学系1によ
って取り込まれた被写体像はCCD2次元撮像素子2の
受光面上に形成される。形成された被写体像によって蓄
積された電荷は駆動回路3から所定の時間間隔で与えら
れる読み出し信号によって画像信号として読み出され、
増幅器4を介して通過周波数帯域がそれぞれS1,S
2,S3,S4(S1<S2<S3<S4)であるバン
ドパスフィルター(以下BPFと呼称する)5a〜5d
に入力される。各BPF5a〜5dにはゲート回路8a
〜8d、2乗器からなる検波器9a〜9d、A/D変換
器10a〜10d、デジタル積分回路11a〜11dが
それぞれ直列に接続されている。各ゲート回路8a〜8
dには測距エリア指定回路21が接続されていて、合焦
させたい領域の画像信号のみを抽出する機能を有してい
る。デジタル積分回路11a〜11dは加算器12、ラ
ッチ回路13から構成され各周波数帯域の周波数成分V
1,V2,V3,V4を出力する。ここで、各周波数成
分は合焦の度合を表す信号であることから以後焦点信号
と呼称する。
An outline of such an automatic focusing device is shown in FIG.
Will be described. In FIG. 19, the subject image captured by the photographing optical system 1 is formed on the light receiving surface of the CCD two-dimensional image pickup device 2. The electric charge accumulated by the formed subject image is read out as an image signal by a read-out signal given from the drive circuit 3 at predetermined time intervals,
The pass frequency bands are S1 and S via the amplifier 4, respectively.
2, S3, S4 (S1 <S2 <S3 <S4) bandpass filters (hereinafter referred to as BPFs) 5a to 5d.
Entered in. A gate circuit 8a is provided for each BPF 5a-5d.
.About.8d, detectors 9a to 9d consisting of a squarer, A / D converters 10a to 10d, and digital integrating circuits 11a to 11d are connected in series, respectively. Each gate circuit 8a-8
A distance measuring area designating circuit 21 is connected to d and has a function of extracting only an image signal of an area to be focused. The digital integrator circuits 11a to 11d are composed of an adder 12 and a latch circuit 13 and have a frequency component V of each frequency band.
1, V2, V3, V4 are output. Here, since each frequency component is a signal indicating the degree of focusing, it is hereinafter referred to as a focus signal.

【0006】マイクロプロセッサ22はフィールド毎に
送られてくる焦点信号V1〜V4を用いて補間演算に基
づく合焦調節制御を行う。ここで補間演算は図20に示
すように焦点信号の最大値及びその両側の3点を用いて
次式により行う。 P0≧P2の場合 Xf=X1−L/2・{(P0−P2)/(P1−P2)} …(1) P0<P2の場合 Xf=X1+L/2・{(P2−P0)/(P1−P0)} …(1)′
The microprocessor 22 uses the focus signals V1 to V4 sent for each field to perform focus adjustment control based on interpolation calculation. Here, the interpolation calculation is performed by the following equation using the maximum value of the focus signal and the three points on both sides thereof as shown in FIG. When P0 ≧ P2 Xf = X1-L / 2 · {(P0-P2) / (P1-P2)} (1) When P0 <P2 Xf = X1 + L / 2 · {(P2-P0) / (P1 -P0)} (1) '

【0007】ここでXfは合焦位置、Lは補間の間隔を
表す。また、この焦点信号のなす曲線を焦点信号曲線と
呼称することとする。そして、この補間間隔Lは撮影光
学系のFナンバー、焦点距離、抽出する周波数成分の周
波数帯域等のパラメーターから最適に設定することによ
り高速高精度の合焦調節を行うことが可能となる。この
ような3点を用いた補間演算によるコントラスト法を3
点補間と呼称する。さらにこの出願では図21(a)に
示すように合焦位置を挾む2点を利用した合焦位置算出
法についても述べている。これは図21(b)に示すよ
うに合焦位置を挾んだ2点のコントラスト比R(=Vp
/Vq)および2点の間隔1から予めデフォーカス量を
記憶してあるテーブルを参照して、デフォーカス量Dを
求める方法で、2点補間と呼称する。ここでdFZPは
光学系のパラメータで、 dFZP=1.22・F/s …(2) ここで、F:撮影光学系のFナンバー s:BPFの中心周波数 から求められる。
Here, Xf represents a focus position, and L represents an interpolation interval. A curve formed by this focus signal will be referred to as a focus signal curve. Then, the interpolation interval L can be optimally set from parameters such as the F number of the photographing optical system, the focal length, and the frequency band of the frequency component to be extracted, so that high-speed and high-precision focusing adjustment can be performed. The contrast method by interpolation calculation using such three points
This is called point interpolation. Further, this application also describes a focus position calculation method using two points that sandwich the focus position as shown in FIG. As shown in FIG. 21B, this is the contrast ratio R (= Vp
/ Vq) and the interval 1 between the two points, a method of obtaining the defocus amount D by referring to a table in which the defocus amount is stored in advance is called two-point interpolation. Here, dFZP is a parameter of the optical system, and dFZP = 1.22 · F / s (2) Here, F is the F number of the photographing optical system s is the center frequency of the BPF.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来技
術は結像面付近の1位置での映像信号を用いているため
に、次のような欠点を有している。ここで結像面とは撮
像したい被写体の結像している光軸と垂直な平面の事を
言う。 (1) 合焦調節開始時にデフォーカスの方向がわから
ず、合焦位置の方向とは逆の方向に撮影光学系を駆動す
る場合があり、合焦時間が長くなる。 (2) 合焦調節開始時に撮影光学系が合焦点にある場合
でも、一度はデフォーカスさせる必要がありやはり合焦
時間が長くなる。
However, since the prior art uses the image signal at one position near the image plane, it has the following drawbacks. Here, the image forming plane refers to a plane perpendicular to the optical axis of the image of the subject to be imaged. (1) When the focus adjustment is started, the defocus direction may not be known and the photographing optical system may be driven in the direction opposite to the direction of the focus position, which increases the focus time. (2) Even if the photographic optical system is in focus at the time of starting focus adjustment, it is necessary to defocus once, and the focus time also becomes long.

【0009】(3) BPFの通過帯域が狭い場合は従来
技術でも開示しているように3点補間において原理的に
は動体の速度検出は可能であるが、実際には焦点信号の
ノイズの影響を少なくするため通過帯域を広くする必要
があり、動体の速度を求め露光までのタイムラグを考慮
した合焦調節(動体予測AF)を行うことは困難であ
る。2点補間では動体の場合、焦点信号曲線がテーブル
に記憶されている形状から大きくずれてしまうため、動
体の速度検出はおろか合焦位置を求めることもできなく
なる。
(3) When the pass band of the BPF is narrow, the velocity of the moving object can be detected in principle by the three-point interpolation as disclosed in the prior art, but in reality, the influence of the noise of the focus signal is exerted. It is necessary to widen the pass band in order to reduce the number of exposures, and it is difficult to perform focus adjustment (moving object prediction AF) in which the speed of the moving object is obtained and a time lag until exposure is taken into consideration. In the case of a moving object, the focus signal curve is greatly deviated from the shape stored in the table in the two-point interpolation, so that it is not possible to detect the moving object speed or let the focus position be determined.

【0010】(4) 撮影光学系が一度合焦位置を通り過
ぎ、再び合焦位置へ戻る動作(行き過ぎ動作と呼称す
る)を行うため、撮影者は合焦調節動作に不快感を抱く
ことがある。
(4) Since the photographic optical system once passes the in-focus position and then returns to the in-focus position (referred to as an overshoot operation), the photographer may feel uncomfortable in the in-focus adjustment operation. ..

【0011】以上のように従来技術では結像面付近の1
位置での映像信号を用いているために、撮影光学系を無
駄な方向に駆動する場合があり、合焦速度は必ずしも速
くならなかった。さらに動体予測AFは困難であるとと
もに合焦調節動作に不快感を抱くことがあった。
As described above, according to the conventional technique, 1 near the image plane is formed.
Since the image signal at the position is used, the photographing optical system may be driven in a useless direction, and the focusing speed is not necessarily high. Further, the moving object predictive AF is difficult and sometimes the focus adjusting operation is uncomfortable.

