JPS63221293A - Decay-heat removal device - Google Patents

Decay-heat removal device

Info

Publication number
JPS63221293A
JPS63221293A JP62053942A JP5394287A JPS63221293A JP S63221293 A JPS63221293 A JP S63221293A JP 62053942 A JP62053942 A JP 62053942A JP 5394287 A JP5394287 A JP 5394287A JP S63221293 A JPS63221293 A JP S63221293A
Authority
JP
Japan
Prior art keywords
steam
separator
water
steam generator
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62053942A
Other languages
Japanese (ja)
Inventor
和気 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62053942A priority Critical patent/JPS63221293A/en
Publication of JPS63221293A publication Critical patent/JPS63221293A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は高速増殖炉発電プラントにおけるナトリウム加
熱蒸気発生器を利用した原子炉崩壊熱除去装置に係る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a reactor decay heat removal device using a sodium-heated steam generator in a fast breeder reactor power plant.

(従来の技術) 原子力発電プラントにおいては、原子炉停止後の炉心崩
壊熱を除去するための崩壊熱除去装置が設けられている
。崩壊熱除去装置の方式、システム構成には種々のもの
があるが、その−型式に蒸気発生器を利用したものがあ
る。
(Prior Art) A nuclear power plant is provided with a decay heat removal device for removing core decay heat after the nuclear reactor is shut down. There are various types and system configurations of decay heat removal equipment, and one type uses a steam generator.

蒸気発生器を利用した崩壊熱除去装置の代表的なものを
第2図、第3図につき説明する。
A typical decay heat removal device using a steam generator will be explained with reference to FIGS. 2 and 3.

第2図は再循環型蒸気発生器を具えた原子力発電プラン
トの系統図である。この図において、原子炉1で発生し
た熱エネルギにより昇温した冷却材は、中間熱交換器2
に移送されここでで中間熱媒体と熱交換し、昇温した中
間熱媒体は蒸発器3、過熱器4に伝達される。一方、水
・蒸気系の水は蒸発器3において前記中間熱媒体と熱交
換し気水2相流となって、蒸気ドラム5に流入する。こ
の2相流はここで飽和蒸気、飽和水に分離される。
FIG. 2 is a system diagram of a nuclear power plant equipped with a recirculating steam generator. In this figure, the coolant whose temperature has been raised by the thermal energy generated in the reactor 1 is transferred to the intermediate heat exchanger 2.
There, the intermediate heat medium exchanges heat with the intermediate heat medium, and the heated intermediate heat medium is transferred to the evaporator 3 and superheater 4. On the other hand, water in the water/steam system exchanges heat with the intermediate heat medium in the evaporator 3 to become a two-phase stream of steam and water, and flows into the steam drum 5. This two-phase flow is separated here into saturated steam and saturated water.

而して、飽和水は高圧給水加熱器6からの給水と混合し
て蒸発器3に戻され、飽和蒸気は過熱器4に送られて過
熱蒸気となり蒸気タービン7に送られる。蒸気タービン
7で仕事をした蒸気は復水器8において復水され、この
復水は低圧給水加熱器9で過熱され、脱気器1oで脱気
されて低圧給水加熱器6を経由して蒸気ドラム5に注入
される。
The saturated water is mixed with the feed water from the high-pressure feed water heater 6 and returned to the evaporator 3, and the saturated steam is sent to the superheater 4 to become superheated steam and sent to the steam turbine 7. The steam that has done work in the steam turbine 7 is condensed in a condenser 8, and this condensate is superheated in a low-pressure feedwater heater 9, degassed in a deaerator 1o, and passed through the low-pressure feedwater heater 6 to steam. It is injected into drum 5.

なお、図中11は一次冷却系主循環ポンプ、12は復水
ポンプ、13は給水ポンプ、14は水蒸気再循環ポンプ
、15は二次冷却系主循環ポンプ。
In the figure, 11 is a primary cooling system main circulation pump, 12 is a condensate pump, 13 is a water supply pump, 14 is a steam recirculation pump, and 15 is a secondary cooling system main circulation pump.

