JPS607161B2 - Nuclear plant water supply methods and equipment - Google Patents
Nuclear plant water supply methods and equipmentInfo
- Publication number
- JPS607161B2 JPS607161B2 JP52133096A JP13309677A JPS607161B2 JP S607161 B2 JPS607161 B2 JP S607161B2 JP 52133096 A JP52133096 A JP 52133096A JP 13309677 A JP13309677 A JP 13309677A JP S607161 B2 JPS607161 B2 JP S607161B2
- Authority
- JP
- Japan
- Prior art keywords
- steam
- water supply
- superheater
- water
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Description
【発明の詳細な説明】
本発明は貫流型蒸気発生器システムを有する原子力プラ
ントの給水供給方法と装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for supplying feed water to a nuclear power plant having a once-through steam generator system.
説明の便のためY型結合分離貫流型蒸気発生器システム
を有する高速増殖発電プラントを例にとって従来技術と
その問題点を説明する。このような高速増殖炉発電プラ
ントにおいては、原子炉で発生した熱は1次ナトリウム
ポンプによって原子炉炉心を冷却する1次冷却系を循環
せしめられる1次ナトリウム(以下1次Naとよぶ)に
伝達され、次に原子炉外に設けられた中間熱交換器を介
してこれもまた1次冷却系と同様な方法で2次冷却系を
循環させられる2次ナトリウム(2次Naとよぶ)に伝
達される。For convenience of explanation, the prior art and its problems will be explained using a fast breeding power plant having a Y-coupled separated once-through steam generator system as an example. In such a fast breeder reactor power plant, the heat generated in the reactor is transferred to primary sodium (hereinafter referred to as primary Na) which is circulated through the primary cooling system that cools the reactor core by a primary sodium pump. This is then transferred to the secondary sodium (called secondary Na) which is also circulated through the secondary cooling system in the same manner as the primary cooling system via an intermediate heat exchanger installed outside the reactor. be done.
前記中間熱交換器で熱交換を終えた2次Naは過熱器お
よび再熱器へ分流され、それらにおける蒸気との熱交換
に供された後、再び合流せしめられその後蒸発器へ導か
れて水蒸気との熱交換を終って2次Naポンプにより中
間熱交換器に戻り、この作動をくり返すのである。前述
した蒸発器、過熱器および再熱器からなるシステムをY
型結合分離貫流型蒸気発生器システムとよぶが、このシ
ステムへの給水の供給は、一般に発電機を駆動する主タ
ービンから柚気分流された蒸気によって駆動されるター
ビン駆動の給水ポンプシステム(以下BFP−Tシステ
ムと略する)と電動機駆動の起動用給水ポンプシステム
(以下起動用BFP−Mシステムと略する)の並列運転
によって供給される。The secondary Na that has completed heat exchange in the intermediate heat exchanger is divided into a superheater and a reheater, where it is subjected to heat exchange with steam, and then combined again, and then led to an evaporator where it is converted into steam. After completing the heat exchange, the secondary Na pump returns to the intermediate heat exchanger, and this operation is repeated. The system consisting of the evaporator, superheater and reheater described above is
Although it is called a coupled-separated once-through steam generator system, the feed water supply to this system is generally carried out by a turbine-driven water pump system (hereinafter referred to as BFP), which is driven by steam diverted from the main turbine that drives the generator. -T system) and an electric motor-driven starting water supply pump system (hereinafter referred to as starting BFP-M system).
蒸発器と過熱器によって発生過熱された蒸気および再熱
器によって再熱された蒸気はそれぞれ主タービンに導か
れて仕事をし発電に供される。The superheated steam generated by the evaporator and superheater and the steam reheated by the reheater are each guided to the main turbine to perform work and generate electricity.