【0012】本発明の自動合焦装置はこのような課題に
着目してなされたもので、その目的とするところは、合
焦時間が短く動体予測AFが可能であり、さらに、合焦
調節動作中に撮影者に対して不快感を与えない自動合焦
装置を提供することにある。
The automatic focusing apparatus according to the present invention has been made in view of such a problem, and its purpose is to enable a moving object predictive AF with a short focusing time, and further to perform a focus adjusting operation. An object of the present invention is to provide an automatic focusing device which does not cause discomfort to a photographer.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の自動合焦装置は、撮影光学系により形成
される画像を、異なる光路差をもった複数の位置で撮像
する一つまたは複数の撮像素子と、この撮像素子と前記
撮影光学系との相対位置を光軸方向に沿って変化させる
駆動手段と、前記一つまたは複数の撮像素子に蓄積され
た電荷を画像信号として読み出す一つまたは複数の画像
読み出し手段と、この読み出し手段で読み出された画像
信号から所定の周波数帯域のみを通過させるバンドパス
フィルターと、このバンドパスフィルターの出力信号か
ら、異なる光路差をもった複数の位置での合焦度に応じ
た複数の焦点信号値を検出するための焦点信号検出手段
と、この焦点信号検出手段から読み出される複数の焦点
信号値から合焦状態を判断する合焦状態判断手段と、前
記焦点信号検出手段から読み出される複数の焦点信号値
から合焦位置を検出し、前記駆動手段を制御する合焦位
置制御手段とを具備する。
In order to solve the above-mentioned problems, an automatic focusing apparatus according to the present invention picks up an image formed by a photographing optical system at a plurality of positions having different optical path differences. One or a plurality of image pickup devices, a driving unit that changes the relative position of the image pickup devices and the photographing optical system along the optical axis direction, and the charge accumulated in the one or a plurality of image pickup devices as an image signal. One or more image reading means for reading, a bandpass filter for passing only a predetermined frequency band from the image signal read by the reading means, and an output signal of the bandpass filter have different optical path differences. Focus signal detection means for detecting a plurality of focus signal values according to the degree of focus at a plurality of positions, and a focus state from a plurality of focus signal values read from the focus signal detection means. And focus state determination means for determining the focus position detected from the plurality of focus signals values read from the focus signal detecting means comprises a focusing position control means for controlling the drive means.

【0014】[0014]

【作用】すなわち、本発明においては、画像信号から所
定の周波数帯域のみを取りだし、この信号から、異なる
光路差をもった複数の位置での合焦度に応じて複数の焦
点信号値を検出し、この焦点信号値から合焦状態を判断
するとともに、合焦位置を検出して、撮像素子と撮影光
学系との相対位置を光軸方向に沿って変化させる駆動手
段を制御するものである。
That is, in the present invention, only a predetermined frequency band is extracted from the image signal, and from this signal, a plurality of focus signal values are detected according to the degree of focus at a plurality of positions having different optical path differences. The focus state is determined from the focus signal value, the focus position is detected, and the drive means for changing the relative position between the image sensor and the photographing optical system along the optical axis direction is controlled.

【0015】[0015]

【実施例】まず、本発明の基本的概念を図面を参照して
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the basic concept of the present invention will be described with reference to the drawings.

【0016】本発明においては、同一時刻における結像
面付近での複数位置での映像信号を用いるとともに3点
補間と2点補間を同時に利用することを特徴とする。つ
まり図2に示すように露光面E(一眼レフではフィルム
面、電子カメラでは撮像素子の受光面)を挾み露光面か
ら等距離u離れた位置と等価な位置に測距用の撮像素子
PおよびQを配置する。この図に於てIは目的物体の結
像面、H1は撮影光学系の第1主面、H2は撮影光学系
の第2主面、dOは第1主面から物体までの距離(物体
距離と呼称する)、dIは第2主面H2から結像面Iま
での距離(結像距離と呼称する)、dEは第2主面H2
から露光面Eまでの距離(露光距離と呼称する)、dP
は第2主面H2から撮像素子P等価面までの距離、dQ
は第2主面H2から撮像素子Q等価面までの距離であ
る。
The present invention is characterized in that video signals at a plurality of positions near the image plane at the same time are used and three-point interpolation and two-point interpolation are simultaneously used. That is, as shown in FIG. 2, the image pickup device P for distance measurement is placed at a position equivalent to the position where the exposure surface E (the film surface in a single-lens reflex camera, the light receiving surface of the image pickup device in an electronic camera) is held at an equal distance u from the exposure face. And Q are placed. In this figure, I is the image plane of the target object, H1 is the first principal surface of the photographing optical system, H2 is the second principal surface of the photographing optical system, and dO is the distance from the first principal surface to the object (object distance). , DI is the distance from the second principal surface H2 to the image forming surface I (referred to as the image forming distance), and dE is the second principal surface H2.
To exposure surface E (called exposure distance), dP
Is the distance from the second principal surface H2 to the equivalent surface of the image sensor P, dQ
Is the distance from the second principal surface H2 to the image sensor Q equivalent surface.

【0017】さて、撮像素子PおよびQの焦点信号の差
は撮像素子の位置により図3のように変化する。ここで
Vpは撮像素子Pの焦点信号、Vqは撮像素子Qの焦点
信号で縦軸が焦点信号の差Vd(=Vp−Vq)を表
す。この図から 撮影光学系が合焦位置にある場合 Vd=0 撮影光学系が前ピンの場合 Vd>0 投影光学系が後ピンの場合 Vd<0 となることがわかる。つまり、結像面付近での2位置で
の映像信号を用いることにより撮影光学系が合焦か否
か、合焦でない場合はデフォーカスの方向はどちらであ
るかを知ることができ、従来技術の欠点(1) 、(2) が解
決される。
Now, the difference between the focus signals of the image pickup devices P and Q changes according to the position of the image pickup device as shown in FIG. Here, Vp is the focus signal of the image sensor P, Vq is the focus signal of the image sensor Q, and the vertical axis represents the difference Vd (= Vp−Vq) between the focus signals. From this figure, it is understood that Vd = 0 when the photographing optical system is at the focus position, Vd> 0 when the photographing optical system is in the front focus, and Vd <0 when the projection optical system is in the rear focus. That is, by using the image signals at two positions near the image plane, it is possible to know whether or not the photographing optical system is in focus, and if it is not in focus, which is the defocus direction. The drawbacks (1) and (2) of are solved.

【0018】次にこのような構成の下での合焦調節動作
について図4を用いて説明する。図4に於て横軸は時刻
で、縦軸は第2主面からの距離を表わす。dI、dE、
dP、dQはそれぞれ時刻の関数として表わされること
からdI(t)、dE(t)、dP(t)、dQ(t)
として書き改める。時刻t0からの各距離の変化を示し
てある。なお、撮影光学系の位置Xと露光距離dEは一
対一の関係があり、 dE=h{X} …(3)
Next, the focus adjusting operation under such a structure will be described with reference to FIG. In FIG. 4, the horizontal axis represents time and the vertical axis represents the distance from the second main surface. dI, dE,
Since dP and dQ are respectively expressed as a function of time, dI (t), dE (t), dP (t), dQ (t)
Rewrite as. The change in each distance from time t0 is shown. There is a one-to-one relationship between the position X of the photographing optical system and the exposure distance dE, and dE = h {X} (3)