16は発電機をそれぞれ示す。16 indicates a generator, respectively.

上記構成の従来の原子力発電プラントにおいては、原子
炉停止後再循環ポンプが停止した状態にあっても、蒸気
ドラム5→蒸気発生器3→蒸気ドラム5の自然循環があ
るため、安定した状態で除熱がなされる。しかも、この
場合において最終的な整定温度が蒸気ドラム5の圧力に
応じた飽和温度となるため、原子炉運転時の温度からの
温度低下中が小さく抑えられ、各機器への熱衝撃が緩和
されると共に構造健全性が確保される。
In the conventional nuclear power plant with the above configuration, even if the recirculation pump is stopped after the reactor is shut down, there is natural circulation from the steam drum 5 to the steam generator 3 to the steam drum 5, so a stable state is maintained. Heat is removed. Moreover, in this case, the final settling temperature becomes the saturation temperature according to the pressure of the steam drum 5, so the temperature drop from the reactor operating temperature is kept small, and the thermal shock to each equipment is alleviated. This will ensure structural integrity.

しかしながら、上記構成の原子力発電プラントは、蒸気
ドラム5、再循環ポンプを必要とし、さらに熱的なバラ
ンス条件から後出の貫流型蒸気発生器に比し大きな伝熱
面積を必要とする欠点がある。
However, the nuclear power plant with the above configuration requires a steam drum 5 and a recirculation pump, and also has the disadvantage that it requires a larger heat transfer area than the once-through steam generator described later due to thermal balance conditions. .

第2図と同一部分には同一符号を付した第3図は貫流型
蒸気発生器を具えた原子力発電プラントの系統図である
。この原子力発電プラントにおいては、前記の原子力発
電プラントの蒸気発生器3、過熱器4.蒸気ドラム5に
代え一体貫流型蒸気発生器17が設置されている。この
一体貫流型蒸気発生器17において、高圧給水加熱器6
から供給された水・蒸気系の水は、一体貫流型蒸気発生
器17を出るまでに過熱蒸気となって蒸気タービン16
に供給される。
FIG. 3, in which the same parts as in FIG. 2 are given the same reference numerals, is a system diagram of a nuclear power plant equipped with a once-through steam generator. In this nuclear power plant, the steam generator 3, superheater 4. In place of the steam drum 5, an integral once-through steam generator 17 is installed. In this integrated once-through steam generator 17, the high pressure feed water heater 6
The water supplied from the water/steam system becomes superheated steam by the time it exits the integrated once-through steam generator 17, and then flows into the steam turbine 16.
is supplied to

この構成の発電プラントは、再循環型蒸気発生器を具え
た第2図の発電プラントに比し、諸設備が簡略化され、
しかも必要伝熱面積が小さくて済むので、経済的には有
利である。
A power plant with this configuration has simplified equipment compared to the power plant shown in Figure 2, which is equipped with a recirculating steam generator.
Moreover, since the required heat transfer area is small, it is economically advantageous.

しかしながら、一体貫流型蒸気発生器の安定運転のため
には水・蒸気系の流量の下限に制限があり、この制限値
は一般に崩壊熱除去運転に必要とされる値よりもかなり
大きいため、再循環型蒸気発生器について前記した運転
上の利点を得ることはできない。
However, for stable operation of an integrated once-through steam generator, there is a limit to the lower limit of the flow rate of the water/steam system, and this limit value is generally much larger than the value required for decay heat removal operation. The operational advantages described above for circulating steam generators cannot be obtained.

(発明が解決しようとする問題点) 上記のように、再循環型、一体貫流型の各上記発生器は
それぞれ一長一短であり、設備的に簡素化して経済性を
維持しながら、崩壊熱除去運転時の安定運転を確保する
には不満足な点がある。
(Problems to be Solved by the Invention) As mentioned above, the recirculation type and integrated once-through type generators each have their own merits and demerits. However, there are some unsatisfactory points in ensuring stable operation.