主タービンおよびBFP−Tにおいて仕事を終えた蒸気
は復水器に導かれて冷却し復水した後、再度蒸気発生器
システムの給水として使用される。原子力発電プラント
においては一般に原子炉がスクラムした後の原子炉崩壊
熱を除去する運転を確実に行なうために、原子炉のスク
ラムと同時にプラントの出力を急速に絞り、一時的に所
内負荷で単独運転を行なういわゆるファストカットバッ
ク(FastCut母ck)運転方式は採用されない。
この場合、タービン発電機をトリップさせ、冷却系用所
内動力機器の駆動電力の供給を外部電線からの受電し「
または非常用電源(一般にディーゼル発電機が使用され
る)に切換えて崩壊熱除去運転を行なうのが一般的であ
る。一方、送電方式は通常2系統送電方式が使用される
が、この2系統方式において同時に系統負荷遮断事故が
発生した場合には、原子力発電プラントにとっては外部
電源喪失事故となり、事故発生時には冷却用所内動力機
器は非常用電源を立ち上げる間はすべてトリップし、そ
の機能は全く失なわれる。高速増殖炉発電プラントにお
いても前記と同機に外部電力喪失事故発生時には、プラ
ントの全系はトリップするので1次Naポンプと2次N
aポンプもトリップし、流量はコーストダウンする。The steam that has completed its work in the main turbine and BFP-T is led to a condenser, cooled and condensed, and then used again as feed water for the steam generator system. In general, in nuclear power plants, in order to ensure that the reactor decay heat is removed after the reactor has scrammed, the plant's output is rapidly reduced at the same time as the reactor is scrammed, and the plant is temporarily operated independently at the plant's internal load. The so-called fast cut back (Fast Cut mother ck) operation method is not adopted.
In this case, the turbine generator is tripped and the supply of driving power for the cooling system power equipment is switched from receiving power from the external power line.
Alternatively, it is common to switch to an emergency power source (generally a diesel generator is used) and perform decay heat removal operation. On the other hand, a two-system power transmission system is normally used, but if a system load shedding accident occurs simultaneously in this two-system system, it will be an external power loss accident for the nuclear power plant. All power equipment trips and loses all functionality while the emergency power source is turned on. In a fast breeder reactor power plant, when an external power loss accident occurs in the same machine as mentioned above, the entire system of the plant trips, so the primary Na pump and secondary N
The a pump also trips and the flow rate coasts down.
しかしNaポンプに関してはトリップ後直ちに駆動を無
停電電源(蓄電池等)による小型電動機駆動に切換えて
、崩壊熱を除去するに十分なNa流量を確保する。また
これと同時に非常用電源を立ち上げ補助炉心冷却系(以
下ACCSとよぶ)を起動し、除熱待機状態にするが、
ACCSによる崩壊熱除去運転が可能になるまでは数分
という比較的長い時間を要するので、この間は蒸発器と
過熱器によって崩壊熱除去運転を行なう。However, as for the Na pump, the drive is immediately switched to a small electric motor driven by an uninterruptible power source (storage battery, etc.) after tripping to ensure a sufficient Na flow rate to remove decay heat. At the same time, the emergency power supply is turned on and the auxiliary core cooling system (hereinafter referred to as ACCS) is activated, putting it into a standby state for heat removal.
Since it takes a relatively long time of several minutes until the ACCS can perform the decay heat removal operation, the evaporator and superheater perform the decay heat removal operation during this time.
なお再熱器は主タービンのトリップと共にNa流量調節
弁を急速に閉鎖して2次冷却系から隔離されるので崩壊
熱除去運転には寄与しない。一方外部電源喪失事故時に
はBFP−Tも復水器が冷却能力を失うためトリップす
る。このため蒸発器、過熱器への給水は事故発生後数秒
で断水する。これに対し事故発生と同時に給水能力を速
やかに回復するため起動用BFP−Mの電源を非常用電
源に切換えるが、BFP−Mによる給水供給を可能にす
るまでには数十秒を要する。すなわち外部電源喪失事故
が発生すると、‘1}事故発生後の数十秒間は、蒸発器
、過熱器への給水が全くなるなる事態となる。Note that the reheater does not contribute to the decay heat removal operation because it is isolated from the secondary cooling system by rapidly closing the Na flow control valve when the main turbine trips. On the other hand, in the event of an external power loss accident, the BFP-T also trips because the condenser loses its cooling capacity. As a result, the water supply to the evaporator and superheater is cut off within a few seconds after the accident occurs. On the other hand, as soon as an accident occurs, the power supply of the startup BFP-M is switched to an emergency power supply in order to quickly restore the water supply capacity, but it takes several tens of seconds before the BFP-M can supply water. That is, when an external power loss accident occurs, there is no water supply to the evaporator or superheater for several tens of seconds after the accident occurs.
