JPS59195068A - Method of dehumidification-operating air conditioner - Google Patents

Method of dehumidification-operating air conditioner

Info

Publication number
JPS59195068A
JPS59195068A JP6841383A JP6841383A JPS59195068A JP S59195068 A JPS59195068 A JP S59195068A JP 6841383 A JP6841383 A JP 6841383A JP 6841383 A JP6841383 A JP 6841383A JP S59195068 A JPS59195068 A JP S59195068A
Authority
JP
Japan
Prior art keywords
heat exchanger
indoor heat
refrigerant
dehumidification
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6841383A
Other languages
Japanese (ja)
Inventor
隆 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6841383A priority Critical patent/JPS59195068A/en
Publication of JPS59195068A publication Critical patent/JPS59195068A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 不発リコは空気調和機の除湿λM・転方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The unexploded Ricoh relates to a dehumidifying λM/transfer method for an air conditioner.

従来の冷房及び除温運転が可能な空気調和機を第1.2
図により説明すると、第1図の(1)が圧縮機、(2)
が吐出管、(3)が室外熱交換器、(4)が第1の電磁
弁(冷房時は閉、除湿時は開の電磁弁) 、(51が第
1の冷房用キャピラリチューブ、(6)が第1の室内熱
交換器(冷房時は蒸発器として、除湿時及び暖房時は凝
縮器として働く熱交換器) 、(71が第2の電磁弁(
冷房時は開、除湿量は閉の電磁弁)、(8)が第2の除
湿用キャビラリチューブ、(9)が第2の室内熱交換器
 (冷房時及び除湿時は蒸発器として、暖房用′1は凝
縮器として働く熱交換器)、QQが吸入管、Ql)がチ
ャージモジュレータ、(12iQ3)が配管、θDが室
外ファン、第2図の(201が室内穿気の吸入口、(2
2)がドレンパン、(23)が室内プロRラフアン、f
24)が吹出ルーバ・実線の矢印か具体的な訃、明を省
略した冷房運転時の冷奴の流扛で、除湿運転時には、圧
縮機(1)を出た高温高圧の冷媒(一点釧線の矢印参照
)が吐出管(2)、室外熱交換器(3)を経て第1の電
磁弁(4:、配管α3)を通り第1の♀内熱交換器(6
1に導かれる。室夕)熱交換器(3:・及び第1の室内
熱交換器(6)で外部へ放熱して熱交換された#冷媒は
、第2の除湿用キャビンリチューブ(8)で断熱膨張し
、第2の室外熱交換器(9)で吸熱し、吸入管00)を
経て圧縮機(1)へもどる。一方、室内空気(二点鎖線
の矢印参照)が吸込口(イ)を経て第2の室内熱交換器
(9)(冷房時及び除湿時は蒸発器として、暖房時は凝
縮器として働(熱交換器)へ導かれ、ここで冷却減湿さ
れ、次いで第1の室内熱交換器(6)(冷房時は蒸発器
として、除湿時及び暖房時は凝縮器として働く熱交換器
)へ導かれ、ここで再熱(加熱)される。そして室内プ
ロばラフアン(2淘により吹出ルーバ(24)を経て室
内へ吹き出される。このとき、第2の室内熱交換器(9
;に付着した凝縮水124)はドレンパン(2りに回収
さtL ル。
Air conditioners capable of conventional cooling and temperature removal operations are installed in 1.2.
To explain with diagrams, (1) in Figure 1 is the compressor, (2)
is the discharge pipe, (3) is the outdoor heat exchanger, (4) is the first solenoid valve (a solenoid valve that closes when cooling and opens when dehumidifying), (51 is the first cooling capillary tube, (6) ) is the first indoor heat exchanger (a heat exchanger that works as an evaporator during cooling and as a condenser during dehumidification and heating), (71 is the second solenoid valve (
(8) is the second dehumidifying cabillary tube, (9) is the second indoor heat exchanger (it functions as an evaporator during cooling and dehumidification, and is used as a heating valve). ('1 is the heat exchanger that acts as a condenser), QQ is the suction pipe, Ql) is the charge modulator, (12iQ3) is the piping, θD is the outdoor fan, (201 is the indoor ventilation inlet in Figure 2), ( 2
2) is the drain pan, (23) is the indoor professional R rough fan, f
24) is the blowout louver, the solid line arrow, or the flow of the cold tofu during cooling operation, with no specific details or bright lines. During dehumidification operation, the high-temperature, high-pressure refrigerant that exits the compressor (1) (the one-pointed line) (see arrow) passes through the discharge pipe (2), the outdoor heat exchanger (3), and the first solenoid valve (4:, piping α3) to the first female internal heat exchanger (6).
I am guided by 1. The heat exchanger (3:) and the first indoor heat exchanger (6) radiate heat to the outside and the refrigerant undergoes adiabatic expansion in the second dehumidifying cabin retube (8). , absorbs heat in the second outdoor heat exchanger (9), and returns to the compressor (1) via the suction pipe 00). On the other hand, the indoor air (see the two-dot chain arrow) passes through the suction port (a) and enters the second indoor heat exchanger (9) (which functions as an evaporator during cooling and dehumidification, and as a condenser during heating). exchanger), where it is cooled and dehumidified, and then led to the first indoor heat exchanger (6) (a heat exchanger that functions as an evaporator during cooling and as a condenser during dehumidification and heating). , where it is reheated (heated).Then, the indoor heat exchanger (9) is blown out into the room via the blowout louver (24).
The condensed water (124) adhering to the drain pan (124) is collected in the drain pan (2).

