JPS59195199A - Steam generating system for fast breeder reactor - Google Patents

Steam generating system for fast breeder reactor

Info

Publication number
JPS59195199A
JPS59195199A JP58070722A JP7072283A JPS59195199A JP S59195199 A JPS59195199 A JP S59195199A JP 58070722 A JP58070722 A JP 58070722A JP 7072283 A JP7072283 A JP 7072283A JP S59195199 A JPS59195199 A JP S59195199A
Authority
JP
Japan
Prior art keywords
steam
water
storage tank
steam generator
fast breeder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58070722A
Other languages
Japanese (ja)
Other versions
JPH0358480B2 (en
Inventor
黒沢 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP58070722A priority Critical patent/JPS59195199A/en
Publication of JPS59195199A publication Critical patent/JPS59195199A/en
Publication of JPH0358480B2 publication Critical patent/JPH0358480B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は高速増殖炉の蒸気発生系統に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steam generation system for a fast breeder reactor.

第1図は、従来の高速増殖炉の蒸気発生系統を示すもの
であるが、ナトリウム冷却高速増殖炉プラントにおいて
蒸気発生器を貫流方式で運転する場合、通常の起動/停
止操作は起動バイパス系(蒸気発生器、気水分離器入口
蒸気止弁16、気水分離器4、フラッシュタンク5、復
水器9を順次経過づる系)とタービンバイパス系(蒸気
発生器3、気水分離器4、気水分離器出口蒸気止弁17
、タービンバイパス弁14、復水器9を順次経過する系
)を使用して行なうのが通例である。
Figure 1 shows the steam generation system of a conventional fast breeder reactor. When operating the steam generator in a once-through system in a sodium-cooled fast breeder reactor plant, normal startup/shutdown operations are performed using the startup bypass system ( A system that sequentially passes through a steam generator, a steam separator inlet steam stop valve 16, a steam separator 4, a flash tank 5, and a condenser 9) and a turbine bypass system (steam generator 3, steam separator 4, Steam-water separator outlet steam stop valve 17
, the turbine bypass valve 14 and the condenser 9).

さらに、プラントがトリップした場合においても、事故
状態でない限り、原子炉側の残留熱を蒸気系統を使用し
て除熱するのが運転サイクル上好ましい方法である。
Furthermore, even if the plant trips, unless there is an accident, it is a preferable method in terms of the operating cycle to remove the residual heat in the reactor using the steam system.

一方、ナトリウム冷却高速増殖炉発電プラントは原子炉
系及び中間冷却系である2次冷却系共に液体ナトリウム
を冷却材としているので、液体すトリウムの同化(約1
00℃以下)を防止するため、運転上ナトリウム温度は
約170℃以上となるJ:うに配慮されなりればならな
い5.(刀こがって、蒸気発生器3への給水温度は、蒸
気発生器内アトソウムの局所的同化防止のIこめに、ナ
1〜リウムが入っている運転状態においては、約140
’C以上に保持することが必要である。
On the other hand, in a sodium-cooled fast breeder reactor power plant, liquid sodium is used as a coolant for both the reactor system and the secondary cooling system, which is an intermediate cooling system.
5. In order to prevent the sodium temperature from exceeding 170°C during operation, consideration must be given to the sodium temperature being approximately 170°C or higher. (In fact, the temperature of the water supplied to the steam generator 3 is approximately 140℃ in the operating state where sodium to lithium is contained in the steam generator to prevent local assimilation of athosium.
It is necessary to hold it above 'C'.