この結果蒸発器および過熱器は貫流型であり内部保有水
量が少ないため急激にから炊き(ドライアウトと称する
)状態になり、蒸気圧力が急上昇すると共に、伝熱管の
温度もNa温度程度まで上昇する。しかし数十秒後には
起動用BFP一Mによって崩壊熱を除去するに十分な給
水が供給されるため伝熱管はドライアウトの状態から一
転して急激に冷却される。このため伝熱管とその支持構
造物は熱的、機械的に苛酷な状況下に曝され、蒸発器、
過熱器はその耐用年数が著しく低下する恐れがある。‘
2ー主タービンがトリップする結果、再熱器における熱
交換がほとんど瞬時に行なわれなくなるので、再熱器の
Na流量調節弁が全閉になるまでの間は、再熱器から高
温度のNaが流出する。また蒸気発生器への給水がとだ
える結果この間は過熱器における熱交換が行なえないの
で、再熱器の場合と同様過熱器からもほぼ同程度の高温
のNaが流出する。さらにこれらの現象がほぼ同時に起
るため、蒸発器入口のNa温度が蒸発器の設計温度を超
えて上昇し、蒸発器の耐用年数に著しい悪影響を与える
恐れがある。【3’蒸発器や過熱器がドライアウト状態
になり蒸気圧力が上昇しているところに、BFP−Mに
よって給水を供給する場合、蒸気圧力は主蒸気逃し弁や
安全弁によってある程度制御できるものの、変動が大き
いため給水の供給が安定しない恐れがある。(4}さら
にドライアウト状態の蒸発器に急激に給水を供給する結
果、熱水力学的流動不安定現象が生じ、蒸気発生器によ
る崩壊熱除去運転が不安定になる恐れがある。以上Y型
結合蒸気発生器システムを有する高速増殖炉プラントを
例にとり、問題の所在を詳述したが、これらの問題はい
ずれも貫流型蒸気発生器システムを有する原子力プラン
トに共通するものであり、かつ蒸気発生器システムの構
成たとえば蒸発器・過熱器一体型、または分離型、もし
くは再熱型や非再熱型などには影響されない。As a result, since the evaporator and superheater are once-through type and have a small amount of internal water, they suddenly become dry-out (referred to as dry-out), and the steam pressure rises rapidly, and the temperature of the heat transfer tubes also rises to about the Na temperature. . However, after several tens of seconds, sufficient water is supplied by the starting BFP 1M to remove the decay heat, so the heat exchanger tube is completely turned from the dry-out state and is rapidly cooled down. For this reason, the heat exchanger tubes and their supporting structures are exposed to severe thermal and mechanical conditions, and the evaporators,
The service life of the superheater may be significantly reduced. '
2 - As a result of the main turbine tripping, heat exchange in the reheater is almost instantaneous, so until the Na flow control valve of the reheater is fully closed, high-temperature Na is removed from the reheater. flows out. Furthermore, as a result of the water supply to the steam generator being interrupted, heat exchange cannot be performed in the superheater during this time, so Na at approximately the same high temperature flows out from the superheater as in the case of the reheater. Furthermore, since these phenomena occur almost simultaneously, the Na temperature at the evaporator inlet may rise beyond the design temperature of the evaporator, which may have a significant adverse effect on the service life of the evaporator. [3' When supplying water by BFP-M to a place where the evaporator or superheater is in a dry-out state and the steam pressure is rising, the steam pressure may fluctuate, although it can be controlled to some extent by the main steam relief valve or safety valve. Because of the large amount of water, there is a risk that the water supply will not be stable. (4) Furthermore, as a result of rapidly supplying water to the evaporator in a dry-out state, a thermal-hydraulic flow instability phenomenon may occur, and the decay heat removal operation by the steam generator may become unstable. We have explained the problems in detail using a fast breeder reactor plant with a combined steam generator system as an example, but these problems are common to nuclear power plants with once-through steam generator systems, and It is not affected by the configuration of the evaporator system, such as integrated evaporator/superheater type, separated type, reheat type, or non-reheat type.