前記空気調和機で除湿運転を行っている場合、外気温が
低いと、813図に示すように、放熱量の増加により、
高圧回路内の冷媒圧力が実線(Aよ)のように下がる。
When the air conditioner is in dehumidifying operation and the outside temperature is low, as shown in Figure 813, the amount of heat dissipated increases.
The refrigerant pressure in the high pressure circuit decreases as shown by the solid line (A).

そのため低圧回路内の冷媒圧力(第2の室内熱交換器(
9))が実線(A2)のように下がってしまい、飽和温
度O℃以下になると、凝縮水Q4Jは水から霜、あるい
は氷に変化する。第2の室内熱交換器(9)に着霜する
と、室内空気が熱交換されなりフェリ、除湿運転をつり
けることかできなくなる。
Therefore, the refrigerant pressure in the low pressure circuit (second indoor heat exchanger (
9)) decreases as shown by the solid line (A2), and when the saturation temperature becomes below 0° C., the condensed water Q4J changes from water to frost or ice. When frost forms on the second indoor heat exchanger (9), heat exchange with the indoor air becomes impossible, making it impossible to perform fertilization and dehumidification operations.

本発明は前記の問題点に対処するもので、冷房運転時に
は圧縮機から吐出された冷媒を熱源側熱交換器、第1の
芯り、第1の室内熱交換器、第2の室内熱交換器をこの
順に経て圧縮機に循環させる空気調和機において、除湿
運転時には、圧縮機から吐出された冷媒を第2の室内熱
交検器、第2の紋り、第1の室内熱交換器、熱源側熱交
換器をこの順に経て圧縮機に循環させろとともに室内空
気を第1の室内熱交換器、第2の室内熱交換器をこの順
に流過させることを特徴と1″る空気調和機の除湿運転
方法に係り、その目的と1゛る処は、熱源湯度がかい場
合にも室内熱交換器に着霜させずに除湿を可能にできる
空気調和機の除湿運転方法を供する点にある。
The present invention addresses the above-mentioned problems, and during cooling operation, the refrigerant discharged from the compressor is transferred to the heat source side heat exchanger, the first core, the first indoor heat exchanger, and the second indoor heat exchanger. In an air conditioner that circulates the refrigerant from the compressor to the compressor in this order, during dehumidification operation, the refrigerant discharged from the compressor is passed through the second indoor heat exchanger, the second heat exchanger, the first indoor heat exchanger, An air conditioner characterized by circulating indoor air to a compressor through a heat source side heat exchanger in this order, and causing indoor air to flow through a first indoor heat exchanger and a second indoor heat exchanger in this order. The purpose of the dehumidifying operation method is to provide a dehumidifying operation method for an air conditioner that can perform dehumidification without forming frost on the indoor heat exchanger even when the temperature of the heat source water is high. .