本発明は上記の事状に基づきなされたもので、貫流型上
記発生器の利点である経済性を維持しながら、崩壊熱除
去運転時の安定運転を確保することができる崩壊熱除去
装置を得ることを目的としている。
The present invention has been made based on the above-mentioned circumstances, and provides a decay heat removal device that can ensure stable operation during decay heat removal operation while maintaining the economic efficiency that is an advantage of the once-through type generator. The purpose is to

[発明の構成] (問題点を解決するための手段) 本発明の崩壊熱除去装置は、貫流型蒸気発生器と、この
貫流型蒸気発生器出口から蒸気タービンに至る配管の蒸
気発生器量11止弁の上流に気水分離、器入口止弁を介
して気相を連通させ、気水分離器水位調節弁を介して脱
気器から蒸気発生器に至る配管の主給水調節弁の上流に
、また逆止弁を介して蒸気発生器の入口側にそれぞれ液
相を連通させた気水分離器と、前記気水分離器の気相と
脱気器の脱気器とを連通ずる配管に設けた脱気器加熱調
節弁と、この脱気器加熱調節弁の上流に設けた主蒸気大
気放出弁と、前記脱気器と気水分離器を連通させる配管
に設けた気水分離器待機時水位調節弁とを有し、通常運
転時には前記気水分離器入口止弁を閉としてこれを主蒸
気回路から遮断し、復水器が使用可能である時の原子炉
停止後においては前記気水分離器入口止弁を開、蒸気発
生器出口止弁を閉として気水分離器、蒸気発生器を通じ
る自然循環を生じさせて除熱し、復水器が使用不能であ
る時の原子炉停止後においては気水分離器圧力調節弁を
閉、気水分離器入口止弁を開、蒸気発生器出口止弁を閉
として気水分離器内の水を蒸気発生器により蒸気に変換
しながら除熱するようにしたことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The decay heat removal device of the present invention includes a once-through steam generator and a steam generator capacity of 11 in the piping leading from the outlet of the once-through steam generator to the steam turbine. A steam-water separator is installed upstream of the valve, and the gas phase is communicated through the vessel inlet stop valve, and upstream of the main water supply control valve of the piping from the deaerator to the steam generator via the steam-water separator water level control valve. In addition, a steam separator having a liquid phase communicated with the inlet side of the steam generator via a check valve, and a pipe connecting the gas phase of the steam separator and the deaerator of the deaerator are installed. a deaerator heating control valve, a main steam atmosphere release valve provided upstream of the deaerator heating control valve, and a steam/water separator provided in a pipe communicating the deaerator and the steam/water separator during standby. During normal operation, the steam separator inlet stop valve is closed to isolate it from the main steam circuit, and after the reactor is shut down when the condenser can be used, the steam After reactor shutdown when the condenser is unusable, the separator inlet stop valve is opened and the steam generator outlet stop valve is closed to generate natural circulation through the steam separator and steam generator to remove heat. In this case, the steam separator pressure control valve is closed, the steam separator inlet stop valve is opened, and the steam generator outlet stop valve is closed, and the water in the steam separator is converted into steam by the steam generator while heat is removed. It is characterized by being made to do.

(作用) 上記構成の本発明崩壊熱除去装置においては、前記各種
弁の操作により、気水分離器を主蒸気回路から遮断した
り、気水分離器と蒸気発生器を通じる水の自然循環を生
じさせてこれにより崩壊熱の除去を行ったり、気水分離
器内の保有水を蒸気発生器に送り込んでその蒸発により
短時間の除熱を行ったりすることができる。而して、原
子炉の通常運転時は蒸気発生器は一体貫流型として作動
しているから、必要伝熱面積は少なくて済む。
(Function) In the decay heat removal apparatus of the present invention having the above configuration, by operating the various valves described above, the steam separator can be cut off from the main steam circuit, and the natural circulation of water through the steam water separator and the steam generator can be stopped. The decay heat can be removed by generating heat, or the water retained in the steam-water separator can be sent to the steam generator and the heat can be removed for a short time by evaporation. During normal operation of the nuclear reactor, the steam generator operates as an integral once-through type, so the required heat transfer area is small.