また本発明は発電を主目的としない原子力プラントであ
つても、そのプラントが貫流型蒸気発生器システムおよ
びタービン発電機を有するのであれば適用できるもので
ある。本発明の目的は貫流型蒸気発生器システムおよび
タービン発電機を有する原子力プラントにおいて、外部
電源喪失事故が発生した場合、蒸発器や過熱器がドライ
アウトすることないこ、原子炉の崩壊熱除去運転を安定
に行なうと共に、蒸発器や過熱器の伝熱管と構造物に加
わる熱衝撃を抑制する方法と装置を提供するにある。Further, the present invention can be applied to a nuclear power plant whose main purpose is not to generate electricity, as long as the plant has a once-through steam generator system and a turbine generator. The purpose of the present invention is to prevent the evaporator and superheater from drying out in the event of an external power loss accident in a nuclear power plant having a once-through steam generator system and a turbine generator, and to operate the decay heat removal operation of the reactor. It is an object of the present invention to provide a method and a device for stably performing the heat exchanger and suppressing the thermal shock applied to the heat exchanger tubes and structures of the evaporator and superheater.
以下本発明の実施例について図面を参照して詳細に説明
する。Embodiments of the present invention will be described in detail below with reference to the drawings.
第1図はY型結合貫流蒸気発生器を有する本発明装置を
組込んだ高速増殖炉発電プラントの流路線図である。FIG. 1 is a flow diagram of a fast breeder reactor power plant incorporating a device of the present invention having a Y-coupled once-through steam generator.
図において1は原子炉、2は1次Naポンプ、3は中間
熱交換器、4は2次Naポンプ、5は過熱器、6は再熱
器、7は蒸発器、8は主タービン「9は発電機、1川ま
復水器「 11は脱気器、12はBFP−T、13はB
FP−Mである。これらの機器については前に説明した
のでここでは説明を省略する。本発明では給水システム
には従来のBFP−T12と起動用BFP−M13のほ
かに主タービン8の回転子主軸に継手14を介して駆動
される給水ポンプ15を連結する。In the figure, 1 is a nuclear reactor, 2 is a primary Na pump, 3 is an intermediate heat exchanger, 4 is a secondary Na pump, 5 is a superheater, 6 is a reheater, 7 is an evaporator, 8 is a main turbine 9 1 is a generator, 1 is a condenser, 11 is a deaerator, 12 is a BFP-T, 13 is a B
It is FP-M. Since these devices have been explained previously, their explanation will be omitted here. In the present invention, in addition to the conventional BFP-T 12 and starting BFP-M 13, the water supply system is connected to a water supply pump 15 that is driven to the rotor main shaft of the main turbine 8 via a joint 14.
継手14の型式は直結、歯車駆動または流体継手等の可
変遠駆動のいずれでもさし支えない。給水ポンプ15は
通常運転時には主タービンの回転動力によって駆動され
蒸発器7への給水供給の全部または一部を負担する。そ
の容量は最小限、外部電源喪失事故が生じた後の原子炉
崩壊熱を除去するにたる給水流量を確保できるものとす
る。外部電源喪失事故が発生すると、タービン発電機回
転子軸に連結された給水ポンプ15以外の給水ポンプは
駆動源を喪失するのでただちにトリップして給水供給能
力が失なわれる。The type of coupling 14 may be a direct coupling, a gear drive, or a variable distance drive such as a fluid coupling. The water supply pump 15 is driven by the rotational power of the main turbine during normal operation, and supplies all or part of the water supply to the evaporator 7 . Its capacity shall be at a minimum sufficient to ensure a flow rate of water supply sufficient to remove reactor decay heat after an external power loss accident occurs. When an external power loss accident occurs, the water supply pumps other than the water supply pump 15 connected to the turbine generator rotor shaft lose their driving source, so they immediately trip and lose their water supply capacity.
