JP2005091291A - Super-critical pressure water cooled nuclear power plant - Google Patents

Super-critical pressure water cooled nuclear power plant Download PDF

Info

Publication number
JP2005091291A
JP2005091291A JP2003328366A JP2003328366A JP2005091291A JP 2005091291 A JP2005091291 A JP 2005091291A JP 2003328366 A JP2003328366 A JP 2003328366A JP 2003328366 A JP2003328366 A JP 2003328366A JP 2005091291 A JP2005091291 A JP 2005091291A
Authority
JP
Japan
Prior art keywords
feed water
reactor
main steam
steam
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003328366A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Kataoka
一芳 片岡
Masahiro Okawa
雅弘 大川
Jiyunichiro Otonari
純一朗 音成
Yutaka Asanuma
裕 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003328366A priority Critical patent/JP2005091291A/en
Publication of JP2005091291A publication Critical patent/JP2005091291A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To ensure cooling of core fuel during supply pump trip accidents in a super-critical water cooled nuclear power plant and suppress the transport of radioactive material to a condenser. <P>SOLUTION: The nuclear power plant has a reactor 1 using super-critical water as coolant, turbines 4, 5 which are supplied with steam obtained in the reactor 1 through a main steam pipe 2, a condenser 6 condensing steam exhausted from the turbines, a condensate pump 7 for returning condensate obtained in the condenser 6 to the reactor 1, first supply water heaters 10, 11 arranged in between the discharge side of the condensate pump 7 and the reactor 1, making supply water by heating condensate water by extracting from the turbines 4 and 5, a second supply water heater 14 arranged in between the first supply water heaters 10, 11, further heating supply water passed through the first supply water heaters 10, 11 by extracting from the main steam extraction pipe 13 branched from the main steam pipe 2, and a recirculation pump 15 for returning drain water of extraction steam from the main steam pipe 2 coming out of the second supply water heater 14. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、超臨界圧水を冷却材とする超臨界圧水冷却原子力プラントに関し、特に、主蒸気の抽気とその再循環系統を伴う超臨界圧水冷却原子力プラントに関する。   The present invention relates to a supercritical water-cooled nuclear power plant using supercritical water as a coolant, and more particularly to a supercritical water-cooled nuclear power plant with main steam extraction and its recirculation system.

図7に、従来考えられている超臨界圧水冷却原子力プラントの例を示す(特許文献1参照)。原子炉1で発生した高温高圧(約220気圧,500℃以上)の蒸気は、主蒸気配管2を通り、主蒸気止め弁3を経由して、高圧タービン4に導かれる。高圧タービン4で仕事をした蒸気は低圧タービン5へ入り、ここでさらに仕事をした後、復水器6で凝縮され、低温低圧の復水となる。復水は復水ポンプ7と給水ポンプ8によって超臨界圧まで昇圧されて給水配管9を通って原子炉1へ戻る給水となる。   FIG. 7 shows an example of a conventionally considered supercritical water cooling nuclear power plant (see Patent Document 1). High-temperature and high-pressure (about 220 atm., 500 ° C. or higher) steam generated in the nuclear reactor 1 passes through the main steam pipe 2 and is guided to the high-pressure turbine 4 via the main steam stop valve 3. The steam that has worked in the high-pressure turbine 4 enters the low-pressure turbine 5, and after further work here, it is condensed in the condenser 6 to become low-temperature and low-pressure condensate. The condensate is boosted to a supercritical pressure by the condensate pump 7 and the feed water pump 8, and is supplied to the reactor 1 through the feed water pipe 9.

この間、給復水は高圧タービン4および低圧タービン5の排気の一部から抽気された蒸気によって、低圧給水加熱器10および高圧給水加熱器11において加熱される。このとき、原子炉1の中では、次のような冷却材の流れができている。すなわち、図9に示すように、給水配管9によって原子炉1に導かれた冷却材は、下部プレナム24を通り、その全量が炉心25で加熱され、蒸気となって上部プレナム26へと流入する。この蒸気の全量は、主蒸気配管2を通って原子炉1から流出する。このように、超臨界圧水冷却原子力プラントでは、原子炉に入った冷却材の全量が原子炉から流出する貫流型のシステムとなっている。   During this time, the supply and condensate is heated in the low-pressure feed water heater 10 and the high-pressure feed water heater 11 by steam extracted from part of the exhaust from the high-pressure turbine 4 and the low-pressure turbine 5. At this time, the following coolant flows in the nuclear reactor 1. That is, as shown in FIG. 9, the coolant guided to the nuclear reactor 1 by the water supply pipe 9 passes through the lower plenum 24, and the entire amount thereof is heated by the core 25 and flows into the upper plenum 26 as steam. . The total amount of this steam flows out of the reactor 1 through the main steam pipe 2. As described above, the supercritical water cooling nuclear power plant is a once-through type system in which the entire amount of coolant entering the nuclear reactor flows out of the nuclear reactor.

このような貫流型の超臨界圧水冷却原子力プラントでは、従来の軽水炉にはない起動時専用のシステムが必要となる(起動系)。図8に、典型的な起動系の構成を示す。低出力時には主蒸気切り替え弁18を閉鎖し、原子炉出口の流体を主蒸気抽気配管によりフラッシュタンク22へ導く。ここで流体は気水分離され、蒸気は起動時主蒸気供給配管17を通って高圧タービン4へ送られる。また、残りのドレン水はフラッシュタンクドレンライン23を通って、復水器6へ送られ、タービン排気の凝縮水と混合して復水となる。原子炉出力が増加し、原子炉出口流体の保有エンタルピがフラッシュタンク22から供給される蒸気の保有エンタルピを上回るようになると、主蒸気切り替え弁18を開いて主蒸気を原子炉出口から直接供給する。
特開2002−31694号公報
Such a once-through supercritical water-cooled nuclear power plant requires a dedicated start-up system that is not found in conventional light water reactors (startup system). FIG. 8 shows a typical startup system configuration. When the output is low, the main steam switching valve 18 is closed, and the fluid at the reactor outlet is guided to the flash tank 22 through the main steam extraction pipe. Here, the fluid is separated into steam and water, and the steam is sent to the high-pressure turbine 4 through the main steam supply pipe 17 at the time of startup. The remaining drain water is sent to the condenser 6 through the flash tank drain line 23 and mixed with the condensed water of the turbine exhaust to become condensate. When the reactor power increases and the retained enthalpy of the reactor outlet fluid exceeds the retained enthalpy of the steam supplied from the flash tank 22, the main steam switching valve 18 is opened to supply the main steam directly from the reactor outlet. .
JP 2002-31694 A