このため、従来方式では、プラントトリップ後は起動バ
イパス系(蒸気発生器3、気水分丙(器入口蒸気止弁1
6、気水分離器4、フラッシュタンク5、給水加熱器(
低圧)19、復水器9を順次経過する系)の運転により
、脱気器6への給水の加熱を付加給水加熱器(低圧〉1
9にて行なうと共に、主蒸気ドレン弁18を聞くことに
より主蒸気を脱気器6に導入して圧力低下を防ぎ貯水タ
ンク7内の貯溜水温度を約150℃に維持し、給水ポン
プ12のポンプ作用により蒸気発生器3に給水すること
としている。
Therefore, in the conventional system, after a plant trip, the startup bypass system (steam generator 3, steam
6. Steam water separator 4, flash tank 5, feed water heater (
By operating the feed water heater (low pressure) 19, which sequentially passes through the condenser 9, the feed water to the deaerator 6 is heated.
At the same time, by listening to the main steam drain valve 18, main steam is introduced into the deaerator 6 to prevent pressure drop and maintain the temperature of the stored water in the water storage tank 7 at approximately 150°C, and the water supply pump 12 is turned on. Water is supplied to the steam generator 3 by a pump action.

しかるに、この様な従来の方式では、比較的低温の給水
が蒸気発生器3に導入されるため、蒸気発生器での良好
な熱交換性能のため原子炉1の冷却材ナトリウム温度は
急激に低下し、原子炉系及び2次冷却系構造体に大幅な
熱衝撃荷重を加え、構造膜h4を困ヴ「にする問題があ
った。
However, in such conventional systems, relatively low-temperature feed water is introduced into the steam generator 3, so the temperature of the coolant sodium in the reactor 1 rapidly decreases due to the good heat exchange performance in the steam generator. However, there was a problem in that a large thermal shock load was applied to the reactor system and secondary cooling system structures, causing the structural membrane h4 to deteriorate.

この発明は上記のごとき事情に鑑みてなされたものであ
って、タービントリップをイ1′うブラン1〜トリツプ
や所内単独運転時等、給水加熱器11及び13へのター
ビン8からの抽気が失われたり、その供給量が署しく減
少し、貯水タンク7の水温が著しく低下しても、低温の
まま蒸気発生器へ給水されることがなく、したがって、
原子炉系及び2次冷却系MPi造体への熱衝撃荷重を低
く押えることができる高速増殖炉の蒸気発生系統を提O
jプることを目的とするものである。
This invention has been made in view of the above-mentioned circumstances, and is intended to prevent bleed air from the turbine 8 to the feedwater heaters 11 and 13 from being lost when the turbine trip is prevented or when the plant is operated independently. Even if the water temperature in the water storage tank 7 drops significantly due to a significant decrease in the amount of water supplied, the water will not be supplied to the steam generator at a low temperature.
We propose a steam generation system for a fast breeder reactor that can suppress the thermal shock load on the reactor system and secondary cooling system MPi structure.
The purpose is to

この目的に対応して、この発明の高速増殖炉の蒸気発生
系統は、少なくとも、順次、蒸気発生器、気水分離器、
タービン、復水器、脱気器、貯水タンクを経て前記蒸気
発生器に戻る閉ループを備えた高速増殖炉の蒸気発生系
統において、前記閉ループの前記蒸気発生器入口配管に
付加給水加熱器を設けると共に、前記気水分離器のドレ
ン水を前記付加給水加熱器に導いて熱交換したのち前記
貯水タンクに供給する管路と、前記管路に設置)られた
流量調節弁と、一端が前記貯水タンクの底部に連通し他
の一端が後備給水ポンプを介して前記閉ルーズの前記イ
」加給水加熱器入口側配管に連通ずる管路とを備えたを
特徴としている。
Corresponding to this purpose, the steam generation system of the fast breeder reactor of the present invention at least sequentially includes a steam generator, a steam separator,
In a steam generation system for a fast breeder reactor having a closed loop returning to the steam generator via a turbine, a condenser, a deaerator, and a water storage tank, an additional feed water heater is provided in the steam generator inlet piping of the closed loop; , a pipe line for guiding the drain water of the steam water separator to the additional water supply heater for heat exchange and then supplying it to the water storage tank; a flow rate control valve installed in the pipe line; and one end connected to the water storage tank. and a pipe line whose other end communicates with the bottom of the feed water heater and whose other end communicates with the closed loose feed water heater inlet side pipe via a backup water pump.

以下、この発明の詳細を一実施例を示す図面について説
明する。なお、従来と同一部分については同一符号を用
いている。
Hereinafter, details of the present invention will be explained with reference to the drawings showing one embodiment. Note that the same reference numerals are used for parts that are the same as in the prior art.