【0019】とする。そして、h{XI}=dIを満た
すXIが合焦位置となる。また、撮像素子Pの焦点信号
値をVp(t)、撮像素子Qの焦点信号値をVq(t)
とする。図4で合焦調節が始まると時刻t2において撮
像素子等価面Pは結像面を横切っているため、Vp(t
0 )、Vp(t1 )、Vp(t2 )の3点を用いて合焦
位置を求めることが出来る。図5(a)に示すように結
像距離dI(tp )は(1)式と同様にして、 Vp(t0 )≧Vp(t2 )の場合、 dI(tp )=dP(t1 )−Ld/2・{Vp(t0 )−Vp(t2 )}/ {Vp(t1 )−Vp(t2 )} …(4) また、Vp(t0 )≦Vp(t2 )の場合、 dI(tp )=dP(t1 )+Ld/2・{Vp(t2 )−Vp(t0 )}/ {Vp(t1 )−Vp(t0 )} …(4)′ となる。ここでtp は撮像素子P等価面が結像距離に等
しくなる時刻、Ldは画像の撮像距離間隔を表す。そし
て、合焦位置XI(tp )は XI(tp )=h′{dI(tp )} (3)′ で表される。h′{ }はh{ }の逆関数とする。ま
た、tp は図5(b)に示すように、 Vp(t0 )≧Vp(t2 )の場合、 tp =t1−Lt/2・{Vp(t0 )−Vp(t2 )}/{Vp(t1 )− Vp(t2 )} …(5) また、Vp(t0 )<Vp(t2 )の場合、 tp =t1+Lt/2・{Vp(t2 )−Vp(t0 )}/{Vp(t1 )− Vp(t0 )} …(5)′ と表せる。ここで、Ltは画像の撮像時間間隔を表す。
It is assumed that Then, XI that satisfies h {XI} = dI is the in-focus position. Further, the focus signal value of the image sensor P is Vp (t), and the focus signal value of the image sensor Q is Vq (t).
And When focus adjustment starts in FIG. 4, the image pickup element equivalent plane P crosses the image formation plane at time t2, and therefore Vp (t
The in- focus position can be obtained by using three points of 0 ), Vp (t 1 ) and Vp (t 2 ). As shown in FIG. 5A, the imaging distance dI (t p ) is the same as in the equation (1), and when Vp (t 0 ) ≧ Vp (t 2 ), dI (t p ) = dP (t 1 ) -Ld / 2 · {Vp (t 0 ) -Vp (t 2 )} / {Vp (t 1 ) -Vp (t 2 )} (4) Further, Vp (t 0 ) ≦ Vp (t 2 ). ), DI (t p ) = dP (t 1 ) + Ld / 2 · {Vp (t 2 ) −Vp (t 0 )} / {Vp (t 1 ) −Vp (t 0 )} (4) ’ Here, t p represents the time when the equivalent surface of the image sensor P becomes equal to the imaging distance, and Ld represents the imaging distance interval of the image. Then, the focus position XI (t p) is represented by XI (t p) = h ' {dI (t p)} (3)'. h ′ {} is an inverse function of h {}. Further, as shown in FIG. 5B, t p is Vp (t 0 ) ≧ Vp (t 2 ), then t p = t1−Lt / 2 · {Vp (t 0 ) −Vp (t 2 ). } / {Vp (t 1) - Vp (t 2)} ... (5) Further, Vp (t 0) <for Vp (t 2), t p = t1 + Lt / 2 · {Vp (t 2) -Vp (T 0 )} / {Vp (t 1 ) −Vp (t 0 )} (5) ′. Here, Lt represents the imaging time interval of the image.

【0020】また、時刻t2 において結像面は撮像素子
P等価面と撮像素子Q等価面に挾まれている。そこで、
2点補間による方法により焦点信号Vp(t2 )とVq
(t2 )から時刻T2 における合焦位置XI(t2 )が
求められる。同時刻の画像を用いているため従来技術の
欠点(3) で説明したような焦点信号曲線の形状の変化は
なく正しく合焦位置が決められる。そして、次式により
物体の速度Mを求めることが出来る。 M={XI(t2 )−XI(tp )}/(t2 −tp ) …(6)
Further, at time t 2 , the image forming plane is sandwiched between the image pickup element P equivalent surface and the image pickup element Q equivalent surface. Therefore,
The focus signals Vp (t 2 ) and Vq are calculated by the two-point interpolation method.
(T 2) focusing at time T 2, the position XI (t 2) is determined. Since the images at the same time are used, the focus position can be correctly determined without the shape change of the focus signal curve as described in the defect (3) of the conventional technique. Then, the velocity M of the object can be obtained by the following equation. M = {XI (t 2) -XI (t p)} / (t 2 -t p) ... (6)

【0021】図4は物体が静止している場合でありM=
0となり、時刻tgにおいて撮影光学系1の駆動を停止
し合焦調節を終える。☆は撮影光学系1の停止した時刻
及び位置を示し、dEの太線が撮影光学系1の動作によ
るdEの変化を示している。このように時刻tgにおい
て初めて露光面は結像面と一致するため、合焦位置の行
き過ぎ動作をなくすことができ従来技術の欠点(4) が解
消される。ただし、行き過ぎ動作が生じる場合もあり実
施例の中で詳しく説明する。また、(6)式から動体の
速度を求めることができ、図6の様な場合速度Mより実
際の露光時刻までの物体の移動を予測し合焦調節を行う
(動体予測AF)ことができ、従来技術の欠点(3) が解
消される。さらに、従来技術のように動体の速度を求め
るためにBPEが狭帯域でなければならないという条件
はなく、速度検出精度を向上できる。以下に、本発明の
第1実施例について説明する。
FIG. 4 shows the case where the object is stationary, and M =
When the time becomes 0, the driving of the photographing optical system 1 is stopped at time tg, and the focus adjustment is completed. The star indicates the time and position where the photographing optical system 1 has stopped, and the thick line of dE indicates the change of dE due to the operation of the photographing optical system 1. Thus, at time tg, the exposure surface coincides with the image formation surface for the first time, so that the overshooting operation of the in-focus position can be eliminated, and the drawback (4) of the prior art is eliminated. However, an excessive movement may occur, which will be described in detail in the embodiment. Further, the speed of the moving body can be obtained from the equation (6), and in the case of FIG. 6, it is possible to predict the movement of the object from the speed M to the actual exposure time and perform focus adjustment (moving body predictive AF). , The drawback (3) of the prior art is solved. Further, unlike the prior art, there is no requirement that the BPE has a narrow band in order to obtain the speed of the moving body, and the speed detection accuracy can be improved. The first embodiment of the present invention will be described below.

【0022】図7において30はカメラ本体で、1は撮
影光学系、31は光量を制限するための絞り、33は露
光面に相当するフィルム面、32はミラーでフィルム露
光時には撮影光学系からの光束をフィルム面33へ導く
べく移動する。測距時には、ミラー32からの光束はハ
ーフミラー35を介して合焦調節回路36へ導かれると
ともに、ファインダー34へ導かれる。16は撮影光学
系を光軸方向に駆動するためのモータで合焦調節回路3
6からの制御信号によりコントロールされる。また、撮
影光学系1の位置X、焦点距離f、および絞り31のF
ナンバーFが合焦調節回路へ入力されている。
In FIG. 7, 30 is a camera body, 1 is a photographing optical system, 31 is a diaphragm for limiting the amount of light, 33 is a film surface corresponding to an exposure surface, and 32 is a mirror, which is used by the photographing optical system during film exposure. It moves to guide the light flux to the film surface 33. At the time of distance measurement, the light flux from the mirror 32 is guided to the focus adjustment circuit 36 via the half mirror 35 and also to the finder 34. Reference numeral 16 is a motor for driving the photographing optical system in the optical axis direction, and the focus adjustment circuit 3
It is controlled by a control signal from 6. Further, the position X of the photographing optical system 1, the focal length f, and the F of the diaphragm 31.
The number F is input to the focus adjustment circuit.