次に本発明の除湿運転方法の突流に使用する空気調和機
の一例を第6.4図により具体的に説明スルト、(11
〜(131C1ICI)(2H31(24)カ前jar
 ト同一(y) f<B分で、本空気調和機では、室内
空気(二点鎖線の矢印参照)の流れの上流側に第1の室
内熱交換器(6)(冷房時及び除湿時は蒸発器として、
暖房時は凝縮器として働く熱交換器)を配設し、下流側
に第2の室内熱交換器(9)C冷房時は蒸発器として、
除湿時及び暖房時は凝縮器として働く熱交換器)を配設
する。またQ4)が四方弁で、吐出管(2)と吸入管(
10)および室外熱交換器(3)と第2の室内熱交換器
(9)との間に配設する。その他については従来と同様
である。
Next, an example of an air conditioner used in the rush flow of the dehumidifying operation method of the present invention will be explained in detail with reference to Fig. 6.4.
~ (131C1ICI) (2H31 (24) jar
(y) f<B minutes, and in this air conditioner, the first indoor heat exchanger (6) (during cooling and dehumidifying As an evaporator,
A heat exchanger (heat exchanger that functions as a condenser during heating) is installed, and a second indoor heat exchanger (9)C is installed downstream that functions as an evaporator during cooling.
A heat exchanger (heat exchanger that functions as a condenser during dehumidification and heating) will be installed. Also, Q4) is a four-way valve, with a discharge pipe (2) and a suction pipe (
10) and arranged between the outdoor heat exchanger (3) and the second indoor heat exchanger (9). Other aspects are the same as before.

次に前記空気調和機の作用を説明する。冷房運転時は、
従来と同様である。即ち、冷媒は実線の矢印のように、
圧縮機(11、吐出管(2)、四方弁θ似室外熱交換器
(31、第1の冷房用キャピラリチューブ(5)、配管
(131、第1の室内熱交換器(らl、第2の電磁弁(
7)、第2の室内熱交換器(9)、四方弁(14)、吸
入管00)の順に流れて、圧縮機(1)にもどる。また
チャージモジュレータ機能も従来同様で、配管(131
は低圧であり、正常に動作1“る。また除湿運転時には
、四方弁Q4)を切りかえる。このとき、圧縮機(1)
を出た高温高圧の冷媒は、吐出管(2)、四方弁(財)
を経て第2の室内熱交換器(9)(冷房時には蒸発器と
して、除湿時には従来と異なり凝縮器として働く熱交換
器)へ導かれ、ここで外部(室内空気)へ放熱17、熱
交換された液冷媒は、第2の除湿用キャピラリチューブ
(8)で断熱膨張し、第1の室内熱交換器(6:(冷房
時には蒸発器として、除湿時には従来と異なり蒸発器と
して働く熱交換著於導かれ、ここで外部(寮内空気)よ
り吸熱し、配管03]、第1の電磁弁(4)(冷房時閉
、除湿時開)室外熱交換器(3)(冷房時には凝縮器と
して、除湿時には従来と異なり蒸発器と1−て働(熱交
換)四方弁0似吸入管(lO)をホトて圧縮機(1)に
もどる。この程合、チャージモジュレータ(11)を具
えたものにあっては配管03)は低圧となるため、冷房
疎転時と同様にチャージモジュレータ機能は正常に動作
しで、モジュレータ(11)は満液状態にならな(なる
。また低外気福・山においても第1の室内熱交換器(6
)と室外熱交換器(3)とで吸熱1′るので、冷媒ザイ
クルの吸熱量が増し、第1の室内熱交換器(6)に着霜
さぜることプよく除湿でき、さらに室外ファン07)の
回転数を上げれは、第2の室内熱交換器(9)の放熱部
が増して、室温の上昇を伴う暖房気味の除湿運転ができ
る。即ち、第16図に示すように、外気温が下がるにつ
れ高圧側(破線A3 )低圧側(破線A4)ともに下が
ってくる。しかし室外ファン(17)の回転数を上する
ことにより、室外tA交換器(3)の吸熱量が増し、高
低圧ともにそれほど低下せす、破線A4のように着層領
域に入らす、第1の室内熱交換器(6)の着霜が防止さ
れる。
Next, the operation of the air conditioner will be explained. During cooling operation,
Same as before. In other words, the refrigerant moves as shown by the solid arrow.
Compressor (11, discharge pipe (2), four-way valve θ-like outdoor heat exchanger (31, first cooling capillary tube (5), piping (131, first indoor heat exchanger (L, second Solenoid valve (
7), the second indoor heat exchanger (9), the four-way valve (14), and the suction pipe 00), and then returns to the compressor (1). In addition, the charge modulator function is the same as before, and the piping (131
is at low pressure and operates normally. Also, during dehumidification operation, the four-way valve Q4) is switched. At this time, the compressor (1)
The high-temperature, high-pressure refrigerant that exits the discharge pipe (2) and four-way valve.
The heat is then led to the second indoor heat exchanger (9) (a heat exchanger that works as an evaporator during cooling and as a condenser during dehumidification, unlike conventional heat exchangers), where it is radiated to the outside (indoor air) and heat exchanged. The liquid refrigerant expands adiabatically in the second dehumidifying capillary tube (8), and then enters the first indoor heat exchanger (6), which functions as an evaporator during cooling and unlike conventional evaporators during dehumidification. Here, it absorbs heat from the outside (air inside the dormitory), pipe 03], first solenoid valve (4) (closed when cooling, opened when dehumidified), outdoor heat exchanger (3) (used as a condenser during cooling, dehumidified) Sometimes, unlike the conventional method, the four-way valve works (heat exchanges) with the evaporator and returns to the compressor (1) through the four-way valve 0-like suction pipe (10). In this case, the pressure in pipe 03) will be low, so the charge modulator function will not operate normally and the modulator (11) will not be in a full liquid state (in the mountains with low outside air). First indoor heat exchanger (6
) and the outdoor heat exchanger (3), the amount of heat absorbed by the refrigerant cycle increases, and the first indoor heat exchanger (6) can be effectively dehumidified without frost formation. If the rotation speed of 07) is increased, the heat radiating part of the second indoor heat exchanger (9) is increased, and a dehumidifying operation with a heating effect accompanied by a rise in room temperature can be performed. That is, as shown in FIG. 16, as the outside temperature decreases, both the high pressure side (broken line A3) and the low pressure side (broken line A4) decrease. However, by increasing the rotation speed of the outdoor fan (17), the amount of heat absorbed by the outdoor tA exchanger (3) increases, and both the high and low pressures decrease significantly. Frost formation on the indoor heat exchanger (6) is prevented.