(実施例) 第2図、第3図と同一部分には同一符号を付した第1図
は1本発明の一実施例を使用した原子力発電プラントの
系統図を示す0本発明の崩壊熱除去装置においては、気
水分離器18が設けられている。気水分離器18の気相
部は、蒸気発生器17から上記タービン7に至る配管の
蒸気発生器17内弁v1の上流側に気水分離器入口止弁
v2を介して接続され、気水分離器18の底部は逆止弁
V、を介して蒸気発生器17の水入口側に接続されてい
る。また、高圧給水加熱器6から蒸気発生器17に至る
管路の主給水調節弁v4の上流側は。
(Example) The same parts as in Figs. 2 and 3 are given the same reference numerals. Fig. 1 shows a system diagram of a nuclear power plant using an embodiment of the present invention. 0 Decay heat removal of the present invention. In the device, a steam separator 18 is provided. The gas phase part of the steam/water separator 18 is connected to the upstream side of the steam generator 17 internal valve v1 of the piping from the steam generator 17 to the turbine 7 via the steam separator inlet stop valve v2, and The bottom of the separator 18 is connected to the water inlet side of the steam generator 17 via a check valve V. Moreover, the upstream side of the main feed water control valve v4 of the pipeline from the high pressure feed water heater 6 to the steam generator 17 is as follows.

気水分離器水位調節弁■5を介して気水分離器L8の液
相と接続されている。さらに、気水分離器18の気相は
脱気器加熱調節弁v6を介して脱気器10の脱気器10
aに接続され、気水分離器圧力調節弁v7を介して復水
器8に接続されている。
It is connected to the liquid phase of the steam/water separator L8 via the steam/water separator water level control valve 5. Further, the gas phase of the steam/water separator 18 is passed through the deaerator heating control valve v6 to the deaerator 10 of the deaerator 10.
a, and is connected to the condenser 8 via a steam separator pressure control valve v7.

また、気水分離器18は気水分離器待機時水位調節弁V
、を介して脱器溜10aに接続されている。
The steam separator 18 also has a water level control valve V when the steam separator is on standby.
, is connected to the desiccant reservoir 10a.

また、気水分離器18の気相から脱気器10aに至る配
管の前記気水分離器待機時水位調節弁V。
Further, there is a water level control valve V on standby for the steam separator in the piping from the gas phase of the steam separator 18 to the deaerator 10a.

の上流側には、主蒸気大気放出弁vgが設けられている
A main steam atmosphere release valve vg is provided on the upstream side of the main steam atmosphere release valve vg.

上記構成の本発明崩壊熱除去装置は次のように作動する
。すなわち、原子炉の通常運転時にあっては、高圧給水
加熱器6からの給水は直接蒸気発生器17に供給され、
蒸気発生器j7をL′r流する間に加熱され、出口にお
いては過熱蒸気となって蒸気タービン7に供給される。
The decay heat removal apparatus of the present invention having the above structure operates as follows. That is, during normal operation of the nuclear reactor, the feed water from the high pressure feed water heater 6 is directly supplied to the steam generator 17,
It is heated while flowing L'r through the steam generator j7, becomes superheated steam at the outlet, and is supplied to the steam turbine 7.

この時、気水分離器18には気水分離器水位調節弁V、
を介して給水が補給されており、気水分離器待機時水位
調節弁V、がその水位を定めている。
At this time, the steam separator 18 includes a steam separator water level control valve V,
The water supply is supplied through the water separator, and the water level is determined by the water level control valve V when the water separator is on standby.