【0023】合焦調節回路36は図1のような構成とな
っている。ハーフミラー35からの光束はハーフミラー
37を介して撮像素子39p、およびミラー38を介し
て撮像素子39qに入射する。なお42は縮小光学系で
フィルム面33の大きさに結像する画像を撮像素子39
p,39qの大きさに結像させるための縮小作用を有す
る。さらに、撮像素子39p,39qはフィルム面33
を等距離uの間隔を持って挾んだ等価面に位置するとと
もに撮像素子駆動回路40によりコントロールされる。
撮像素子で得られた画像信号はプリアンプ4p,4qで
増幅されたのち焦点信号検出器41p,41qに入力さ
れ、それぞれ焦点信号Vp,Vqを出力する。焦点信号
検出器は図8(a)、8(b)の様な構成となってい
る。図8(a)に示す例では画像信号はBPF5に入力
された後、測距エリア指定回路21により指定された画
像位置の信号のみがゲート回路8により抽出され、2乗
器からなる検波器9、A/D変換器10、デジタル積分
回路11により所定の空間周波数の焦点信号が抽出され
る。なおデジタル積分回路11は加算器12、ラッチ回
路13から構成される。図8(b)に示す例では、ま
ず、A/D変換器によりデジタル信号に変換された後、
デジタルBPFにより所定の空間周波数成分が抽出さ
れ、測距エリア指定回路21により指定された画像位置
の信号の2乗平均値および平均値が、2乗平均値検出回
路46、平均値検出回路47によりそれぞれ求められ、
分散検出回路により次式に示す分散値が焦点信号として
求められる。 σ=(M2−M1・M1)/(M1・M1) (7) ここで、M2:二乗平均値、M1:平均値
The focus adjusting circuit 36 has a structure as shown in FIG. The light flux from the half mirror 35 enters the image sensor 39p via the half mirror 37 and the image sensor 39q via the mirror 38. Reference numeral 42 denotes a reduction optical system that captures an image formed in the size of the film surface 33 by the image sensor 39.
It has a reducing action for forming an image with a size of p, 39q. Further, the image pickup devices 39p and 39q are provided on the film surface 33.
Are located on the equivalent plane sandwiched at equal distances u and are controlled by the image pickup element drive circuit 40.
The image signal obtained by the image pickup device is amplified by the preamplifiers 4p and 4q and then input to the focus signal detectors 41p and 41q, and the focus signals Vp and Vq are output, respectively. The focus signal detector has a structure as shown in FIGS. 8 (a) and 8 (b). In the example shown in FIG. 8A, after the image signal is input to the BPF 5, only the signal at the image position designated by the distance measurement area designating circuit 21 is extracted by the gate circuit 8 and the detector 9 including a squarer is used. , A / D converter 10 and digital integration circuit 11 extract a focus signal having a predetermined spatial frequency. The digital integration circuit 11 is composed of an adder 12 and a latch circuit 13. In the example shown in FIG. 8B, first, after being converted into a digital signal by the A / D converter,
A predetermined spatial frequency component is extracted by the digital BPF, and the mean square value and mean value of the signal at the image position designated by the distance measuring area designation circuit 21 are calculated by the mean square value detection circuit 46 and the mean value detection circuit 47. Each requested,
The variance value shown in the following equation is obtained as the focus signal by the variance detection circuit. σ = (M2−M1 · M1) / (M1 · M1) (7) where M2: root mean square, M1: mean

【0024】このσは分散であるためバイアスの変化の
影響を受けず、さらに平均値で正規化しているためゲイ
ンの変化の影響も受けることがない。そのため、フリッ
カや突然の照明光の変化がある場合でも正確な焦点信号
として用いることが出来る。
Since this σ is a variance, it is not affected by a change in bias, and is also not affected by a change in gain because it is normalized by an average value. Therefore, even if there is a flicker or a sudden change in illumination light, it can be used as an accurate focus signal.

【0025】焦点信号検出器41pから出力される焦点
信号Vp、焦点信号検出器41qから出力される焦点信
号Vqはともに合焦制御器43に入力され、撮影光学系
1駆動のための制御信号をモータ16へ出力する。合焦
制御器43は詳しくは図9のように構成されている。5
0は合焦状態検出器、51は3点補間器であり、(4)
式、(5)式に基づく計算により、合焦位置およびその
時刻をモータ制御回路53へ出力する。52は2点補間
器で図21(b)の様な構成となっており、合焦位置を
モータ制御回路53へ出力する。54は撮影光学系パラ
メータ検出回路であり、(2)式に基ずきパラメータd
FZPを算出する。55は位置検出器であり、撮影光学
系1の位置Xから(3)式に基ずき露光距離dEをもと
め、dP(=dE−u)、dQ(=dE+u)を3点補
間器51、2点補間器52へ出力する。53はモータ制
御回路でモータの制御信号をモータ16へ出力する。
The focus signal Vp output from the focus signal detector 41p and the focus signal Vq output from the focus signal detector 41q are both input to the focus controller 43, and control signals for driving the photographing optical system 1 are provided. Output to the motor 16. The focus controller 43 is configured in detail as shown in FIG. 5
0 is a focus state detector, 51 is a three-point interpolator, (4)
The focus position and the time thereof are output to the motor control circuit 53 by the calculation based on the formula and the formula (5). Reference numeral 52 is a two-point interpolator, which has a structure as shown in FIG. 21B, and outputs the focus position to the motor control circuit 53. Reference numeral 54 is a photographing optical system parameter detection circuit, which is based on the equation (2).
Calculate FZP. Reference numeral 55 denotes a position detector, which determines an exposure distance dE from the position X of the photographing optical system 1 based on the equation (3), and calculates dP (= dE-u) and dQ (= dE + u) by a three-point interpolator 51, Output to the two-point interpolator 52. A motor control circuit 53 outputs a motor control signal to the motor 16.

【0026】次に、以上の構成のもとでの本実施例の作
用について説明する。まず合焦調節が始まると、図示し
ない露光量検出手段により露光量情報が撮像素子駆動回
路に与えられ、撮像素子39p,39qの積分時間が設
定され、画像信号の読み出しが始まる。いまこの時刻を
0 とし、続く読み出し時刻をt1 ,t2 ,t3 …とす
る。読み出された画像信号はプリアンプ4、焦点信号検
出器41により焦点信号Vp(t0 ),Vq(t0 )が
合焦状態検出器50へ入力される。合焦状態検出器50
では |Vp(t0 )−Vq(t0 )|≦εの時は合焦状態 Vp(t0 )−Vq(t0 )>εの時は前ピン状態 Vp(t0 )−Vq(t0 )<εの時は後ピン状態 と判断する。ここでεは適当な定数とする。
Next, the operation of this embodiment having the above configuration will be described. First, when focus adjustment is started, exposure amount information (not shown) gives exposure amount information to the image pickup device drive circuit, the integration times of the image pickup devices 39p and 39q are set, and reading of image signals is started. It is assumed that this time is t 0 and the subsequent read times are t 1 , t 2 , t 3 .... Focus signals Vp (t 0 ) and Vq (t 0 ) of the read image signal are input to the focus state detector 50 by the preamplifier 4 and the focus signal detector 41. Focus state detector 50
Then, when | Vp (t 0 ) −Vq (t 0 ) | ≦ ε, the focus state is obtained. When Vp (t 0 ) −Vq (t 0 )> ε, the front focus state is Vp (t 0 ) −Vq (t When 0 ) <ε, it is judged to be the rear pin state. Here, ε is an appropriate constant.

【0027】合焦状態の時は、時刻t1 で再び焦点信号
の差を計算し、もう一度|Vp(t1 )−Vq(t1
|≦εとなった場合はその時点で合焦調節動作を終え
る。|Vp(t1 )−Vq(t1 )|≦εとならなかっ
た場合は、2点補間によりVp(t0 )、Vq(t0
から時刻t0 での合焦位置XI(t0 )を、Vp
(t1)、Vq(t1 )から時刻t1 での合焦位置XI
(t1 )を求め、 M={XI(t1 )−XI(t0 )}/(t1 −t0 ) …(8) なる式から速度Mをもとめ、露光までのタイムラグに合
焦位置が動く距離を予測し、その位置へ撮影光学系1を
駆動して合焦調節を終了する。
In the in-focus state, the focus signal difference is calculated again at time t 1 , and again | Vp (t 1 ) −Vq (t 1 ).
When | ≦ ε, the focus adjustment operation is finished at that point. When | Vp (t 1 ) −Vq (t 1 ) | ≦ ε does not hold, Vp (t 0 ) and Vq (t 0 ) are obtained by two-point interpolation.
From the focus position XI (t 0 ) at time t 0 to Vp
(T 1 ), focus position XI at time t 1 from Vq (t 1 ).
(T 1 ) is calculated, M = {XI (t 1 ) −XI (t 0 )} / (t 1 −t 0 ) ... (8) The speed M is obtained from the formula, and the focus position is determined by the time lag until exposure. Predicts the moving distance, drives the photographing optical system 1 to that position, and finishes the focus adjustment.