しかし給水ポンプ15はタービン発電機回転子の大きな
回転慣性力によって駆動されるので瞬時に回転を停止す
ることなく、非常用ディーゼル発電機を起動するまでの
数十秒間、崩壊熱除去運動を行なうに足る給水を蒸気発
生器へ供給できる。その結果給水の断水によって蒸発器
や過熱器がドライアウトする恐れはなくまた蒸発器、過
熱器において熱交換が継続して行なわれるので、蒸発器
入口のNa温度が蒸発器の設計温度を超えることはない
。本発明では蒸気発生器が一体貫流型もしくは分離貫流
型であり、かつ過熱器5へ通気が行なわれている場合は
、主蒸気圧力を一定に保つため、タービン発電機に至る
主蒸気管16に主蒸気の圧力を測定する圧力計17、そ
の圧力信号をうけ制御する圧力制御器18および圧力制
御用逃し弁19からなる主蒸気圧力制御装置を主蒸気逃
し弁20の手前に設ける。However, since the water supply pump 15 is driven by the large rotational inertia of the turbine generator rotor, it does not stop rotating instantly, but performs decay heat removal movement for several tens of seconds until the emergency diesel generator is started. Sufficient feed water can be supplied to the steam generator. As a result, there is no risk of the evaporator or superheater drying out due to water supply cutoff, and heat exchange continues in the evaporator and superheater, so the Na temperature at the evaporator inlet will never exceed the design temperature of the evaporator. There isn't. In the present invention, if the steam generator is an integrated once-through type or a separated once-through type and ventilation is provided to the superheater 5, in order to keep the main steam pressure constant, the main steam pipe 16 leading to the turbine generator is A main steam pressure control device consisting of a pressure gauge 17 that measures the pressure of the main steam, a pressure controller 18 that receives and controls the pressure signal, and a pressure control relief valve 19 is provided in front of the main steam relief valve 20.
また〜蒸気発生器が分離貫流型であって過熱器5への通
気条件を満さない蒸気が蒸発器7より流出するようにな
り、過熱器5が隔離された場合においては、気水分離器
21内の圧力を測定する圧力計22と、その信号を受け
、圧力を制御する圧力制御器23および蒸気ダンプ弁2
4、ドレン弁26から成る気水分離器圧力制御装置を設
ける。In addition, if the steam generator is a separate once-through type and steam that does not meet the ventilation conditions for the superheater 5 flows out from the evaporator 7, and the superheater 5 is isolated, the steam separator A pressure gauge 22 that measures the pressure inside 21, a pressure controller 23 that receives the signal and controls the pressure, and a steam dump valve 2.
4. Provide a steam separator pressure control device consisting of a drain valve 26.
上記の圧力制御方法と制御装置によって主蒸気圧力およ
び気水分離器圧力を一定に制御する場合、外部電源喪失
事故後の蒸気発生器への給水は0時間の経過と共にほぼ
直線的に降下せしめることができる。その理由を以下に
数式を用いて説明する。なお以下においては、説明の簡
略化のために蒸気発生器を分離貫流型として説明する。
外部電源喪失事故発生後のタービン発電機回転夕子轍連
結給水ポンプ15の保有する運動ェネルギと給水流量の
関係は機械的損失を無視すると次式で表わせる。When controlling the main steam pressure and the steam-water separator pressure at a constant level using the above pressure control method and control device, the water supply to the steam generator after an external power loss accident will drop almost linearly as time 0 elapses. I can do it. The reason for this will be explained below using a mathematical formula. Note that in the following description, the steam generator will be described as a separate once-through type for the sake of simplicity.
After an external power loss accident occurs, the relationship between the kinetic energy possessed by the turbine-generator rotary rut-connected water supply pump 15 and the water supply flow rate can be expressed by the following equation, ignoring mechanical loss.
−ZWdW=日。-ZWdW=day.
W。dt(1’g
0ここに
J:慣性モーメント kg力
g:重力加速度 肌/sec2
w:給水ポンプ回転角速度 rad/secH:給水ポ
ンプ吐出水頭 仇タ W:給水流量 kg/
sect:時 間 Sec
また、給水ポンプ吐出水頭と回転角速度、給水流量の関
係は次式で表わせる。W. dt (1'g 0 here J: moment of inertia kg force g: gravitational acceleration skin/sec2 w: water supply pump rotational angular velocity rad/secH: water supply pump discharge water head W: water supply flow rate kg/
sect: Time Sec Also, the relationship between the water supply pump discharge head, rotational angular velocity, and water supply flow rate can be expressed by the following equation.
H=A・V2−B・W2 ■0こ
こにA,B;正の定数
一方、主蒸気圧力または気水分雛器出口の水蒸気圧力と
、給水ポンプ吐出水頭、圧力損失の関係はほぼ次式で表
わせる。H=A・V2−B・W2 ■0 where A, B; positive constant On the other hand, the relationship between the main steam pressure or the steam pressure at the steam/moisture broiler outlet, the water pump discharge head, and the pressure loss is approximately expressed by the following equation. Express.