まず、復水器8が使用可能な状態での原子炉停止後の崩
壊熱除去運転について説明する。この場合には気水分離
器入口止弁■2を開とし、蒸気発生器出口止弁Vよを閉
とすることにより、蒸気発生器17の出口の水・蒸気を
気水分離器18に導入する。この水・蒸気から気水分離
器18において分離された蒸気は、その一部が脱気器加
熱調節弁V、を介して脱気中に回収され、他部は気水分
離器圧力調節弁v7を介して復水器7に排出され。
First, a decay heat removal operation after the nuclear reactor is shut down while the condenser 8 is usable will be described. In this case, water and steam at the outlet of the steam generator 17 are introduced into the steam separator 18 by opening the steam separator inlet stop valve ■2 and closing the steam generator outlet stop valve V. do. A part of the steam separated from this water/steam in the steam separator 18 is recovered during degassing via the deaerator heating control valve V, and the other part is recovered during deaeration via the steam separator pressure control valve V7. is discharged to the condenser 7 via the

気水分離器内圧力を所定圧力に調節する。また、気水分
離器18において分離された飽和水は、気水分離器水位
調節弁vsを通じて供給される給水と混合した後、蒸気
発生器17の入口側に接続された配管を通じ逆止弁v3
を通じて、自然循環により蒸気発生器17に戻される。
Adjust the pressure inside the steam/water separator to a predetermined pressure. The saturated water separated in the steam separator 18 is mixed with water supplied through the steam separator water level control valve vs, and then passed through a check valve v3 through a pipe connected to the inlet side of the steam generator 17.
is returned to the steam generator 17 by natural circulation.

蒸気発生器17における除熱は沸騰を伴うため、蒸気発
生器17内には2相流が生じている。上記の自然循環の
循環力は、前記2相流と前記気水分離器から蒸気発生器
17に戻されるサブクール水との密度差によって生じる
ものであるが、前記密度差は十分であり蒸気発生器17
の安定運転に必要な循環水量を確保することができる。
Since heat removal in the steam generator 17 involves boiling, a two-phase flow is generated within the steam generator 17. The above-mentioned circulation force of natural circulation is caused by the density difference between the two-phase flow and the subcooled water returned from the steam-water separator to the steam generator 17, but the density difference is sufficient and the steam generator 17
The amount of circulating water necessary for stable operation can be secured.

次に、所内電源喪失等の復水器が使用不能な状態での原
子炉停止後の崩壊熱除去運転につき説明する。この場合
には、気水分離器圧力調節弁v7を閉とし、主蒸気を主
蒸気大気放出弁V、から大気中に放出する。この時、気
水分離器入口止弁■2を開とし、蒸気発生器出口止弁V
□を閉とすることにより、気水分離器18内に保有され
ていた水を蒸気発生器17に送り込む。蒸気発生器17
は主蒸気大気放出弁V、から蒸気を放出しながら、前記
の送り込まれた水を蒸気に変換し、この水が消費し尽く
されるまでの短時間除熱を行う。
Next, a description will be given of the decay heat removal operation after reactor shutdown in a state where the condenser is unusable due to loss of on-site power supply, etc. In this case, the steam separator pressure control valve v7 is closed, and the main steam is released into the atmosphere from the main steam atmosphere release valve V. At this time, open the steam separator inlet stop valve ■2, and open the steam generator outlet stop valve V.
By closing □, the water held in the steam-water separator 18 is sent to the steam generator 17. Steam generator 17
While releasing steam from the main steam atmosphere release valve V, converts the fed water into steam, and performs heat removal for a short period of time until the water is completely consumed.