このような構成の原子炉では、給水ポンプ8がトリップする事故が生じると、給水ポンプ8の運転速度はその慣性に応じた時間で減速し、それに従って冷却材の駆動力も低下する。このため、原子炉1へ流入する冷却材は徐々に減少し、やがてその全流量が失われる。超臨界圧水冷却原子力プラントは貫流型のシステムであるため、この事故によって、炉心24を冷却する冷却材の流れもなくなり、炉心24の冷却は悪化する。   In the nuclear reactor having such a configuration, when an accident that trips the feed water pump 8 occurs, the operation speed of the feed water pump 8 is reduced in time according to its inertia, and the driving force of the coolant is also lowered accordingly. For this reason, the coolant flowing into the nuclear reactor 1 gradually decreases, and eventually its total flow rate is lost. Since the supercritical water-cooled nuclear power plant is a once-through system, this accident also eliminates the flow of the coolant that cools the core 24, and the cooling of the core 24 deteriorates.

従来の超臨界圧水冷却原子力プラントでは、給水ポンプトリップ事故時に関して次のような課題がある。すなわち、前述のとおり、貫流型システムである超臨界圧水冷却原子力プラントでは、給水ポンプが炉内の冷却材流動の駆動源となっているため、給水ポンプが全台トリップする事故時には、炉心冷却材流量の全量が喪失し、これによって炉心燃料の冷却が損なわれる可能性がある。   The conventional supercritical water cooling nuclear power plant has the following problems in the event of a feed water pump trip accident. That is, as described above, in the supercritical pressure water-cooled nuclear power plant, which is a once-through system, the feedwater pump is the driving source for the coolant flow in the reactor. The total amount of material flow can be lost, which can impair core fuel cooling.

この給水ポンプトリップ時の安全対策としては、例えば次のことが考えられる。
(1)給水ポンプトリップを検出して原子炉スクラムを作動させ、速やかに原子炉出力を低下させる。
(2)給水ポンプトリップを検出して代替給水系を起動し、炉心冷却材流量を確保する。
(3)給水ポンプに大きな慣性を持たせることで冷却材流量の減少速度を低下させる。
As a safety measure at the time of this water supply pump trip, the following can be considered, for example.
(1) The reactor scram is activated by detecting a feed water pump trip, and the reactor output is quickly reduced.
(2) Detect the feed water pump trip and activate the alternative feed water system to secure the core coolant flow rate.
(3) The rate of decrease in the coolant flow rate is reduced by giving the water pump a large inertia.

ここに挙げた対策では、給水ポンプトリップの検出、スクラムの動作や代替給水系の起動には技術的に不可避な時間遅れが存在するため、ある程度の慣性を給水ポンプに持たせることは必須である。   With the measures listed here, there is a technically unavoidable time delay in detecting feed pump trips, scram operation and alternative water system activation, so it is essential to give the water pump some degree of inertia. .

図10および図11には、給水ポンプトリップ事故時の炉心の冷却材流量51、原子炉熱出力52、燃料被覆管温度53の時間変化を示す。これらの図では原子炉スクラム、代替給水系の起動が想定されているが、図10では、スクラムの動作、代替給水系の起動時間の遅れを補うのに十分な慣性を給水ポンプが持っている場合を示し、図11では給水ポンプの慣性が不十分なケースを示す。すなわち、図10では、給水ポンプトリップ後、比較的緩やかに炉心の冷却材流量51が低下するのに対し、図11では、給水ポンプトリップ後、急速に炉心の冷却材流量51が低下する。その結果、図10では被覆管表面温度53がある程度の値に抑えられているが、図11では被覆管表面温度53が急上昇している。このとき、燃料棒の溶融や被覆管の破損など、炉心健全性が損なわれる可能性が高くなる。   10 and 11 show temporal changes in the coolant flow rate 51 of the core, the reactor thermal output 52, and the fuel cladding tube temperature 53 at the time of a feedwater pump trip accident. In these figures, it is assumed that the reactor scram and the alternative feed water system start up, but in FIG. 10, the feed water pump has sufficient inertia to compensate for the delay in the start time of the scram operation and the alternative feed water system. FIG. 11 shows a case where the inertia of the feed water pump is insufficient. That is, in FIG. 10, the coolant flow rate 51 in the core decreases relatively slowly after the feed water pump trip, whereas in FIG. 11, the coolant flow rate 51 in the core decreases rapidly after the feed water pump trip. As a result, the cladding tube surface temperature 53 is suppressed to a certain value in FIG. 10, but the cladding tube surface temperature 53 is rapidly increased in FIG. At this time, there is a high possibility that the integrity of the core will be impaired, such as melting of the fuel rods and damage to the cladding tube.