第2図において、32は付加給水加熱器(高圧)で、イ
」加給水加熱器32は蒸気発生系閉ループの蒸気発生系
統[1側配管20に設けられており、気水分離器からの
高温高圧(約313〜329℃、約105〜130kg
/cma )のドレ>水(分離水)を管路33にて導き
、蒸気発生系閉ループ内を流れる冷却材(水)と非接触
状態で熱交換したのち、貯水タンク7へ供給されるよう
に構成されている。
In Fig. 2, reference numeral 32 indicates an additional feed water heater (high pressure); High pressure (approx. 313-329℃, approx. 105-130kg)
/cma ) water (separated water) is guided through the pipe 33 and is supplied to the water storage tank 7 after heat exchange with the coolant (water) flowing in the closed loop of the steam generation system in a non-contact state. It is configured.

また、前記管路33には、気水分離器ドレン水の流量を
調節し蒸気発生器への好適な給水加熱を行なうための流
量調節弁35が設りられている。さらに、給水ポンプ1
2の異常/非常時対策用として、一端が貯水タンク7の
底部に連通し他の一端が後備給水ポンプ30を介し配管
21に連通ブる管路34が設(ブられている。
Further, the pipe line 33 is provided with a flow rate control valve 35 for adjusting the flow rate of the steam water separator drain water and suitably heating the feed water to the steam generator. Furthermore, water supply pump 1
2, a pipe line 34 is provided (broken), one end of which communicates with the bottom of the water storage tank 7 and the other end of which communicates with the pipe 21 via the backup water pump 30.

次に、このように構成された本発明の高速増殖炉の蒸気
発生系統によるプラントの残留熱除去について説明づる
Next, residual heat removal from the plant by the steam generation system of the fast breeder reactor of the present invention configured as described above will be explained.

プラントがトリップした場合(原子炉1〜リツプやター
ビントリップが生じた場合)、蒸気発生器からプラント
の残留熱により発生した蒸気(飽和水を伴う)は、蒸気
発生器出口蒸気止弁15の閉止操作及び気水分離器入口
蒸気止弁16、同じく出口止弁17の開操作により気水
分離器4に導入され、蒸気と飽和水が分離される。分離
されIC蒸気は、主蒸気管2を通り、さらに、タービン
バイパス弁14を通過して復水器9にダンプされる。
When the plant trips (when a reactor 1 rip or turbine trip occurs), the steam (accompanied by saturated water) generated by the residual heat of the plant from the steam generator closes the steam generator outlet steam stop valve 15. By operating the steam separator inlet steam stop valve 16 and opening the steam water separator inlet steam stop valve 17, the steam is introduced into the steam water separator 4, and steam and saturated water are separated. The separated IC steam passes through the main steam pipe 2 and further passes through the turbine bypass valve 14 and is dumped into the condenser 9.

一方、分Nt飽和水(ドレン水)は、気水分離器4が約
105〜130k(]’/cm’aの高JTE F J
転すレルλ のに対し、貯水タンク7は約5 ka/ cmaの低圧
で運転されているので圧力差が十分大きいため、気水分
離器ドレン水の流量調節弁35を開操作Jることにより
、付加給水加熱器32に導入され、ここで熱交換を行な
い蒸気発生器3への給水を加熱したのち、貯水タンク7
へ流入し、復水器9からの比較的低温の水と混合するこ
とにより貯溜水を所定の温1(約150℃)、圧力〈約
5kg/cma )に保持づる役割を果す。
On the other hand, for Nt saturated water (drain water), the steam-water separator 4 has a high JTE of about 105 to 130 k(]'/cm'a).
On the other hand, since the water storage tank 7 is operated at a low pressure of about 5 ka/cma, the pressure difference is sufficiently large. , is introduced into the additional feed water heater 32, where heat exchange is performed to heat the feed water to the steam generator 3, and then the water is transferred to the water storage tank 7.
By flowing into the water and mixing with relatively low temperature water from the condenser 9, it serves to maintain the stored water at a predetermined temperature 1 (approximately 150° C.) and pressure (approximately 5 kg/cm2).