なお本実施例では、除湿連転lテ「、凝縮器側が宇内第
2熱交換器(9)だけであり、従来に比べ凝縮器の内容
積が減り、チャージモジュレータ機能と相まって冷媒過
少状態の解消になり、適正運転かできる。
In addition, in this embodiment, the dehumidifying system is connected only to the second heat exchanger (9) on the condenser side, and the internal volume of the condenser is reduced compared to the conventional one, which, combined with the charge modulator function, eliminates the refrigerant shortage situation. and be able to drive properly.

第5図乃至第12図に他の各実施例を示した。Other embodiments are shown in FIGS. 5 to 12.

第5図は、第6図の第1の霜、什、弁(Jおよび第2の
電磁弁(7)を逆止弁(4A)<、7A)におきかえて
コストダウンなり]能、にしている。なお第1の逆止弁
(4A)は除湿運転時に、第2の逆止弁(7A)は冷r
5−運転時に冷媒が流れろ向きに配設する。また第6図
は、冷房、除湿に加えて、暖房運転かできる冷媒回路で
あり、第6の電磁弁(151(冷房−除湿時開、暖房時
閉)および第6の暖房用キャピラリα6)をさらに付加
したもので、除湿および暖房時には、四方弁θ4)を切
りかえて、リバースサイクルにする。また第7図は、第
6図の第1のπ1歿弁(4)を逆止弁(4A)におきか
えてコストダウンを可能にしている。同第1の逆止弁(
4A)は、除湿および暖房運転時に冷媒が流れる向きに
配設ずろ。以上の第5図乃至第7図の各実施例でも、冷
房・除湿、暖房時に、配管θ3)は低圧となり、チャー
ジモジュレータ機能は正常に動作する。除湿運転IJ4
Jの作用・効果は第6図の実施例と同じである。なおチ
ャージモジュレータQl)は’1.s略してもよい。な
お以」二の各実施例の場合、冷房気味除湿運転がむつか
しくなるか、そのような場合、室内の気温を下けたいわ
けであるから、室内の勿1温か高い間には、冷房向巳転
を行なえはよく、室内の夕1潟が一トかつ又から除滓苅
5転にすれはよい。また第2の箱1磁弁(7)または第
2の逆止弁(7A)の替りにバイメタル弁を使用するの
は次の問題を生する。即ち、バイメタル弁は入口冷媒の
温度差により流れ方向を変えるものであるが、本発明で
は、第8図(なお実線矢印は冷房時の、破線矢印は暖房
時の、一点鎖線矢印は除湿時の、冷媒の流れ、二点鎖線
矢印は室内空気の流れ)に示すように暖房時及び除湿時
ともリバ−スサイクルであるため、第2の室内熱交換器
(9)を出た冷媒の温度は、冷房時のような温度差がな
くて、ノζイメタル弁の適用はむつかしい。この点に対
処したのが、第11.12図の圧力調整三方弁(7八′
)で、その内部に、中空シリンダー(2!51及び圧力
調整バネ(イ)を有している。入口圧力が低い場合、第
11図に示すように三方弁人口C2nより入った冷媒は
中空シリンダー(ハ)内を通ってパイ、2ス出ロ弼から
出ていく。また入口圧力が高い場合、第12図に示すよ
うに圧力調整バネ(26+が縮み、三方弁入口(5)よ
り入った冷媒は、中空シリンダー(ハ)内を通ってキャ
ピラリ側出口(2)から出ていく。この圧力調整三方弁
(7八′)を使った冷媒回路か、第9.10図で、第9
図では、第1の弁側に電磁弁(4)を、第10図では第
1の弁側に逆止弁(4A)をそれぞれ使用している。次
に第9図の空気調和機の作用を説明すると、暖房時ある
いは除湿時には、第2の室内熱交換器(9)を通って三
方弁(7A′)へ冷媒が流入する。第16図から明らか
ブjように、外気温が低ぐて、暖房運転な必俄とする場
合、高圧回路内の冷媒圧力が低く、三方弁(7八′)は
第11図の状態となり、バイパス管(8A)を冷媒が流
れて、暖房運転になる。またそれとは逆に、外気温が高
い場合、高圧回路内の冷媒圧力(第2の室内熱交換器(
9)内の圧力)が高くなり、三方弁(7A’)は第12
図の状態となり、第2の除濁用キャピラリチューブ(8
)を冷媒が流れて、除湿運転になる。以上述べたように
、三方弁(7A’)により外気温に対応して暖房運転あ
るいは除湿運転というように自動的に切りかわる。
Figure 5 shows the function of the first frost valve (J and second solenoid valve (7) in Figure 6, which can be replaced with check valves (4A) <, 7A) to reduce costs. There is. Note that the first check valve (4A) is operated during dehumidification operation, and the second check valve (7A) is operated during dehumidification operation.
5- Arrange the refrigerant in the direction in which it flows during operation. Fig. 6 shows a refrigerant circuit that can perform heating operation in addition to cooling and dehumidification, and has a sixth solenoid valve (151 (open for cooling/dehumidification, closed for heating) and sixth heating capillary α6). Additionally, during dehumidification and heating, the four-way valve θ4) is switched to create a reverse cycle. Further, in FIG. 7, the first π1 valve (4) in FIG. 6 is replaced with a check valve (4A), thereby making it possible to reduce costs. The first check valve (
4A) is arranged in the direction in which the refrigerant flows during dehumidification and heating operations. In each of the embodiments shown in FIGS. 5 to 7, the pressure in the pipe θ3) becomes low during cooling, dehumidification, and heating, and the charge modulator function operates normally. Dehumidification operation IJ4