【0028】合焦状態でない場合はモータ制御回路53
で撮影光学系パラメータdFZPと焦点距離fから画像
の撮像距離間隔を算出し、この間隔を得るべくモータの
駆動速度を設定し、撮影光学系1を露光面が結像面に近
づく方向に駆動を開始する。Vp(t0 )>Vq
(t0 )の場合は、図10に示すアルゴリズムに従って
合焦調節を行う。つまり時刻t1 にて求められた焦点信
号Vp(t1 )とVp(t0)を比較して(ステップS
1)、Vp(t1 )>Vp(t0 )でない場合は時刻t
0 およびt1 で合焦位置に非常に近いとして、Vp(t
0 ),Vq(t0 )から時刻t0 での合焦位置XI(t
0 )を、Vp(t1 ),Vq(t1 )から時刻t1 での
合焦位置XI(t1 )を求め(ステップS2)、 M={XI(t1 )−XI(t0 )}/(t1 −t0
When not in focus, the motor control circuit 53
The image pickup distance interval of the image is calculated from the image pickup optical system parameter dFZP and the focal length f, the motor drive speed is set to obtain this distance, and the image pickup optical system 1 is driven in the direction in which the exposure surface approaches the image formation surface. Start. Vp (t 0 )> Vq
In the case of (t 0 ), focus adjustment is performed according to the algorithm shown in FIG. That is, the focus signals Vp (t 1 ) and Vp (t 0 ) obtained at time t 1 are compared (step S
1), time t if Vp (t 1 )> Vp (t 0 ).
Assuming that the focus position is very close at 0 and t 1 , Vp (t
0), Vq (t 0) If at time t 0 from the focal position XI (t
0 ) is calculated from Vp (t 1 ) and Vq (t 1 ) to obtain a focus position XI (t 1 ) at time t 1 (step S2), and M = {XI (t 1 ) −XI (t 0 ). } / (t 1 -t 0)

【0029】なる式から速度Mをもとめ、露光までのタ
イムラグに合焦位置が動く距離を予測しその位置へ撮影
光学系1を駆動して合焦調節を終了する(ステップS
3)。Vp(t1 )>Vp(t0 )の場合は、Vp(t
n+1 )<Vp(tn )となった時(ステップS4)に、
Vp(tn+1 )、Vp(tn )、Vp(tn+1 )の3点
を用いて(4)式、(5)式に示したような3点補間を
行い、合焦位置XI(tp)とその時刻tp を求める
(ステップS5)。そして、Vp(tn+1 )、Vq(t
n+1 )の2点またはVp(tn )、Vq(tn )の2点
の差の小さい方の2点を用いて、2点補間を行い合焦位
置XI(tn+1 )(またはXI(tn )、及びその時刻
n+1 (またはtn )を求め(ステップS6)、 M={XI(tn+1 )−XI(tp )}/(tn+1 −tp ) …(10)
From the equation, the speed M is obtained, the distance at which the in-focus position moves due to the time lag until exposure is predicted, the photographing optical system 1 is driven to that position, and the in-focus adjustment ends (step S).
3). When Vp (t 1 )> Vp (t 0 ), Vp (t
When n + 1 ) <Vp (t n ) (step S4),
The three points of Vp (t n + 1 ), Vp (t n ), and Vp (t n + 1 ) are used to perform the three-point interpolation as shown in the equations (4) and (5), and the focus position is obtained. XI (t p ) and its time t p are obtained (step S5). Then, Vp (t n + 1 ) and Vq (t
n + 1 2-point or Vp (t n)) of using the smaller two points of difference between the two points of Vq (t n), performs a two-point interpolation focus position XI (t n + 1) ( or XI (t n), and obtains the time t n + 1 (or t n) (step S6), M = {XI ( t n + 1) -XI (t p)} / (t n + 1 - t p) ... (10)

【0030】なる式から速度Mをもとめ、露光までのタ
イムラグに合焦位置が動く距離を予測し、その位置へ撮
影光学系1を駆動して合焦調節を終了する(ステップS
7)。なお、Vp(t0 )<Vq(t0 )の場合も同様
である。
From the equation, the speed M is obtained, the distance at which the in-focus position moves during the time lag until exposure is predicted, the photographing optical system 1 is driven to that position, and the in-focus adjustment ends (step S).
7). The same applies to the case of Vp (t 0 ) <Vq (t 0 ).

【0031】このように3点補間と2点補間を併用する
ことにより動体に対してもその速度を正しく検出し、露
光までのタイムラグを考慮した合焦調節が可能となる。
また、同一時刻における結像面付近での2位置での映像
信号を用いることにより、合焦開始時の合焦状態がわか
り撮影光学系の無駄な駆動をなくす事が出来る。さら
に、撮影光学系の合焦位置の行き過ぎ量を減らす事が出
来、撮影者の不快感を低減させることができる。本実施
例で撮像素子39pと撮像素子39qの光路差は一定で
あったが、撮影光学系1の焦点距離、Fナンバー等によ
り適宜光路差を変化させてもよい。
As described above, by using the three-point interpolation and the two-point interpolation together, the speed of the moving body can be accurately detected, and the focus adjustment can be performed in consideration of the time lag until the exposure.
Further, by using the image signals at two positions near the image plane at the same time, it is possible to know the focus state at the start of focusing and eliminate unnecessary driving of the photographing optical system. Further, it is possible to reduce the amount of overshooting of the in-focus position of the photographing optical system, and it is possible to reduce the discomfort of the photographer. Although the optical path difference between the image pickup device 39p and the image pickup device 39q is constant in this embodiment, the optical path difference may be changed appropriately depending on the focal length of the photographing optical system 1, the F number, and the like.

【0032】なお、合焦調節回路36は図11のように
撮像素子を一個だけ用い、撮像素子面の半分にハーフミ
ラー37からの光束を、残り半分にミラー38からの光
束を結像させる様にしてもよい。この図で61は画像信
号を分離するためのセレクタである。さらにハーフミラ
ー37とミラー38はプリズムを用いて構成してもよ
い。また、ハーフミラー37を用いず図12(a)のよ
うに撮像素子直前に配置された光路長調節手段62を用
いてもよい。この光路長調節手段62はたとえば図12
(b)のようにライン毎に光路差の異なる部材であり、
この時セレクタ61はフイールド毎の信号を切り換える
働きをする。さらに、この光路長調節手段62は液晶等
を用い構成してもよく、1画素毎に光路差を変化させる
ようにしてもよい。
The focus adjusting circuit 36 uses only one image pickup device as shown in FIG. 11, and forms a light beam from the half mirror 37 on one half of the image pickup device surface and a light beam from the mirror 38 on the other half. You can In this figure, 61 is a selector for separating the image signals. Further, the half mirror 37 and the mirror 38 may be configured by using prisms. Further, instead of using the half mirror 37, the optical path length adjusting means 62 arranged immediately before the image pickup element may be used as shown in FIG. This optical path length adjusting means 62 is shown in FIG.
A member having a different optical path difference for each line as shown in (b),
At this time, the selector 61 functions to switch the signal for each field. Further, the optical path length adjusting means 62 may be configured by using liquid crystal or the like, and the optical path difference may be changed for each pixel.

【0033】また2点補間演算は合焦位置を挾む2点を
用いたが本出願人が既に出願済みの特願平01−317
738号にある手法を用いることにより必ずしも合焦位
置を挾む2点を用いる制限はない。以下に、本発明の第
2の実施例を述べる。
Further, the two-point interpolation calculation uses two points sandwiching the in-focus position, but Japanese Patent Application No. 01-317 already filed by the present applicant.
By using the method described in No. 738, it is not always necessary to use two points that sandwich the in-focus position. The second embodiment of the present invention will be described below.

【0034】図4、図6において、合焦する前に露光面
が結像面と一致することはなかったが、図13(a)の
ような場合は時刻tg′で一度露光面と結像面が一致
し、デフォーカスし再び時刻tgで合焦することにな
り、この行き過ぎ動作のため撮影者は不快感を抱く。そ
こで、合焦前に露光面と結像面が一致することのない実
施例について次に説明する。なお、前実施例と同様の作
用をする部材については同一の番号を付けてある。
In FIGS. 4 and 6, the exposure surface did not coincide with the image forming surface before focusing, but in the case of FIG. 13 (a), an image is formed once with the exposure surface at time tg '. The surfaces are aligned, defocused, and focused again at time tg. This overshooting operation makes the photographer feel uncomfortable. Therefore, an embodiment in which the exposure surface and the imaging surface do not coincide with each other before focusing will be described below. It should be noted that members having the same functions as those in the previous embodiment are designated by the same reference numerals.