一般に、火力プラントよりも原子力プラントの方が大出力を要求されるが、プラントの規模が大型化し、冷却材流量も増大するにつれて給水ポンプの高速化が行なわれると、ポンプトリップ時の給水ポンプのコーストダウン時間は短くなるため、ますます大きな慣性が必要となる。既存の超臨界圧火力プラント用の給水ポンプの大型化以上に大きな慣性が必要とされる場合には、フライホイールなどの、通常運転時には不要な設備(非常用設備)を追加する必要があるため、プラントの建設コストを増大させる。   In general, a nuclear power plant is required to have a higher output than a thermal power plant, but if the speed of the feed water pump increases as the scale of the plant increases and the coolant flow rate increases, Since coast-down time is shortened, more and more inertia is required. When large inertia is required beyond the enlargement of the feed pump for the existing supercritical pressure thermal power plant, it is necessary to add unnecessary equipment (emergency equipment) such as a flywheel during normal operation. , Increase the construction cost of the plant.

また、図8に示す典型的な起動系の構成においては、フラッシュタンク22で分離されたドレン水が復水器6に直接流れ込む。冷却材に含まれる放射性物質は、水相に移行しやすいため、起動時には冷却材中の放射性物質が復水器6に多く運ばれて、復水器6周辺の放射線量を上昇させ、作業員の被爆量を増加させる恐れがある。   Further, in the configuration of a typical starting system shown in FIG. 8, the drain water separated by the flash tank 22 flows directly into the condenser 6. Since the radioactive material contained in the coolant is likely to move to the water phase, a large amount of the radioactive material in the coolant is carried to the condenser 6 at the start-up, increasing the radiation dose around the condenser 6 and There is a risk of increasing the amount of exposure.

そこで、本発明の第一の目的は、フライホイールなどの非常用設備を追加することなく、給水ポンプトリップ事故時に炉心燃料の冷却を確保することのできる超臨界圧水冷却原子力プラントを提供することである。
また、本発明の第二の目的は、放射性物質の復水器への移行を抑制する超臨界圧水冷却原子力プラントを提供することである。
Accordingly, a first object of the present invention is to provide a supercritical water cooling nuclear power plant that can ensure cooling of core fuel in the event of a feedwater pump trip accident without adding emergency equipment such as a flywheel. It is.
A second object of the present invention is to provide a supercritical water cooling nuclear power plant that suppresses the transfer of radioactive material to a condenser.

本発明は上記目的に沿うものであって、請求項1に記載の発明は、超臨界圧水を冷却材とする原子炉と、前記原子炉で得られた蒸気が主蒸気配管を通じて供給されてこの蒸気によって駆動されるタービンと、前記タービンから排出される蒸気を凝縮して復水を作る復水器と、前記復水器で得られた復水を前記原子炉に戻すための復水ポンプと、前記復水ポンプの吐出側と原子炉の間に配置された少なくとも一つの第1の給水加熱器であって、前記タービンからの抽気によって前記復水を加熱して給水を作る第1の給水加熱器と、前記第1の給水加熱器と原子炉の間に配置された第2の給水加熱器であって、前記主蒸気配管から分岐された主蒸気抽気配管からの抽気によって前記第1の給水加熱器を出た給水をさらに加熱する第2の給水加熱器と、前記第2の給水加熱器を出た前記主蒸気配管からの抽気のドレン水を原子炉に戻すための再循環ポンプと、を有すること、を特徴とする超臨界圧水冷却原子力プラントである。   The present invention is directed to the above object, and the invention according to claim 1 is a reactor in which supercritical pressure water is used as a coolant, and steam obtained in the reactor is supplied through a main steam pipe. A turbine driven by the steam, a condenser for condensing steam discharged from the turbine to produce condensate, and a condensate pump for returning the condensate obtained by the condenser to the reactor And at least one first feed water heater disposed between the discharge side of the condensate pump and the nuclear reactor, wherein the condensate is heated by extraction from the turbine to produce feed water. A feed water heater and a second feed water heater disposed between the first feed water heater and the nuclear reactor, wherein the first feed water is extracted from a main steam extraction pipe branched from the main steam pipe. The second feed water heater for further heating the feed water from the feed water heater And a recirculation pump for returning drain water extracted from the main steam pipe exiting the second feed water heater to a nuclear reactor. .

また、請求項5に記載の発明は、超臨界圧水を冷却材とする原子炉と、前記原子炉で得られた蒸気を主蒸気配管を通じて供給されてこの蒸気によって駆動されるタービンと、前記タービンから排出される蒸気を凝縮して復水を作る復水器と、前記復水器で得られた復水を前記原子炉に戻すための復水ポンプと、前記復水ポンプの吐出側と原子炉の間に配置された少なくとも一つの第1の給水加熱器であって、前記タービンからの抽気によって前記復水を加熱して給水を作る第1の給水加熱器と、前記第1の給水加熱器を出た給水を、前記主蒸気配管から分岐された主蒸気抽気配管からの抽気によって駆動して原子炉に送るスチームインジェクタと、を有することを特徴とする超臨界圧水冷却原子力プラントである。   The invention according to claim 5 is a reactor using supercritical pressure water as a coolant, a turbine supplied with steam obtained in the reactor through a main steam pipe, and driven by the steam, A condenser for condensing steam discharged from the turbine to produce condensate, a condensate pump for returning the condensate obtained by the condenser to the reactor, and a discharge side of the condensate pump; A first feed water heater disposed between nuclear reactors, the first feed water heater configured to heat the condensate by extraction from the turbine to produce feed water; and the first feed water A supercritical pressure water-cooled nuclear power plant, comprising: a steam injector that feeds water supplied from the heater to the nuclear reactor driven by extraction from a main steam extraction pipe branched from the main steam pipe is there.