[発明の効果] 上記から明らかなように本発明の崩壊熱除去装置におい
では、再循環型崩壊熱除去装置のように蒸気ドラム、再
循環ポンプを必要とせず、しかも通常運転時にあっては
蒸気発生器は一体貫流型として運転されるから、必要伝
熱面積は少なくて済み経済的である。さらに、崩壊熱除
去運転時には付設した気水分離器および蒸気発生器を通
じる自然循環が生じ、これにより除熱がなされるので高
温停止が可能である。また、所内電源喪失等により復水
器の使用ができない場合にも、気水分離器の保有する水
のみにより短時間の除熱を行うことができる。その結果
、原子炉、その各構成部材等への熱衝撃を緩和すること
ができ、原子炉の経済性、信頼性を向上させることがで
きる。
[Effects of the Invention] As is clear from the above, the decay heat removal device of the present invention does not require a steam drum or a recirculation pump unlike a recirculation type decay heat removal device, and moreover, during normal operation, the decay heat removal device does not require steam drums or recirculation pumps. Since the generator is operated as an integral once-through type, the required heat transfer area is small and therefore economical. Furthermore, during the decay heat removal operation, natural circulation occurs through the attached steam/water separator and steam generator, which removes heat and enables high-temperature shutdown. Furthermore, even if the condenser cannot be used due to a loss of on-site power supply, heat can be removed for a short period of time using only the water held by the steam-water separator. As a result, thermal shock to the nuclear reactor, its constituent members, etc. can be alleviated, and the economic efficiency and reliability of the nuclear reactor can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を使用した原子力発電プラン
トの系統図、第2図は従来の再循環型蒸気発生器を使用
した原子力発電プラントの系統図。 第73図は従来の一体貫流型蒸気発生器を使用した原子
力発電プラントの系統図である。
FIG. 1 is a system diagram of a nuclear power plant using an embodiment of the present invention, and FIG. 2 is a system diagram of a nuclear power plant using a conventional recirculating steam generator. FIG. 73 is a system diagram of a nuclear power plant using a conventional integrated once-through steam generator.

Claims (1)

【特許請求の範囲】[Claims] 貫流型蒸気発生器と、この貫流型蒸気発生器出口から蒸
気タービンに至る配管の蒸気発生器出口止弁の上流に気
水分離器入口止弁を介して気相を連通させ、気水分離器
水位調節弁を介して脱気器から蒸気発生器に至る配管の
主給水調節弁の上流に、また逆止弁を介して蒸気発生器
の入口側にそれぞれ液相を連通させた気水分離器と、前
記気水分離器の気相と脱気器の脱気溜とを連通する配管
に設けた脱気器加熱調節弁と、この脱気器加熱調節弁の
上流に設けた主蒸気大気放出弁と、前記脱気溜と気水分
離器を連通させる配管に設けた気水分離器待機時水位調
節弁とを有し、通常運転時には前記気水分離器入口止弁
を閉としてこれを主蒸気回路から遮断し、復水器が使用
可能である時の原子炉停止後においては前記気水分離器
入口止弁蒸気発生器を通じる自然循環を生じさせて除熱
し、復水器が使用不能である時の原子炉停止後において
は気水分離器圧力調節弁を閉、気水分離器入口止弁を開
、蒸気発生器出口止弁を閉として気水分離器内の水を蒸
気発生器により蒸気に変換しながら除熱するようにした
ことを特徴とする崩壊熱除去装置。
The gas phase is communicated between the once-through steam generator and the steam separator inlet stop valve upstream of the steam generator outlet stop valve of the piping from the once-through steam generator outlet to the steam turbine, and the steam separator A steam-water separator that communicates the liquid phase upstream of the main water control valve of the piping from the deaerator to the steam generator via a water level control valve, and to the inlet side of the steam generator via a check valve. , a deaerator heating control valve provided in the piping that communicates the gas phase of the steam/water separator with the deaerator reservoir of the deaerator, and a main steam atmospheric release device provided upstream of the deaerator heat control valve. and a steam separator standby water level control valve provided in a pipe that communicates the deaeration reservoir and the steam separator, and during normal operation, the water separator inlet stop valve is closed and this is the main valve. It is shut off from the steam circuit, and after the reactor is shut down when the condenser is usable, the steam separator inlet stop valve generates natural circulation through the steam generator to remove heat, making the condenser unusable. After the reactor is shut down, the steam separator pressure control valve is closed, the steam separator inlet stop valve is opened, the steam generator outlet stop valve is closed, and the water in the steam separator is transferred to the steam generator. A decay heat removal device characterized by removing heat while converting it into steam.
JP62053942A 1987-03-11 1987-03-11 Decay-heat removal device Pending JPS63221293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62053942A JPS63221293A (en) 1987-03-11 1987-03-11 Decay-heat removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62053942A JPS63221293A (en) 1987-03-11 1987-03-11 Decay-heat removal device