【0035】図14に、本発明の第2実施例の構成図を
示す。第1実施例と異なる点は合焦調節回路36の縮小
光学系42を光軸方向に駆動することにある。65はそ
の駆動回路である。
FIG. 14 shows a block diagram of the second embodiment of the present invention. The difference from the first embodiment is that the reduction optical system 42 of the focus adjustment circuit 36 is driven in the optical axis direction. Reference numeral 65 is its drive circuit.

【0036】次に本実施例の作用について図13
(b)、図15を用いて説明する。まず合焦調節が始ま
ると、第1実施例と同様に撮像素子の積分時間が設定さ
れ、合焦状態の検出が行われる。この時、露光面が撮像
素子等価面PおよびQの中央位置になるように縮小光学
系の位置が調節されている。合焦状態でない場合、まず
縮小光学系42を合焦位置に近付ける方向に駆動を開始
する(時刻t0 )。撮影光学系1はまだ駆動しない。そ
して露光面が撮像素子等価面Pと撮像素子等価面Qの挾
まれた領域からでた後(時刻tE )に撮影光学系1の駆
動を開始するとともに縮小光学系の駆動を停止する。そ
して前記実施例と同様に、Vp(t1 ),Vp
(t2 ),Vp(t3 )を用いた3点補間、Vp
(t3 ),Vq(t3 )を用いた2点補間により合焦位
置検出を行い、時刻t3 において合焦位置および動体の
速度が検出され、撮影光学系1は露光までのタイムラグ
を考慮した合焦位置へ駆動し、一方縮小光学系42は露
光面が撮像素子等価面PおよびQの中央位置(初期位
置)に戻すべく高速に駆動し合焦調節を終える。
Next, the operation of this embodiment will be described with reference to FIG.
(B), It demonstrates using FIG. First, when the focus adjustment is started, the integration time of the image sensor is set as in the first embodiment, and the focus state is detected. At this time, the position of the reduction optical system is adjusted so that the exposure surface becomes the center position of the image pickup element equivalent surfaces P and Q. If it is not in the in-focus state, the reduction optical system 42 is first driven in the direction of approaching the in-focus position (time t 0 ). The photographing optical system 1 is not driven yet. Then, the drive of the photographing optical system 1 is started and the drive of the reduction optical system is stopped after the exposure surface is out of the region between the image pickup element equivalent surface P and the image pickup element equivalent surface Q (time t E ). Then, as in the above embodiment, Vp (t 1 ), Vp
3-point interpolation using (t 2 ), Vp (t 3 ), Vp
The in-focus position is detected by two-point interpolation using (t 3 ) and Vq (t 3 ), the in-focus position and the speed of the moving body are detected at time t 3 , and the photographing optical system 1 considers the time lag until exposure. On the other hand, the reduction optical system 42 is driven at a high speed so that the exposure surface returns to the center position (initial position) of the image pickup element equivalent surfaces P and Q, and the focus adjustment is completed.

【0037】このように撮影光学系1と縮小光学系42
を独立に駆動することにより、合焦前に一度露光面と結
像面が一致することがなくなり撮影者に不快感を与える
ことを確実に防止することができる。
In this way, the photographing optical system 1 and the reduction optical system 42
It is possible to reliably prevent the photographer from feeling uncomfortable because the exposure surface and the image formation surface do not coincide with each other before focusing.

【0038】なお、本実施例では縮小光学系そのものを
駆動するようにしたが、例えばガラス板を挿入させた
り、液晶を用いたりして露光面と撮像素子面P、Qとの
相対的位置関係を変化させてもよい。撮像素子そのもの
を駆動するようにしてもよいのはもちろんである。ま
た、2点補間を用いず、Vp(t1 )、Vp(t2 )、
Vp(t3 )を用いた3点補間とVq(t2 ),Vq
(t3 ),Vq(t4 )を用いた3点補間から合焦位置
および動体速度を求めることもできる。以下に、本発明
の第3の実施例を述べる。
Although the reduction optical system itself is driven in this embodiment, the relative positional relationship between the exposure surface and the image pickup element surfaces P and Q is obtained by inserting a glass plate or using a liquid crystal, for example. May be changed. Of course, the image sensor itself may be driven. Further, Vp (t 1 ), Vp (t 2 ),
Three-point interpolation using Vp (t 3 ) and Vq (t 2 ), Vq
The in-focus position and the moving body speed can also be obtained from three-point interpolation using (t 3 ) and Vq (t 4 ). The third embodiment of the present invention will be described below.

【0039】次に、同一時刻における結像面付近での3
位置での映像信号を用いた実施例について説明する。な
お、前実施例と同様の作用をする部材については同一の
番号を付けてある。
Next, 3 at the same time near the image plane
An embodiment using the video signal at the position will be described. It should be noted that members having the same functions as those in the previous embodiment are designated by the same reference numerals.

【0040】図16に本実施例の構成図を示す。第1実
施例と異なる点はハーフミラー66、撮像素子39r、
プリアンプ4r、焦点信号検出器41rが設けられてい
る。なお、ハーフミラー37は入射光の1/3を反射
し、ハーフミラー66は入射光の1/2を反射する。ま
た、撮像素子等価面Rは露光面と等価な位置にあり、撮
像素子等価面P、Qの中央に位置している。さて、この
ような構成にすると1回の撮像で3点補間による合焦位
置検出が可能となる。しかしながら、その検出可能範囲
は図17に示す距離に限られる。ここで横軸は第2主面
からの距離、縦軸は焦点信号値である。撮像素子P、
Q、Rがそれぞれ、dP、dQ、dEに位置するとすれ
ば、合焦位置を検出できるdIの範囲はX1以上X2以
下となる。ここで X1=(de+dp)/2=de−u/2 (11) X2=(de+dq)/2=de+u/2 もし撮影光学系のすべての位置で X1<dI<X2 (12)
FIG. 16 shows a block diagram of this embodiment. The difference from the first embodiment is that the half mirror 66, the image sensor 39r,
A preamplifier 4r and a focus signal detector 41r are provided. The half mirror 37 reflects 1/3 of the incident light, and the half mirror 66 reflects 1/2 of the incident light. The image pickup element equivalent surface R is at a position equivalent to the exposure surface, and is located at the center of the image pickup element equivalent surfaces P and Q. Now, with such a configuration, it is possible to detect the in-focus position by three-point interpolation with one image pickup. However, the detectable range is limited to the distance shown in FIG. Here, the horizontal axis is the distance from the second main surface, and the vertical axis is the focus signal value. Image sensor P,
If Q and R are located at dP, dQ, and dE, respectively, the range of dI at which the focus position can be detected is X1 or more and X2 or less. Here, X1 = (de + dp) / 2 = de−u / 2 (11) X2 = (de + dq) / 2 = de + u / 2 If all positions of the photographing optical system are X1 <dI <X2 (12)

【0041】となっていれば撮影光学系は全く動かさな
くても合焦位置がわかり、2回の撮像で物体の速度もわ
かる。もし撮影光学系のすべての位置で(12)式が満
足されないときは撮影光学系をこの合焦位置検出可能範
囲まで駆動する必要がある。
If, then the focus position can be known without moving the photographing optical system at all, and the speed of the object can be known by two image pickups. If the expression (12) is not satisfied at all positions of the photographing optical system, it is necessary to drive the photographing optical system to this focus position detectable range.

【0042】次にこのような場合の作用について図18
を用いて説明する。この図において斜線部分が合焦位置
検出可能範囲を示す。まず合焦調節が始まると、第1実
施例と同様に撮像素子の積分時間が設定され、合焦状態
の検出が行われる。合焦状態でない場合、合焦位置に近
づける方向に撮影光学系1の駆動を開始する(時刻
0 )。そして、時刻t1 において焦点信号Vp
(t1 ),Vq(t1 ),Vr(t1 )を用いた3点補
間を行い、時刻t2 において焦点信号Vp(t2 ),V
q(t2 ),Vr(t2 )を用いた3点補間を行い合焦
位置と物体の速度の検出を行い合焦調節を終える(時刻
tg)。このように同一時刻における結像面付近での3
位置での映像信号を用いることにより合焦調節を行うこ
とが可能である。
Next, the operation in such a case will be described with reference to FIG.
Will be explained. In this figure, the shaded area indicates the focus position detectable range. First, when the focus adjustment is started, the integration time of the image sensor is set as in the first embodiment, and the focus state is detected. When it is not in the focused state, the driving of the photographing optical system 1 is started in the direction of approaching the focused position (time t 0 ). Then, at time t 1 , the focus signal Vp
(T 1 ), Vq (t 1 ), and Vr (t 1 ) are used for three-point interpolation, and focus signals Vp (t 2 ), V are obtained at time t 2 .
Three-point interpolation using q (t 2 ) and Vr (t 2 ) is performed to detect the in-focus position and the speed of the object, and the in-focus adjustment is completed (time tg). In this way, 3 near the image plane at the same time
Focus adjustment can be performed by using the video signal at the position.