H=上(p+△P)‘3’
y
△P=C・W2 ‘4)ここ
にP:主蒸気圧力または気水 と9/〆
分離器出口の水蒸気圧力
△P:圧力損失 k9/めy:給水の比
重量 k9/肘
C:正の定数
式(3’および{4}を式【2に代入して整理すると、
次式を得る。H=Top (p+△P)'3' y △P=C・W2 '4) Here P: Main steam pressure or steam water and 9/〆Steam pressure at separator outlet △P: Pressure loss k9/mey : Specific weight of water supply k9/elbow C: Positive constant expression (Substituting 3' and {4} into the expression [2 and rearranging it,
We get the following equation.
P=H′:Aw2一BW2 ‘2}′
y
ここに
H:圧力Pに対応する水頭 仇
B:正の定数
一方、式{3)を式{1)の右辺に代入して式t2)′
を用いて整理すると−萱WdW=(H+全P)●W‐d
t。P=H': Aw2-BW2 '2}' y where H: Water head corresponding to pressure P B: Positive constant On the other hand, by substituting formula {3) into the right side of formula {1), formula t2)'
When rearranged using -萱WdW=(H+Total P)●W-d
t.
rとなるが通常運転時‘こおし、てさえもH′》竿であ
るためm′は次式で近似できる。However, during normal operation, m' can be approximated by the following equation, since the rod is H'.
−ZWdW=日・.W.dt or
g
ここでH′は定値圧力制御が行なわれているので、ほぼ
一定値であるから、式{2}′の両辺を時間で微分する
と次式を得る。−ZWdW=日・. W. dt or g Here, since H' is a substantially constant value because constant pressure control is performed, the following equation is obtained by differentiating both sides of equation {2}' with respect to time.
AW・群−B′w群=o‘2)〃
従って、式m″と‘2}″よりwを消去すると次式を得
る。AW・group−B′w group=o′2) Therefore, by eliminating w from equations m'' and '2}'', the following equation is obtained.
dW dt=−D・H′ (5} ただし、Dは正の定数であり次式で表わせる。dW dt=-D・H' (5} However, D is a positive constant and can be expressed by the following equation.
D〒帯‘6’式{51を時間に関して積分すれば最終的
に次式を得る。By integrating the D〒band '6' equation {51 with respect to time, the following equation is finally obtained.
W=−D・H′・t+W。W=-D・H′・t+W.
‘7)ここでWoは積分定数であり、外
部電源喪失事故が発生した瞬間のタービン発電機回転子
軸連結給水ポンプにより供給される給水流量である。す
なわち、外部電源喪失事故発生後の給水流量(式‘7}
)は第2図に示すように時間の経過と共にほぼ直線的に
降下することになり、従って給水を安定に供給でき、蒸
発器「過熱器による崩壊熱除去運転を円滑に行なうこと
ができる。以上、外部電源喪失事故が発生しても第2図
に示したように、安定して給水流量を確保できることを
説明したが、一方2次Na流量は速やかにコーストダウ
ンするにもかかわらず一時的に給水流量が2次Na流量
に比較して多量に流れる結果、蒸発器において過冷却を
生ずる恐れがある。'7) Here, Wo is an integral constant, and is the water supply flow rate supplied by the turbine generator rotor shaft connected water supply pump at the moment when the external power loss accident occurs. In other words, the water supply flow rate after the external power loss accident (Formula '7)
) will fall almost linearly over time as shown in Figure 2, so water can be stably supplied and the decay heat removal operation by the evaporator and superheater can be performed smoothly. As shown in Figure 2, even if an external power loss accident occurs, we explained that a stable water supply flow rate can be ensured. As a result of the feed water flow being large compared to the secondary Na flow rate, there is a possibility that supercooling may occur in the evaporator.
本発明ではさらにこれを防止するため、蒸発器7の蒸気
出口に温度計28とその信号を受信する温度制御器29
とからなる温度制御装置を設けて、制御器29の出力に
より給水調節弁30を開閉して給水流量を調節する。前
記説明では蒸発器出口蒸気温度を例にとったがこのほか
蒸発器出口蒸発管板部温度、蒸発器入口Na温度のいず
れか一つまたは3者を適当に組合わせた温度信号を温度
制御器29により給水調節弁30または可変継手14に
フィードバックして給水流量を制御してもよい。第3図
はかくして得られた給水流量の時間的変化を示し、給水
流量は2次Na流量と近接しており蒸発器出口蒸発温度
がほぼ一定に制御できるこ夕とがわかる。In order to further prevent this, the present invention includes a thermometer 28 at the steam outlet of the evaporator 7 and a temperature controller 29 that receives the signal.