The function and effect of J are the same as in the embodiment shown in FIG. Note that the charge modulator Ql) is '1. s may be omitted. In addition, in the case of each of the embodiments described in ``2'' below, it becomes difficult to operate the air conditioner with a slight dehumidifying effect, or in such a case, since it is desired to lower the indoor temperature, the air conditioner is switched to the cooling direction while the indoor temperature is still high. It is good to do this, and it is good to remove the slag from one to one and five times indoors. Further, using a bimetallic valve instead of the second box 1 solenoid valve (7) or the second check valve (7A) causes the following problem. That is, the bimetal valve changes the flow direction depending on the temperature difference of the inlet refrigerant, but in the present invention, as shown in FIG. , the flow of refrigerant, and the two-dot chain arrow indicates the flow of indoor air), since the reverse cycle is used during both heating and dehumidification, the temperature of the refrigerant leaving the second indoor heat exchanger (9) is Since there is no temperature difference like there is during cooling, it is difficult to apply a metal valve. The pressure regulating three-way valve (78'
), which has a hollow cylinder (2!51) and a pressure adjustment spring (A) inside it.When the inlet pressure is low, the refrigerant entering from the three-way valve C2n flows through the hollow cylinder as shown in Figure 11. (c) The pipe passes through the inside and exits from the 2-way exit opening.Also, when the inlet pressure is high, the pressure adjustment spring (26+) contracts as shown in Figure 12, and the piston enters from the three-way valve inlet (5). The refrigerant passes through the hollow cylinder (c) and exits from the capillary side outlet (2).
In the figure, a solenoid valve (4) is used on the first valve side, and in FIG. 10, a check valve (4A) is used on the first valve side. Next, the operation of the air conditioner shown in FIG. 9 will be explained. During heating or dehumidification, refrigerant flows into the three-way valve (7A') through the second indoor heat exchanger (9). As is clear from Fig. 16, when the outside temperature is low and heating operation is necessary, the refrigerant pressure in the high pressure circuit is low and the three-way valve (78') is in the state shown in Fig. 11. Refrigerant flows through the bypass pipe (8A) and heating operation begins. Conversely, when the outside temperature is high, the refrigerant pressure in the high-pressure circuit (the second indoor heat exchanger (
9) becomes high, and the three-way valve (7A')
The state shown in the figure is reached, and the second turbidity removal capillary tube (8
), the refrigerant flows through the dehumidifying operation. As described above, the three-way valve (7A') automatically switches between heating operation and dehumidification operation depending on the outside temperature.