【0043】なお、本実施例では撮像素子を3個用いた
が1個用いて異なる3位置に結像させるように構成して
もよい。また、VpとVr、VrとVq、VpとVqの
2点を用いた2点補間を併用してもよい。さらに、適当
な光路長変化手段を用いて撮像素子PとR、撮像素子R
とQの光路長を変化させてもよい。また縮小光学系の駆
動手段を設け、第2実施例と同様に撮影光学系と独立に
駆動してもよい。
Although three image pickup devices are used in this embodiment, one image pickup device may be used to form images at three different positions. Also, two-point interpolation using two points of Vp and Vr, Vr and Vq, and Vp and Vq may be used together. Further, the image pickup elements P and R, and the image pickup element R are formed by using an appropriate optical path length changing means.
The optical path lengths of Q and Q may be changed. Further, a driving means for the reduction optical system may be provided and driven independently of the photographing optical system as in the second embodiment.

【0044】[0044]

【発明の効果】以上、本発明では同一時刻に撮像された
結像面付近の異なる複数の位置での画像信号を用いるこ
とにより、合焦状態がわかり、合焦開始時に撮影光学系
の無駄な駆動をなくすることができる。また、3点補間
法と2点補間法を併用することにより複数の時刻に於け
る物体の合焦位置を検出でき、動体予測AFが可能とな
る。
As described above, according to the present invention, by using the image signals at a plurality of different positions near the image forming surface which are imaged at the same time, the focusing state can be known, and the photographic optical system is not used at the start of focusing. The drive can be eliminated. Further, by using the three-point interpolation method and the two-point interpolation method together, the in-focus position of the object at a plurality of times can be detected, and the moving object predictive AF becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る自動合焦装置の第1の実施例を示
す合焦調節回路の構成図。
FIG. 1 is a configuration diagram of a focus adjustment circuit showing a first embodiment of an automatic focusing device according to the present invention.

【図2】本発明の基本的概念を説明するための撮影光学
系及び撮像素子の配置図。
FIG. 2 is a layout diagram of a photographing optical system and an image sensor for explaining the basic concept of the present invention.

【図3】撮像素子P、Qの焦点信号の差が撮像素子の位
置により変化するようすを示す図。
FIG. 3 is a diagram showing how the difference between the focus signals of the image pickup devices P and Q changes depending on the position of the image pickup device.

【図4】本発明の合焦調節動作を説明するための時刻と
第2主面と動体速度との関係を示す図。
FIG. 4 is a diagram showing a relationship between time, a second main surface, and a moving body speed for explaining a focus adjusting operation of the present invention.

【図5】図5(a)は時刻と撮像素子Pの焦点信号との
関係を示す図であり、図5(b)は結像距離と撮像素子
Pの焦点信号との関係を示す図。
5A is a diagram showing a relationship between time and a focus signal of the image sensor P, and FIG. 5B is a diagram showing a relationship between an imaging distance and a focus signal of the image sensor P.

【図6】本発明の他の合焦調節動作を説明するための時
刻と第2主面と動体速度との関係を示す図。
FIG. 6 is a diagram showing the relationship between time, second main surface, and moving body speed for explaining another focus adjusting operation of the present invention.

【図7】本発明の合焦調節回路が適用されるカメラ本体
の構成を示す図。
FIG. 7 is a diagram showing a configuration of a camera body to which a focus adjustment circuit of the present invention is applied.

【図8】図8(a)、(b)は焦点信号検出回路の構成
を示すブロック図。
8A and 8B are block diagrams showing the configuration of a focus signal detection circuit.

【図9】合焦制御器の構成を示すブロック図。FIG. 9 is a block diagram showing the configuration of a focusing controller.

【図10】合焦調節のアルゴリズムを示すフロ−チャ−
ト。
FIG. 10 is a flowchart showing a focusing adjustment algorithm.
To.

【図11】合焦調節回路の他の回路構成例を示す図。FIG. 11 is a diagram showing another circuit configuration example of a focus adjustment circuit.

【図12】図12(a)は撮像素子直前に配置された光
路長調節手段を示す図であり、図12(b)は光路長調
節手段の構造を示す図。
FIG. 12 (a) is a diagram showing an optical path length adjusting means arranged immediately before an image sensor, and FIG. 12 (b) is a diagram showing a structure of the optical path length adjusting means.

【図13】図13(a)、(b)は本発明の第2の実施
例を説明するための時刻、第2主面からの距離、動体速
度の関係を示す図。
13 (a) and 13 (b) are diagrams showing the relationship between time, distance from the second main surface, and moving body velocity for explaining the second embodiment of the present invention.

【図14】本発明の第2の実施例を実施するための回路
構成図。
FIG. 14 is a circuit configuration diagram for implementing a second embodiment of the present invention.

【図15】撮影光学系と縮小光学系との独立駆動を説明
するための図。
FIG. 15 is a diagram for explaining the independent drive of the photographing optical system and the reduction optical system.

【図16】本発明の第3の実施例を実施するための回路
構成図。
FIG. 16 is a circuit configuration diagram for implementing a third embodiment of the present invention.

【図17】本発明の第3の実施例における検出範囲を示
す図。
FIG. 17 is a diagram showing a detection range in the third embodiment of the present invention.

【図18】本発明の第3の実施例を説明するための図。FIG. 18 is a diagram for explaining the third embodiment of the present invention.

【図19】従来の自動合焦装置の構成を示す図。FIG. 19 is a diagram showing a configuration of a conventional automatic focusing device.

【図20】図19の自動合焦装置の補間演算を説明する
ための図。
20 is a diagram for explaining an interpolation calculation of the automatic focusing device in FIG.

【図21】図21(a)は合焦位置を挟む2点を利用し
た合焦位置算出法を説明するための図であり、図21
(b)はその回路構成を示す図。
21A is a diagram for explaining a focusing position calculation method using two points sandwiching the focusing position; FIG.
(B) is a figure which shows the circuit structure.

【符号の説明】[Explanation of symbols]