本発明の超臨界圧水冷却原子力プラントでは、再循環ポンプやスチームインジェクタによって駆動される冷却材の再循環ループを保有し、給水ポンプトリップ事故発生時にはこのループによって炉心に冷却材の流れを確保して炉心の冷却を図ることができる。しかも再循環ループ建設にかかる費用を低く抑えることができる。また、再循環ループに設置された給水加熱器を起動系の一部として用いることで、さらなるコストダウンが図れる。かつ、復水器の放射能汚染などを抑制できるので、作業員被曝量増加を抑制できる。よって、本発明によれば、超臨界圧水冷却原子力プラントの経済性を悪化させることなく、安全性が高まる。   The supercritical water-cooled nuclear power plant of the present invention has a coolant recirculation loop driven by a recirculation pump and a steam injector, and ensures the flow of coolant to the reactor core when a feedwater pump trip occurs. The core can be cooled. Moreover, the cost for constructing the recirculation loop can be kept low. Further, by using the feed water heater installed in the recirculation loop as part of the starting system, further cost reduction can be achieved. In addition, since radioactive contamination of the condenser can be suppressed, an increase in worker exposure can be suppressed. Therefore, according to the present invention, safety is improved without deteriorating the economic efficiency of the supercritical water cooling nuclear power plant.

以下に、本発明に係る超臨界圧水冷却原子力プラントの実施の形態について図1〜図6を参照して説明する。ここで、従来技術と共通または類似の部分には共通の符号を付して、重複説明を省略する。   Embodiments of a supercritical water cooling nuclear power plant according to the present invention will be described below with reference to FIGS. Here, parts common or similar to those in the prior art are denoted by common reference numerals, and redundant description is omitted.

図1は、本発明の第1の実施の形態に関わる超臨界圧水冷却原子力プラントの概念図である。本実施の形態に関わる超臨界圧水冷却原子力プラントは、以下のように構成されている。すなわち、高圧給水加熱器11と原子炉1の間に、主蒸気配管2から主蒸気抽気配管13を通って抽気された蒸気を加熱源とする給水加熱器14を設置する。給水を加熱した後の抽気蒸気は凝縮して給水加熱器14のドレン水となる。このドレン水は再循環ポンプ15によって給水配管9へ戻されて、再び原子炉1へと給水される。
なお、高圧給水加熱器11は通常3段構成であるが、本実施の形態では1段減らす。その1段分の給水加熱機能を、給水加熱器14が果たす。
FIG. 1 is a conceptual diagram of a supercritical water cooling nuclear power plant according to a first embodiment of the present invention. The supercritical water cooling nuclear power plant according to the present embodiment is configured as follows. That is, between the high-pressure feed water heater 11 and the nuclear reactor 1, a feed water heater 14 is installed that uses steam extracted from the main steam pipe 2 through the main steam extraction pipe 13 as a heating source. The extracted steam after heating the feed water is condensed and becomes drain water of the feed water heater 14. The drain water is returned to the water supply pipe 9 by the recirculation pump 15 and supplied to the nuclear reactor 1 again.
The high-pressure feed water heater 11 normally has a three-stage configuration, but is reduced by one stage in the present embodiment. The feed water heater 14 performs the feed water heating function for one stage.

このような構成によって、原子炉1→主蒸気配管2→主蒸気抽気配管13→給水加熱器14→再循環ポンプ15→給水配管9→原子炉1、という冷却材の再循環ループが形成される。給水ポンプトリップ事故時にも、再循環ポンプ15を駆動源とする再循環ループが存在する限り、冷却材を炉心24へと循環させることができる。高圧給水加熱段数は、従来と同じでありながら、給水ポンプにフライホイール等の非常用設備を追加することなく、スクラムの動作遅れ、代替給水系の起動遅れを補うだけの冷却材の流れを本実施の形態の再循環ループで確保できる。   With such a configuration, a coolant recirculation loop of reactor 1 → main steam pipe 2 → main steam extraction pipe 13 → feed water heater 14 → recirculation pump 15 → feed water pipe 9 → reactor 1 is formed. . Even in the event of a water supply pump trip accident, the coolant can be circulated to the core 24 as long as a recirculation loop using the recirculation pump 15 as a drive source exists. The number of high-pressure feed water heating stages is the same as before, but without adding emergency equipment such as flywheels to the feed water pump, the flow of coolant that can compensate for the delay in the operation of the scrum and the start-up delay in the alternative feed water system is reduced. This can be ensured by the recirculation loop of the embodiment.

また、再循環ポンプ15は、炉心流量の10%程度の容量で、揚程は原子炉出入口の圧力差程度(数10〜数100kPa)なので、給水ポンプ(100%流量、揚程27MPa)と比較して、大幅に小さい。よって、再循環ポンプ15を追加することによる経済的な負の影響は小さい。   Further, the recirculation pump 15 has a capacity of about 10% of the core flow rate, and the lift is about the pressure difference between the reactor inlet and outlet (several tens to several hundred kPa), so compared with the feed water pump (100% flow rate, lift 27 MPa). , Significantly smaller. Therefore, the economical negative influence by adding the recirculation pump 15 is small.

図2は、本発明の第2の実施の形態に関わる超臨界圧水冷却原子力プラントの概念図である。本実施の形態に関わる超臨界圧水冷却原子力プラントは、以下のように構成されている。すなわち、図1の構成において、給水加熱器14と再循環ポンプ15の間に給水加熱器14からのドレン水を一時的に保持するための給水加熱器ドレンタンク16を設置するものである。   FIG. 2 is a conceptual diagram of a supercritical water cooling nuclear power plant according to the second embodiment of the present invention. The supercritical water cooling nuclear power plant according to the present embodiment is configured as follows. That is, in the configuration of FIG. 1, a feed water heater drain tank 16 for temporarily holding drain water from the feed water heater 14 is installed between the feed water heater 14 and the recirculation pump 15.