A temperature control device consisting of the following is provided, and the water supply control valve 30 is opened and closed according to the output of the controller 29 to adjust the flow rate of the water supply. In the above explanation, the steam temperature at the evaporator outlet was taken as an example, but in addition, a temperature signal obtained by any one of the evaporator outlet evaporator tube plate temperature, the evaporator inlet Na temperature, or an appropriate combination of the three can be used in the temperature controller. 29 may feed back to the water supply control valve 30 or the variable joint 14 to control the water supply flow rate. FIG. 3 shows the temporal change in the thus obtained feed water flow rate, and it can be seen that the feed water flow rate is close to the secondary Na flow rate, and that the evaporation temperature at the evaporator outlet can be controlled to be almost constant.
これによって蒸発器7の過冷却が防止されることはもち
ろん、蒸発器や過熱器の伝熱管および構造物に加わる熱
衝撃を抑制することができる。以上の説明では高速増殖
炉発電プラントのターoビン発電機の型式をタンヂムコ
ンパゥンドとして示したが、クロスコンパウンドでもよ
くそのときは本発明の給水システムを2系統設ければよ
い。This not only prevents overcooling of the evaporator 7 but also suppresses thermal shock applied to the heat exchanger tubes and structures of the evaporator and superheater. In the above description, the type of turbine generator in a fast breeder reactor power plant is shown as a tandem compound, but a cross compound may also be used, in which case two systems of the water supply system of the present invention may be provided.
第1図は従来の高速増殖炉発電プラントシステタムに本
発明装置の配置を組込んだ流線図、第2図および第3図
は本発明装置において蒸発器出口蒸気温度を制御しない
場合と制御した場合の給水流量とNa流量の時間的変化
を示すグラフである。
14・…・・継手、15…・・・給水ポンプ、16・・
・・・・0主蒸気管、17・・・・・・圧力計、18・
・・・・・圧力制御器、19・・・・・・圧力制御用逃
し弁、20・・・・・・主蒸気逃し弁、21・・・・・
・気水分離器、22・・・・・・圧力計、23・…・・
圧力制御器、24・・・・・・気水分雛器蒸気ダンプ弁
、25……フラッシュタンク、26……気水分離器蒸気
ドレーン弁、27・・・・・・バイパス逃し弁、28・
・・・・・温度計、29・・・・・・温度制御器、30
・・・・・・給水調節弁。
矛2図
才3図
力1図Fig. 1 is a flow diagram of a conventional fast breeder reactor power plant system incorporating the arrangement of the device of the present invention, and Figs. 2 and 3 show a case where the evaporator outlet steam temperature is not controlled and a case where the steam temperature at the outlet of the evaporator is controlled in the device of the present invention. It is a graph which shows the temporal change of the water supply flow rate and Na flow rate in the case. 14...Fitting, 15...Water pump, 16...
...0 Main steam pipe, 17 ... Pressure gauge, 18.
...Pressure controller, 19...Pressure control relief valve, 20...Main steam relief valve, 21...
・Steam water separator, 22... Pressure gauge, 23...
Pressure controller, 24... Steam/moisture broiler steam dump valve, 25... Flash tank, 26... Steam/water separator steam drain valve, 27... Bypass relief valve, 28.