4p、4q…プリアンプ、36…合焦調節回路、37…
ハ−フミラ−、38…ミラ−、39p、39q…撮像素
子、40…撮像素子駆動回路、41p、41q…焦点信
号検出器、42…縮小光学系、43…合焦制御器。
4p, 4q ... Preamplifier, 36 ... Focus adjustment circuit, 37 ...
Half mirror, 38 ... Miller, 39p, 39q ... Image sensor, 40 ... Image sensor drive circuit, 41p, 41q ... Focus signal detector, 42 ... Reduction optical system, 43 ... Focus controller.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 撮影光学系により形成される画像を、異
なる光路差をもった複数の位置で撮像する一つまたは複
数の撮像素子と、 この撮像素子と前記撮影光学系との相対位置を光軸方向
に沿って変化させる駆動手段と、 前記一つまたは複数の撮像素子に蓄積された電荷を画像
信号として読み出す一つまたは複数の画像読み出し手段
と、 この読み出し手段で読み出された画像信号から所定の周
波数帯域のみを通過させるバンドパスフィルターと、 このバンドパスフィルターの出力信号から、異なる光路
差をもった複数の位置での合焦度に応じた複数の焦点信
号値を検出するための焦点信号検出手段と、 この焦点信号検出手段から読み出される複数の焦点信号
値から合焦状態を判断する合焦状態判断手段と、 前記焦点信号検出手段から読み出される複数の焦点信号
値から前記駆動手段を制御し、複数の時刻における合焦
位置を検出して撮影光学系の位置を制御する合焦位置制
御手段と、 を具備することを特徴とする自動合焦装置。
1. An image pickup device for picking up an image formed by a photographing optical system at a plurality of positions having different optical path differences, and a relative position between the image pickup device and the photographing optical system. Driving means for changing along the axial direction, one or a plurality of image reading means for reading the electric charges accumulated in the one or a plurality of image pickup elements as an image signal, and the image signal read by the reading means A bandpass filter that passes only a predetermined frequency band, and a focus for detecting multiple focus signal values according to the degree of focus at multiple positions with different optical path differences from the output signal of this bandpass filter. Signal detecting means, focusing state determining means for determining a focusing state from a plurality of focus signal values read from the focus signal detecting means, and read from the focus signal detecting means. Focusing position control means for controlling the position of the photographing optical system by detecting the focusing position at a plurality of times by controlling the driving means from a plurality of focus signal values stored in the automatic focusing function. Focusing device.
【請求項2】 撮影光学系により形成される画像を、異
なる光路差をもった複数の位置で撮像する一つまたは複
数の撮像素子と、 この撮像素子と前記撮影光学系との相対位置を光軸方向
に沿って変化させる第1の駆動手段と、 前記撮像素子に結像する画像の光路差を変化させる第2
の駆動手段と、 前記一つまたは複数の撮像素子に蓄積された電荷を画像
信号として読み出す一つまたは複数の画像読み出し手段
と、 この読み出し手段で読み出された画像信号から所定の周
波数帯域のみを通過させるバンドパスフィルターと、 このバンドパスフィルターの出力信号から、異なる光路
差をもった複数の位置での合焦度に応じた複数の焦点信
号値を検出するための焦点信号検出手段と、 この焦点信号検出手段から読み出される複数の焦点信号
値から合焦状態を判断する合焦状態判断手段と、 前記焦点信号検出手段から読み出される複数の焦点信号
値から前記第1および第2駆動手段を制御し、複数の時
刻における合焦位置を検出して撮影光学系の位置を制御
する合焦位置制御手段と、 を具備することを特徴とする自動合焦装置。
2. An image formed by a photographing optical system is different from
One or multiple images taken at multiple positions with different optical path differences
The number of image sensors and the relative positions of the image sensors and the photographing optical system in the optical axis direction.
And a second drive unit for changing the optical path difference of the image formed on the image pickup device.
And an image of the electric charge accumulated in the one or more image pickup devices.
One or more image reading means for reading as a signal
And a predetermined frequency from the image signal read by this reading means.
A bandpass filter that passes only the wavenumber band and a different optical path from the output signal of this bandpass filter
Multiple focus signals depending on the degree of focus at multiple positions with different differences
Signal for detecting focus signal and a plurality of focus signals read from the focus signal detecting means
Focus state determination means for determining the focus state from the value, and a plurality of focus signals read from the focus signal detection means
Controlling the first and second driving means from a value,
Controls the position of the shooting optical system by detecting the in-focus position at the time
An automatic focusing apparatus comprising:
【請求項3】 前記合焦位置制御手段は、異なる時間に
撮像された3つの画像信号の焦点信号値から合焦位置を
求める第1の合焦位置検出手段と、 異なる光路差をもった2つの位置で同一の時刻に撮像さ
れた2つの画像信号の焦点信号値から合焦位置を求める
第2の合焦位置検出手段とを具備することを特徴とする
請求項1、2記載の自動合焦装置。
3. The in-focus position control means has a first in-focus position detection means for obtaining an in-focus position from the focus signal values of three image signals imaged at different times, and 2 having different optical path differences. 3. The automatic focusing device according to claim 1, further comprising a second focusing position detecting unit that obtains a focusing position from focus signal values of two image signals captured at two positions at the same time. Focusing device.
【請求項4】 前記合焦位置制御手段は、異なる光路差
をもった3つの位置で同一の時刻に撮像された3つの画
像信号の焦点信号値から合焦位置を求める合焦位置検出
手段を具備することを特徴とする請求項1、2記載の自
動合焦装置。
4. The in-focus position control means includes an in-focus position detection means for obtaining an in-focus position from focus signal values of three image signals imaged at the same time at three positions having different optical path differences. The automatic focusing device according to claim 1, further comprising:
【請求項5】 前記焦点信号検出手段は、バンドパスフ
ィルタ−の出力信号の分散値をバンドパスフィルタ−の
出力信号の平均値で正規化する手段を具備することを特
徴とする請求項1、2、3記載の自動合焦装置。
5. The focus signal detecting means comprises means for normalizing a variance value of the output signal of the bandpass filter with an average value of the output signal of the bandpass filter. The automatic focusing device described in a few items.
JP3054937A 1991-03-19 1991-03-19 Automatic focusing device Withdrawn JPH05227465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3054937A JPH05227465A (en) 1991-03-19 1991-03-19 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3054937A JPH05227465A (en) 1991-03-19 1991-03-19 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPH05227465A true JPH05227465A (en) 1993-09-03

Family

ID=12984551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3054937A Withdrawn JPH05227465A (en) 1991-03-19 1991-03-19 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPH05227465A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005250128A (en) * 2004-03-04 2005-09-15 Fujinon Corp Focus state detector
JP2006030973A (en) * 2004-06-16 2006-02-02 Pentax Corp Focus detecting method and focus detector
US7298413B2 (en) 2002-03-22 2007-11-20 Ricoh Company, Ltd. Photographing apparatus with automatic focus
JP2009510539A (en) * 2005-10-03 2009-03-12 セー.セー.エム. ベヘール ベスローテン フェンノートシャップ Fluorescence microscope
JP2009244903A (en) * 2009-07-27 2009-10-22 Canon Inc Imaging apparatus and automatic focusing control method
JP2009258144A (en) * 2008-03-28 2009-11-05 Nikon Corp Correlation calculation method, correlation calculation device, focus detecting device, and imaging apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7298413B2 (en) 2002-03-22 2007-11-20 Ricoh Company, Ltd. Photographing apparatus with automatic focus
JP2005250128A (en) * 2004-03-04 2005-09-15 Fujinon Corp Focus state detector
JP4576852B2 (en) * 2004-03-04 2010-11-10 富士フイルム株式会社 Focus status detection device
JP2006030973A (en) * 2004-06-16 2006-02-02 Pentax Corp Focus detecting method and focus detector
JP4598609B2 (en) * 2004-06-16 2010-12-15 Hoya株式会社 Focus detection method and focus detection apparatus
JP2009510539A (en) * 2005-10-03 2009-03-12 セー.セー.エム. ベヘール ベスローテン フェンノートシャップ Fluorescence microscope
JP2009258144A (en) * 2008-03-28 2009-11-05 Nikon Corp Correlation calculation method, correlation calculation device, focus detecting device, and imaging apparatus
JP2009244903A (en) * 2009-07-27 2009-10-22 Canon Inc Imaging apparatus and automatic focusing control method
JP4574726B2 (en) * 2009-07-27 2010-11-04 キヤノン株式会社 Imaging apparatus and automatic focusing control method

Similar Documents

Publication Publication Date Title
USRE45692E1 (en) Automatic focusing apparatus and image pickup apparatus
JPS6155618A (en) Automatic focusing device
JP2004157456A (en) Camera and range-finding method of camera
JPH0779434B2 (en) Focus detection device
US7570298B2 (en) Image-taking apparatus with first focus control such that in-focus position is searched for based on first signal and second focus control such that one of in-focus position and drive amount is determined based on second signal
JPH05227465A (en) Automatic focusing device
JP4560420B2 (en) Imaging device
JPH09211308A (en) Mechanism for detecting object of automatic focusing image pickup unit
JP2002023044A (en) Focus detector, range-finding device and camera
JPS5926708A (en) Focusing method of zoom lens
JP2008233205A (en) Range finder and imaging device
JP2737388B2 (en) Electronic camera autofocus device
JP2000019386A (en) Camera
JP2009109792A (en) Autofocusing device and camera using it
JPH08327891A (en) Patterned light projecting device
JPH0694988A (en) Still image recorder
JP2008160436A (en) Imaging device
JPH0769513B2 (en) Focus control signal forming device
JPS63217879A (en) Electronic still video camera
JPH0690395A (en) Video camera and its focusing method
JPH0381713A (en) Automatic focusing device
JPH022292A (en) Camera with automatic focus function
JP2005234350A (en) Projector device and focus adjusting method
JP3063240B2 (en) Converter device and camera system using the same
JPH07294801A (en) Automatic focus adjusting device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514