本実施の形態の追加給水加熱器ドレンタンク16に冷却水が保持され、給水流量が喪失するなど異常時に、給水加熱器14が機能せず、主蒸気が凝縮されない場合でも、ドレンタンク16内の冷却水を再循環ポンプ15で原子炉1に送ることができるので、炉心流量が確保される。ドレンタンク16は単純な容器なので、コストの増加は小さい。しかも、コストの増加が小さいにもかかわらず、プラント安全性が向上する。   Even if the feed water heater 14 does not function and the main steam is not condensed at the time of abnormality such as cooling water being held in the additional feed water heater drain tank 16 of the present embodiment and loss of the feed water flow rate, the inside of the drain tank 16 Since the cooling water can be sent to the reactor 1 by the recirculation pump 15, the core flow rate is secured. Since the drain tank 16 is a simple container, the increase in cost is small. Moreover, the plant safety is improved despite the small increase in cost.

図3は、本発明の第3の実施の形態に関わる超臨界圧水冷却原子力プラントの概念図である。本実施の形態に関わる超臨界圧水冷却原子力プラントは、以下のように構成されている。すなわち、図1の構成において、給水加熱器14を、起動時に必要な起動系の一部であるフラッシュタンクとして用いるものである。フラッシュタンクとは、高圧高温水を、その温度に対する飽和圧力以下に減圧させることで沸騰させる機器であり、火力発電所などで用いられている。   FIG. 3 is a conceptual diagram of a supercritical water cooling nuclear power plant according to the third embodiment of the present invention. The supercritical water cooling nuclear power plant according to the present embodiment is configured as follows. That is, in the configuration of FIG. 1, the feed water heater 14 is used as a flash tank that is a part of the start-up system necessary at the start-up. A flash tank is a device that boiles high-pressure high-temperature water by reducing the pressure below the saturation pressure for that temperature, and is used in thermal power plants and the like.

給水加熱器14は伝熱管とその伝熱管を収容する胴とを有するシェル・チューブ型熱交換器であって、主蒸気抽気配管13からの蒸気は胴側を流れ、給水は伝熱管内を流れるように構成されている。   The feed water heater 14 is a shell-and-tube type heat exchanger having a heat transfer tube and a cylinder that accommodates the heat transfer tube. Steam from the main steam extraction pipe 13 flows through the cylinder side, and water supply flows through the heat transfer pipe. It is configured as follows.

超臨界圧水冷却原子力プラントの起動時は、まず、給水ポンプ8により、冷却水を超臨界圧まで昇圧する。その後、制御棒を引抜いていき、原子炉1で冷却水を加熱していく。冷却水の温度が設定温度以下の場合は、原子炉1から出た冷却水を再循環ループ(主蒸気抽気配管13、給水加熱器14、再循環ポンプ15、給水配管9)で原子炉1に戻す。設定温度(通常280−290℃)以上になったら、給水加熱器14(前記フラッシュタンクとして機能)にて減圧沸騰させることで、蒸気が発生する。主蒸気止め弁3を開くことで、この給水加熱器14の胴側で発生した蒸気は起動時主蒸気供給配管17を介してタービン4、5に流れ、タービンが起動する。原子炉出口温度が定格温度に達したら、主蒸気切替弁18を開いて、主蒸気を直接タービン4、5に送る。減圧沸騰により発生した給水加熱器14のドレン水は、再循環ポンプ15、給水配管9によって原子炉1に戻る。   When starting the supercritical water cooling nuclear power plant, first, the feed water pump 8 is used to boost the cooling water to the supercritical pressure. Thereafter, the control rod is pulled out and the cooling water is heated in the nuclear reactor 1. When the temperature of the cooling water is equal to or lower than the set temperature, the cooling water discharged from the reactor 1 is transferred to the reactor 1 through a recirculation loop (main steam extraction pipe 13, feed water heater 14, recirculation pump 15, feed water pipe 9). return. When the temperature reaches a set temperature (usually 280-290 ° C.) or higher, steam is generated by boiling under reduced pressure in the feed water heater 14 (functioning as the flash tank). By opening the main steam stop valve 3, the steam generated on the trunk side of the feed water heater 14 flows to the turbines 4 and 5 via the main steam supply pipe 17 at the time of startup, and the turbine is started. When the reactor outlet temperature reaches the rated temperature, the main steam switching valve 18 is opened to send the main steam directly to the turbines 4 and 5. The drain water of the feed water heater 14 generated by the boiling under reduced pressure is returned to the nuclear reactor 1 by the recirculation pump 15 and the feed water pipe 9.

このような構成によれば、従来、起動用のためだけに設置していたフラッシュタンクの機能を給水加熱器14でまかなえる。かつ、従来はフラッシュタンクのドレン水が復水器6に流れていたのが、原子炉1へ戻るようになり、ドレン水中に含まれる放射能が復水器6に行かなくなる。よって、起動用機器が合理化され経済性が向上しつつ、復水器6に放射能が流れ込むのを防ぐことができ、安全性が高まる。   According to such a configuration, the function of the flash tank that has been conventionally installed only for activation can be provided by the feed water heater 14. In addition, the drain water in the flash tank that has conventionally flowed into the condenser 6 returns to the reactor 1, and the radioactivity contained in the drain water does not go to the condenser 6. Therefore, it is possible to prevent activation from flowing into the condenser 6 while rationalizing the startup device and improving the economic efficiency, thereby improving safety.

図4は、本発明の第4の実施の形態に関わる超臨界圧水冷却原子力プラントの概念図である。本実施の形態に関わる超臨界圧水冷却原子力プラントは、以下のように構成されている。すなわち、図3の構成において、給水加熱器14を格納容器19の内側に配置したものである。この配置によって、放射能を含む冷却材(水相)を格納容器19内に閉じ込めることができる。よって、復水器6を含んだタービン建屋を放射線管理区域として管理する必要がない。作業員の被爆量も増加することがない。   FIG. 4 is a conceptual diagram of a supercritical water cooling nuclear power plant according to the fourth embodiment of the present invention. The supercritical water cooling nuclear power plant according to the present embodiment is configured as follows. That is, in the configuration of FIG. 3, the feed water heater 14 is disposed inside the storage container 19. With this arrangement, a coolant (water phase) containing radioactivity can be confined in the containment vessel 19. Therefore, it is not necessary to manage the turbine building including the condenser 6 as a radiation management area. There is no increase in worker exposure.