また、蒸気発生器3への給水は、通常、前記貯水タンク
7内貯溜水を給水ポンプ12の駆動によって行なうが、
もし給水ポンプ12の順調な運転が阻害されるJ:うな
事態(例えば、常用電源の喪失等)が生じた場合には、
後備給水ポンプ3oを非常用電源(図示しない)により
起動し、直接的に付加給水加熱器32の入口側前@21
へ導入することにより、円滑な蒸気発生器の運転を保証
する。
Further, water is normally supplied to the steam generator 3 by using the water stored in the water storage tank 7 by driving the water supply pump 12.
If a situation occurs that impedes the smooth operation of the water supply pump 12 (for example, loss of regular power supply, etc.),
The backup water supply pump 3o is started by an emergency power supply (not shown), and the water is directly pumped to the front of the inlet side of the additional water heater 32 @21.
This ensures smooth steam generator operation.

以上の説明から明らかな通り、この発明によれば、ター
ビントリップを伴うプラントトリップ・や所内単独運転
時など、給水加熱器へのタービン抽気が失われl〔す、
その供給量が著しく減少し、蒸気発生器への給水温度の
低下を来たすような場合においても、高M、l高圧の気
水分前器ドレン水を付加給水加熱器(高圧)に導ぎ熱交
換できるので、蒸気発生器への給水温度を約250℃以
上と覆ることが可能となり、かつ、付加給水加熱器から
排出される熱交換侵の気水分離器ドレン水は約150℃
より十分高い温水であるので、これを貯水タンクl−導
入することにより復水器からの低温水との混合を行なっ
て貯水タンク内貯溜水を約150℃の所定温度に保持す
ることができ、さらに、常用電源喪失時など給水ポンプ
の異常/非常時においても、前記所定温度に保持された
貯水タンク内貯溜水を蒸気発生器へ供給でき、しlζか
って、低温のまま蒸気発生器へ給水されることがな(、
原子炉系及び2次冷却系構造体への熱衝撃荷重を低く押
えることができる高速増殖炉の蒸気発生系統を得ること
ができる。
As is clear from the above description, according to the present invention, turbine bleed air to the feed water heater is lost during a plant trip accompanied by a turbine trip or during isolated plant operation.
Even if the supply amount decreases significantly and the temperature of the water supplied to the steam generator drops, the high M, high pressure steam/moisture preheater drain water can be guided to the additional feed water heater (high pressure) for heat exchange. This makes it possible to maintain the temperature of the water supplied to the steam generator at approximately 250°C or higher, and the temperature of the steam water separator drain water discharged from the additional feedwater heater to be approximately 150°C.
Since the water is sufficiently hotter, by introducing it into the water storage tank, it can be mixed with the low temperature water from the condenser and the water stored in the water storage tank can be maintained at a predetermined temperature of about 150°C. Furthermore, even in the event of an abnormality/emergency of the water supply pump, such as when a power supply is lost, the water stored in the water storage tank maintained at the predetermined temperature can be supplied to the steam generator, thereby allowing the water to be supplied to the steam generator at a low temperature. That's not true (,
It is possible to obtain a steam generation system for a fast breeder reactor that can suppress thermal shock loads to the reactor system and secondary cooling system structures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の高速増殖炉の蒸気発生系統を示す系統説
明図、及び第2図はこの発明の一実施例に係わる高速増
殖炉の蒸気発生系統を示す構成説明図である。 1・・・原子炉  3・・・蒸気発生器  4・・・気
水分離器  6・・・脱気器  7・・・貯水タンク 
 12・・・給水ポンプ  30・・・後備給水ポンプ
  32・・・付加給水加熱器(高圧)  33.34
・・・管路35・・・流量調節弁
FIG. 1 is a system explanatory diagram showing a steam generation system of a conventional fast breeder reactor, and FIG. 2 is a configuration explanatory diagram showing a steam generation system of a fast breeder reactor according to an embodiment of the present invention. 1... Nuclear reactor 3... Steam generator 4... Steam-water separator 6... Deaerator 7... Water storage tank
12... Water supply pump 30... Backup water supply pump 32... Additional water supply heater (high pressure) 33.34
...Pipe line 35...Flow rate control valve