Publications (1)

Publication Number Publication Date
JPS63221293A true JPS63221293A (en) 1988-09-14

Family

ID=12956781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62053942A Pending JPS63221293A (en) 1987-03-11 1987-03-11 Decay-heat removal device

Country Status (1)

Country Link
JP (1) JPS63221293A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985841A1 (en) * 2012-01-18 2013-07-19 Technicatome SYSTEM FOR REMOVING THE RESIDUAL POWER OF A PRESSURIZED WATER NUCLEAR REACTOR
JP2022502626A (en) * 2018-09-28 2022-01-11 ジョイント・ストック・カンパニー サイエンティフィック リサーチ アンド デザイン インスティテュート フォー エナジー テクノロジーズ アトムプロエクト Methods and systems to keep nuclear power plants safe after extreme effects

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985841A1 (en) * 2012-01-18 2013-07-19 Technicatome SYSTEM FOR REMOVING THE RESIDUAL POWER OF A PRESSURIZED WATER NUCLEAR REACTOR
WO2013107817A1 (en) * 2012-01-18 2013-07-25 Societe Technique Pour L'energie Atomique Technicatome System for discharging the residual power of a pressurised water nuclear reactor
CN104205238A (en) * 2012-01-18 2014-12-10 原子能技术公司 System for discharging the residual power of a pressurised water nuclear reactor
JP2022502626A (en) * 2018-09-28 2022-01-11 ジョイント・ストック・カンパニー サイエンティフィック リサーチ アンド デザイン インスティテュート フォー エナジー テクノロジーズ アトムプロエクト Methods and systems to keep nuclear power plants safe after extreme effects
EP3859749A4 (en) * 2018-09-28 2023-06-14 Joint-Stock Company Scientific Research and Design Institute for Energy Technologies Atomproekt Method and system for returning a nuclear power station to a safe state after an extreme event

Similar Documents

Publication Publication Date Title
KR100367919B1 (en) Heat recovery steam generator
CN107403650B (en) Secondary side passive waste heat discharging system of offshore floating nuclear power station
CN104205239B (en) System for discharging residual power of pressurized water nuclear reactor
CN104205238A (en) System for discharging the residual power of a pressurised water nuclear reactor
CA2066828A1 (en) Passive indirect shutdown cooling system for nuclear reactors
US4387577A (en) Boilers
US3175953A (en) Steam-cooled nuclear reactor power plant
JPH03221702A (en) Duplex type heat exchanger for waste heat recovery
KR100261752B1 (en) Passive secondary loop condensation system for pressurized water reactor
JPS63221293A (en) Decay-heat removal device
CN115274150B (en) Two-loop waste heat discharging system and method based on concentrated seawater cooling
CN108447570B (en) Marine reactor and secondary side passive waste heat discharging system thereof
US4236968A (en) Device for removing heat of decomposition in a steam power plant heated by nuclear energy
JP2016517499A (en) Power plant with reduced height steam generation device and application to PWR and BWR reactors
US5335252A (en) Steam generator system for gas cooled reactor and the like
JP3061900B2 (en) Reactor
Olson et al. The Fort St. Vrain high temperature gas-cooled reactor: V. Steam system performance tests
US4363779A (en) Pressurized water reactor
JPS61213401A (en) Waste-heat recovery boiler
JPS6042842B2 (en) thermal power generation device
JPS62293192A (en) Decay heat removing device
JPS5814909A (en) Degassing apparatus
JPH08171000A (en) Boiling-water nuclear power plant
JP2001091689A (en) Starting method for supercritical pressure light water- cooled reactor
JP3068288B2 (en) Auxiliary cooling water system for nuclear power plants