図5は、本発明の第5の実施の形態に関わる超臨界圧水冷却原子力プラントの概念図である。本実施の形態に関わる超臨界圧水冷却原子力プラントは、以下のように構成されている。すなわち、図1の構成において、給水加熱器14と再循環ポンプ15の代わりに、主蒸気抽気配管13からの抽気蒸気を駆動源として動作するスチームインジェクタ20を設置し、これによって給水との熱交換を行なうとともに、再循環ループの駆動力も担わせるものである。スチームインジェクタ20は静的機器であるため、一層の信頼性向上が見込める。また、給水加熱器14と再循環ポンプ15の役割を単一の機器で行なえるため、経済性の向上も見込める。   FIG. 5 is a conceptual diagram of a supercritical water-cooled nuclear power plant according to the fifth embodiment of the present invention. The supercritical water cooling nuclear power plant according to the present embodiment is configured as follows. That is, in the configuration of FIG. 1, instead of the feed water heater 14 and the recirculation pump 15, a steam injector 20 that operates using the extraction steam from the main steam extraction pipe 13 as a drive source is installed, thereby heat exchange with the supply water As well as the driving force of the recirculation loop. Since the steam injector 20 is a static device, further improvement in reliability can be expected. Moreover, since the roles of the feed water heater 14 and the recirculation pump 15 can be performed by a single device, the economic efficiency can be expected.

図6は、本発明の第6の実施の形態に関わる超臨界圧水冷却原子力プラントの概念図である。本実施の形態に関わる超臨界圧水冷却原子力プラントは、以下のように構成されている。すなわち、図5の構成において、高圧給水加熱器11とスチームインジェクタ20の間にバッファタンク21を設置するものである。バッファタンク21を設置することで、給水ポンプがトリップするなど異常時に、バッファタンク21内の冷却水をスチームインジェクタ20で原子炉に送ることができるので、炉心流量が確保される。バッファタンク21は単純な容器なので、コストの増加は小さい。よって、コストの増加が小さいにもかかわらず、プラント安全性が向上する。   FIG. 6 is a conceptual diagram of a supercritical water-cooled nuclear power plant according to the sixth embodiment of the present invention. The supercritical water cooling nuclear power plant according to the present embodiment is configured as follows. That is, in the configuration of FIG. 5, the buffer tank 21 is installed between the high-pressure feed water heater 11 and the steam injector 20. By installing the buffer tank 21, the cooling water in the buffer tank 21 can be sent to the reactor by the steam injector 20 in the event of an abnormality such as a tripping of the water supply pump, so that the core flow rate is secured. Since the buffer tank 21 is a simple container, the increase in cost is small. Therefore, the plant safety is improved in spite of a small increase in cost.

本発明に係る超臨界圧水冷却原子力プラントの第1の実施の形態を示す概略系統図。1 is a schematic system diagram showing a first embodiment of a supercritical water cooling nuclear power plant according to the present invention. 本発明に係る超臨界圧水冷却原子力プラントの第2の実施の形態を示す概略系統図。The schematic system diagram which shows 2nd Embodiment of the supercritical pressure water cooling nuclear power plant which concerns on this invention. 本発明に係る超臨界圧水冷却原子力プラントの第3の実施の形態を示す概略系統図。The schematic system diagram which shows 3rd Embodiment of the supercritical pressure water cooling nuclear power plant which concerns on this invention. 本発明に係る超臨界圧水冷却原子力プラントの第4の実施の形態を示す概略系統図。The schematic system diagram which shows 4th Embodiment of the supercritical pressure water cooling nuclear power plant which concerns on this invention. 本発明に係る超臨界圧水冷却原子力プラントの第5の実施の形態を示す概略系統図。The schematic system diagram which shows 5th Embodiment of the supercritical pressure water cooling nuclear power plant which concerns on this invention. 本発明に係る超臨界圧水冷却原子力プラントの第6の実施の形態を示す概略系統図。The schematic system diagram which shows 6th Embodiment of the supercritical pressure water cooling nuclear power plant which concerns on this invention. 従来の超臨界圧水冷却原子力プラントの概略系統図。Schematic system diagram of a conventional supercritical water cooling nuclear power plant. 従来の超臨界圧水原子炉を示す模式的立断面図。FIG. 2 is a schematic sectional elevation view showing a conventional supercritical water reactor. 従来の超臨界圧水冷却原子力プラントの起動系を含む概略系統図。The schematic system diagram including the starting system of the conventional supercritical water cooling nuclear power plant. 従来の超臨界圧水冷却原子力プラントにおいて給水ポンプの慣性が比較的大きい場合の給水ポンプトリップ事故時の主要パラメータの時間変化を表すグラフ。The graph showing the time change of the main parameters at the time of the feed water pump trip accident when the inertia of a feed water pump is comparatively large in the conventional supercritical water cooling nuclear power plant. 従来の超臨界圧水冷却原子力プラントにおいて給水ポンプの慣性が比較的小さい場合の給水ポンプトリップ事故時の主要パラメータの時間変化を表すグラフ。The graph showing the time change of the main parameter at the time of the feed water pump trip accident when the inertia of a feed water pump is comparatively small in the conventional supercritical water cooling nuclear power plant.