Claims (1)

【特許請求の範囲】[Claims] 少なくとも、順次、蒸気発生器、気水分離器、タービン
、復水器、鋭気器、貯水タンクを経て前記蒸気発生器に
戻る閉ループを備えた高速増殖炉の蒸気発生系統におい
て、前記閉ループの前記蒸気発生器入口配管に付加給水
加熱器を設(ブると共に、前記気水分離器のドレン水を
前記付加給水加熱器に導いて熱交換したのら前記貯水タ
ンクに供給する管路と、前記管路に設けられた流量調節
弁と、一端が前記貯水タンクの底部に連通し他の一端が
後備給水ポンプを介して前記閉ループの前記付加給水加
熱器入口側配管に連通ずる管路とを備えたことを特徴と
する高速増殖炉の蒸気発生系統。
In a steam generation system of a fast breeder reactor, the steam in the closed loop includes at least a closed loop that sequentially returns to the steam generator via a steam generator, a steam separator, a turbine, a condenser, a steam generator, and a water storage tank. An additional feed water heater is installed in the generator inlet piping. a flow rate control valve provided in the water storage tank; and a pipe line, one end of which communicates with the bottom of the water storage tank and the other end of which communicates with the additional feedwater heater inlet side piping of the closed loop via a backup water pump. A fast breeder reactor steam generation system characterized by:
JP58070722A 1983-04-21 1983-04-21 Steam generating system for fast breeder reactor Granted JPS59195199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58070722A JPS59195199A (en) 1983-04-21 1983-04-21 Steam generating system for fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58070722A JPS59195199A (en) 1983-04-21 1983-04-21 Steam generating system for fast breeder reactor

Publications (2)

Publication Number Publication Date
JPS59195199A true JPS59195199A (en) 1984-11-06
JPH0358480B2 JPH0358480B2 (en) 1991-09-05

Family

ID=13439728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58070722A Granted JPS59195199A (en) 1983-04-21 1983-04-21 Steam generating system for fast breeder reactor

Country Status (1)

Country Link
JP (1) JPS59195199A (en)

Also Published As

Publication number Publication date
JPH0358480B2 (en) 1991-09-05

Similar Documents

Publication Publication Date Title
JPH01167699A (en) Variable delay apparatus for nuclear reactor trip
JPS59195199A (en) Steam generating system for fast breeder reactor
US4236968A (en) Device for removing heat of decomposition in a steam power plant heated by nuclear energy
JPH0221296A (en) Controlling of fast breeder reactor system
JPS60113190A (en) Cooling system of boiling-water type reactor
JP2764825B2 (en) Power plant and start-up method thereof
JPS5827211Y2 (en) High pressure feed water heater cooling system
JPS604439B2 (en) How to operate a nuclear reactor plant
JP3068288B2 (en) Auxiliary cooling water system for nuclear power plants
JPS58201094A (en) Reactor coolant cleanup system
JPS59153003A (en) Method of stopping waste-heat recovery boiler
JPH01219595A (en) Reactor decay heat remover
JPS63221293A (en) Decay-heat removal device
JPS6170303A (en) Recirculation system of steam generator
JPS59180011A (en) Heat recovering apparatus of steam turbine plant
JP3511393B2 (en) Fuel cell heat utilization equipment
JPH04270995A (en) Purification system of nuclear reactor coolant
JPH0330763B2 (en)
JP2005091291A (en) Super-critical pressure water cooled nuclear power plant
JPS63273702A (en) Feedwater-heater drain system
JPS607161B2 (en) Nuclear plant water supply methods and equipment
JPS6010594B2 (en) nuclear power plant
JP2004020069A (en) Control method of deaerator water level control valve and power generation plant
JPS62245188A (en) Decay-heat removing operation method
JPS60175711A (en) Device for operatively limiting generator load