...Thermometer, 29 ...Temperature controller, 30
...Water supply control valve. 2 figures of spear, 3 figures of power, 1 figure
Claims (1)
において、タービン発電機の回転子軸に連結かつ駆動さ
れ大きな回転慣性力を持つ給水ポンプに給水水量の全部
または一部を負担させ、外部電源喪失事故発生時過熱器
に通気が行なわれている間、主蒸気圧力を一定に制御し
、過熱器が隔離された後は気水分離器内の水・蒸気圧力
を引続き一定に制御し、さらに蒸発器出口蒸気温度を制
御して給水流量を安定させ蒸気発生器の過冷却を防止す
ることを特徴とする原子力プラントの給水供給方法。 2 貫流型蒸気発生器システムを有する原子力プラント
において、タービン発電機の回転子軸に連結かつ駆動さ
れ給水流量の全部または一部を負担する給水ポンプ装置
と、外部電源喪失事故発生時過熱器に通気が行なわれて
いる間は主蒸気圧力を一定に制御する主蒸気圧力制御装
置と、過熱器が隔離された後の気水分離器内の水蒸気圧
力を制御する気水分離器圧力制御装置と、蒸発器出口に
蒸気温度制御装置を設けたことを特徴とする原子力プラ
ントの給水供給装置。[Claims] 1. In a nuclear power plant having a once-through steam generator system, all or part of the amount of water to be supplied is borne by a water supply pump that is connected to and driven by the rotor shaft of a turbine generator and has a large rotational inertia. , When an external power loss accident occurs, the main steam pressure is controlled at a constant level while the superheater is vented, and after the superheater is isolated, the water and steam pressure in the steam separator continues to be controlled at a constant level. A method for supplying water to a nuclear power plant, further comprising controlling the steam temperature at the outlet of the evaporator to stabilize the flow rate of the water and prevent overcooling of the steam generator. 2. In a nuclear power plant with a once-through steam generator system, the water supply pump device is connected to and driven by the rotor shaft of the turbine generator and bears all or part of the water supply flow rate, and the superheater is vented in the event of an external power loss accident. a main steam pressure control device that controls the main steam pressure to a constant level while the superheater is being isolated; a steam separator pressure control device that controls the steam pressure in the steam separator after the superheater is isolated; A water supply system for a nuclear power plant, characterized in that a steam temperature control device is provided at the evaporator outlet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52133096A JPS607161B2 (en) | 1977-11-08 | 1977-11-08 | Nuclear plant water supply methods and equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52133096A JPS607161B2 (en) | 1977-11-08 | 1977-11-08 | Nuclear plant water supply methods and equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5467101A JPS5467101A (en) | 1979-05-30 |
JPS607161B2 true JPS607161B2 (en) | 1985-02-22 |
Family
ID=15096733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52133096A Expired JPS607161B2 (en) | 1977-11-08 | 1977-11-08 | Nuclear plant water supply methods and equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS607161B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2995628A1 (en) * | 2012-09-19 | 2014-03-21 | Alstom Technology Ltd | STEAM ENERGY CONVERSION CYCLE PRODUCED BY A SODIUM-COOLED QUICK-SOURCE REACTOR |
-
1977
- 1977-11-08 JP JP52133096A patent/JPS607161B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5467101A (en) | 1979-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01267495A (en) | Emergency coolant injector for nuclear reactor | |
WO1992001297A1 (en) | Reactor-core isolation cooling system with dedicated generator | |
KR101897985B1 (en) | Emergency power production system and nuclear power plant having the same | |
JPS607161B2 (en) | Nuclear plant water supply methods and equipment | |
US4080790A (en) | Safety system for a steam turbine installation | |
JPS5913719B2 (en) | Residual heat removal system for fast breeder reactor | |
JPS6156402B2 (en) | ||
JPH0358480B2 (en) | ||
JPS5819240B2 (en) | Fast breeder reactor inlet sodium temperature control method and device | |
JPS63192905A (en) | Main steam pressure control method for power generating plant | |
KR102173808B1 (en) | Method for preventing reactor trip during vacuum loss of condenser | |
JPH09210301A (en) | Emergency protective apparatus for fluidized bed boiler | |
JPH0135244B2 (en) | ||
JPS6394194A (en) | Power plant controller | |
JPH0695152B2 (en) | Reactor decay heat removal device | |
JPS63192903A (en) | Main steam pressure control method for power generating plant | |
JPS5965506A (en) | Operation of geothermal power generating plant | |
JPS6010594B2 (en) | nuclear power plant | |
JP2002156492A (en) | Nuclear power generation system | |
JPS63192906A (en) | Main steam pressure control method for power generating plant | |
JPH01240707A (en) | Combined cycle generating plant | |
JPH0499995A (en) | Recirculation pump driving device for fast reactor coolant | |
JPS6217121B2 (en) | ||
JPS6120684B2 (en) | ||
JP2024067252A (en) | Control method and control unit |