符号の説明Explanation of symbols

1…原子炉、2…主蒸気配管、3…主蒸気止め弁、4…高圧タービン、5…低圧タービン、6…復水器、7…復水ポンプ、8…給水ポンプ、9…給水配管、10…低圧給水加熱器(第2の給水加熱器)、11…高圧給水加熱器(第2の給水加熱器)、12…代替給水系ポンプ、13…主蒸気抽気配管、14…給水加熱器(第1の給水加熱器)、15…再循環ポンプ、16…追加給水加熱器ドレンタンク、17…起動時主蒸気供給配管、18…主蒸気切り替え弁、19…格納容器、20…スチームインジェクタ、21…バッファタンク、22…フラッシュタンク、23…フラッシュタンクドレンライン、24…原子炉下部プレナム、25…炉心、26…原子炉上部プレナム。   DESCRIPTION OF SYMBOLS 1 ... Reactor, 2 ... Main steam piping, 3 ... Main steam stop valve, 4 ... High pressure turbine, 5 ... Low pressure turbine, 6 ... Condenser, 7 ... Condensate pump, 8 ... Feed water pump, 9 ... Feed water piping, DESCRIPTION OF SYMBOLS 10 ... Low pressure feed water heater (2nd feed water heater), 11 ... High pressure feed water heater (2nd feed water heater), 12 ... Alternative feed water system pump, 13 ... Main steam extraction piping, 14 ... Feed water heater ( (First feed water heater), 15 ... recirculation pump, 16 ... additional feed water heater drain tank, 17 ... main steam supply pipe at startup, 18 ... main steam switching valve, 19 ... containment vessel, 20 ... steam injector, 21 ... buffer tank, 22 ... flash tank, 23 ... flash tank drain line, 24 ... lower reactor plenum, 25 ... reactor core, 26 ... upper reactor plenum.

Claims (6)

超臨界圧水を冷却材とする原子炉と、
前記原子炉で得られた蒸気が主蒸気配管を通じて供給されてこの蒸気によって駆動されるタービンと、
前記タービンから排出される蒸気を凝縮して復水を作る復水器と、
前記復水器で得られた復水を前記原子炉に戻すための復水ポンプと、
前記復水ポンプの吐出側と原子炉の間に配置された少なくとも一つの第1の給水加熱器であって、前記タービンからの抽気によって前記復水を加熱して給水を作る第1の給水加熱器と、
前記第1の給水加熱器と原子炉の間に配置された第2の給水加熱器であって、前記主蒸気配管から分岐された主蒸気抽気配管からの抽気によって前記第1の給水加熱器を出た給水をさらに加熱する第2の給水加熱器と、
前記第2の給水加熱器を出た前記主蒸気配管からの抽気のドレン水を原子炉に戻すための再循環ポンプと、
を有すること、を特徴とする超臨界圧水冷却原子力プラント。
A reactor using supercritical pressure water as a coolant,
A turbine supplied with steam obtained in the nuclear reactor through a main steam pipe and driven by the steam;
A condenser for condensing steam discharged from the turbine to produce condensate;
A condensate pump for returning the condensate obtained in the condenser to the reactor;
At least one first feed water heater disposed between a discharge side of the condensate pump and a nuclear reactor, wherein the feed water is heated to extract the condensate by extraction from the turbine to produce feed water. And
A second feed water heater disposed between the first feed water heater and the reactor, wherein the first feed water heater is extracted by extraction from a main steam extraction pipe branched from the main steam pipe. A second feed water heater for further heating the feed water that has exited;
A recirculation pump for returning drain water from the main steam pipe exiting the second feed water heater to the reactor;
A supercritical water-cooled nuclear power plant characterized by comprising:
請求項1に記載の超臨界圧水冷却原子力プラントにおいて、前記第2の給水加熱器を出た前記ドレン水の出口と前記再循環ポンプとの間に、前記ドレン水を一時的に保持するドレンタンクをさらに有すること、を特徴とする超臨界圧水冷却原子力プラント。   The supercritical pressure water-cooled nuclear power plant according to claim 1, wherein the drain water is temporarily held between the drain water outlet exiting the second feed water heater and the recirculation pump. A supercritical water cooling nuclear power plant characterized by further comprising a tank. 請求項1に記載の超臨界圧水冷却原子力プラントにおいて、
前記第2の給水加熱器は、伝熱管とその伝熱管を収容する胴とを有するシェル・チューブ型熱交換器であって、
前記主蒸気抽気配管を通じて第2の給水加熱器に供給される蒸気は前記胴側を流れ、前記給水が前記伝熱管内を流れるように構成され、
前記主蒸気抽気配管を通じて前記第2の給水加熱器の胴側に入った蒸気の少なくとも一部を、主蒸気配管の前記主蒸気抽気配管の分岐点よりも下流側に戻す起動時主蒸気供給配管と、
前記主蒸気配管の前記主蒸気抽気配管との分岐点と前記起動時主蒸気供給配管との合流点の間に配置された主蒸気切り替え弁と、
をさらに有し、
前記第2の給水加熱器の胴側がフラッシュタンクとして機能できるように構成されていること、
を特徴とする超臨界圧水冷却原子力プラント。
In the supercritical water-cooled nuclear power plant according to claim 1,
The second feed water heater is a shell-and-tube type heat exchanger having a heat transfer tube and a body for housing the heat transfer tube,
The steam supplied to the second feed water heater through the main steam extraction pipe is configured to flow on the trunk side, and the feed water flows in the heat transfer pipe,
Start-up main steam supply pipe for returning at least a part of the steam that has entered the trunk side of the second feed water heater through the main steam extraction pipe to the downstream side of the branch point of the main steam extraction pipe of the main steam pipe When,
A main steam switching valve disposed between a branch point of the main steam pipe and the main steam extraction pipe and a confluence of the main steam supply pipe at start-up;
Further comprising
The trunk side of the second feed water heater is configured to function as a flash tank,
Supercritical pressure water cooled nuclear plant characterized by
請求項1に記載の超臨界圧水冷却原子力プラントにおいて、前記原子炉、第2の給水加熱器、および再循環ポンプを収容する格納容器をさらに有すること、を特徴とする超臨界圧水冷却原子力プラント。   The supercritical pressure water-cooled nuclear power plant according to claim 1, further comprising a containment vessel that accommodates the nuclear reactor, the second feed water heater, and a recirculation pump. plant. 超臨界圧水を冷却材とする原子炉と、
前記原子炉で得られた蒸気を主蒸気配管を通じて供給されてこの蒸気によって駆動されるタービンと、
前記タービンから排出される蒸気を凝縮して復水を作る復水器と、
前記復水器で得られた復水を前記原子炉に戻すための復水ポンプと、
前記復水ポンプの吐出側と原子炉の間に配置された少なくとも一つの第1の給水加熱器であって、前記タービンからの抽気によって前記復水を加熱して給水を作る第1の給水加熱器と、
前記第1の給水加熱器を出た給水を、前記主蒸気配管から分岐された主蒸気抽気配管からの抽気によって駆動して原子炉に送るスチームインジェクタと、
を有することを特徴とする超臨界圧水冷却原子力プラント。
A reactor using supercritical pressure water as a coolant,
A turbine which is supplied with steam obtained in the reactor through a main steam pipe and is driven by the steam;
A condenser for condensing steam discharged from the turbine to produce condensate;
A condensate pump for returning the condensate obtained in the condenser to the reactor;
At least one first feed water heater disposed between a discharge side of the condensate pump and a nuclear reactor, wherein the feed water is heated to extract the condensate by extraction from the turbine to produce feed water. And
A steam injector that drives the feed water that has exited the first feed water heater by extraction from the main steam extraction pipe branched from the main steam pipe, and sends it to the reactor;
A supercritical water cooling nuclear power plant characterized by comprising:
請求項5に記載の超臨界圧水冷却原子力プラントにおいて、前記第1の給水加熱器とスチームインジェクタとの間に、給水を一時的に保持するバッファタンクをさらに有すること、を特徴とする超臨界圧水冷却原子力プラント。

The supercritical pressure water-cooled nuclear power plant according to claim 5, further comprising a buffer tank that temporarily holds feed water between the first feed water heater and the steam injector. Pressure water cooled nuclear power plant.

JP2003328366A 2003-09-19 2003-09-19 Super-critical pressure water cooled nuclear power plant Pending JP2005091291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003328366A JP2005091291A (en) 2003-09-19 2003-09-19 Super-critical pressure water cooled nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003328366A JP2005091291A (en) 2003-09-19 2003-09-19 Super-critical pressure water cooled nuclear power plant

Publications (1)

Publication Number Publication Date
JP2005091291A true JP2005091291A (en) 2005-04-07

Family

ID=34457963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003328366A Pending JP2005091291A (en) 2003-09-19 2003-09-19 Super-critical pressure water cooled nuclear power plant

Country Status (1)

Country Link
JP (1) JP2005091291A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102537935A (en) * 2012-02-28 2012-07-04 西安交通大学 Heat regenerative system adopting jet-type heat pumps
CN103216818A (en) * 2012-01-19 2013-07-24 阿尔斯通技术有限公司 Heating system for a thermal electric power station water circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103216818A (en) * 2012-01-19 2013-07-24 阿尔斯通技术有限公司 Heating system for a thermal electric power station water circuit
US9523513B2 (en) 2012-01-19 2016-12-20 General Electric Technology Gmbh Heating system for a thermal electric power station water circuit
CN102537935A (en) * 2012-02-28 2012-07-04 西安交通大学 Heat regenerative system adopting jet-type heat pumps

Similar Documents

Publication Publication Date Title
US10950358B2 (en) PWR decay heat removal system in which steam from the pressurizer drives a turbine which drives a pump to inject water into the reactor pressure vessel
EP2689426B1 (en) Emergency core cooling systems for pressurized water reactor
EP2518731A2 (en) Nuclear power plant, fuel pool water cooling facility and method thereof
EP2839480B1 (en) Defense in depth safety paradigm for nuclear reactor
US9728281B2 (en) Auxiliary condenser system for decay heat removal in a nuclear reactor
KR101250479B1 (en) Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and Method for heat transfer-function improvement using thereof
JP5276362B2 (en) Cavitation removal system and power plant water supply device
US20130077730A1 (en) Nuclear Power Plant
JP2005091291A (en) Super-critical pressure water cooled nuclear power plant
KR101278906B1 (en) Apparatus for preventing thermal shock having a condensate mixing storage tank on condensate return line
JP4533670B2 (en) Boiling water reactor facilities
CN108447570B (en) Marine reactor and secondary side passive waste heat discharging system thereof
JPH04109197A (en) Reactor core decay heat removing device for pressurized water reactor
KR101224026B1 (en) Passive residual heat removal system using passive auxiliary feed-water system for pressurized water reactor
JP2007205923A (en) Nuclear power generation plant with boiling water reactor
US20230290529A1 (en) System for utilizing unused heat-exchange water of passive auxiliary feedwater system, and reactor cooling control method utilizing unused heat-exchange water of passive auxiliary feedwater system
US20230268089A1 (en) Passive condensation tank cooling system of passive auxiliary feedwater system
JP2013113653A (en) Pressurized-water reactor and method for removing reactor core decay heat
JP6335660B2 (en) Turbine building flood prevention device
JP2001091689A (en) Starting method for supercritical pressure light water- cooled reactor
Ha et al. DBE Analysis for KALIMER-600
Kamata et al. Safety Analysis of a Super Fast Reactor With Upward Flow Cooling in Two Pass at Supercritical Pressure

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060830