冷媒時は、第1の室内熱交換器(61を通り第2の除湿
用キャピラリチューブ(8)との抵抗差によりバイパス
管(8A)を経て三方弁(7A’)というように冷媒は
流れる。
When the refrigerant is in use, the refrigerant flows through the first indoor heat exchanger (61) and through the bypass pipe (8A) to the three-way valve (7A') due to the resistance difference with the second dehumidifying capillary tube (8).

なお四方弁θ4)に替えて2つの開閉弁、または三方弁
と逆止弁を用いることができる。また室内プロはラフア
ンを逆転し、または第1と第2の室内熱交換器の前後を
逆にすることにより、室内空気流れ方向を従来のものと
逆にできる。
Note that two on-off valves or a three-way valve and a check valve can be used instead of the four-way valve θ4). Moreover, indoor professionals can reverse the direction of indoor air flow from the conventional one by reversing the rough angle or reversing the front and back of the first and second indoor heat exchangers.

以上本発明を実施例について説明したが、勿論本発明は
このような実施例にだけ局限されるものではなく、本発
明の精神を逸脱しない範囲内で種々の設計の改変を施し
うるものである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and that various design modifications can be made without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の空気調和機の冷媒回路図、第2図はその
縦断側1m図、第6図は本発明に係る除湿運転方法の実
施に使用する空気調和機の一例を示す冷媒回路図、第4
図はその縦断側面図、第5.6.7図は空気調和機の他
の例を示す冷媒回路図、第8図は本発明での冷媒の流れ
を示す説明図、第9.10図は空気調和機のさらに他の
例を示す冷媒回路図、第11.12図は第9.10図の
空気調和機で使用している圧力調整三方弁を示す縦h′
j’を側面図、第16図は従来及び本命り」の作用説明
図である。 (1)・・・圧縮機、(3)・−・熱源側熱交換器、(
5)・・・第1の絞り、(6)・・−第1の室内熱交換
器、(8)・・・第2の絞り、(9)−・・第2の室内
熱交換器。 復代理人 弁理士 岡 本 重 車外2名第1図 蜂2(支) 第3M 第4図 4 第5図 第6図 第7図 第8M 第10口 第11図 第120
Fig. 1 is a refrigerant circuit diagram of a conventional air conditioner, Fig. 2 is a 1-meter longitudinal cross-sectional view thereof, and Fig. 6 is a refrigerant circuit diagram showing an example of an air conditioner used to implement the dehumidifying operation method according to the present invention. , 4th
Figure 5.6.7 is a refrigerant circuit diagram showing another example of an air conditioner, Figure 8 is an explanatory diagram showing the flow of refrigerant in the present invention, and Figure 9.10 is a longitudinal side view of the same. A refrigerant circuit diagram showing yet another example of an air conditioner, Figure 11.12 is a vertical h' showing the pressure regulating three-way valve used in the air conditioner of Figure 9.10.
j' is a side view, and FIG. 16 is an explanatory diagram of the operation of the conventional and preferred method. (1)...Compressor, (3)...Heat source side heat exchanger, (
5)...first aperture, (6)...-first indoor heat exchanger, (8)...second aperture, (9)...-second indoor heat exchanger. Sub-Agent Patent Attorney Shige Okamoto 2 people outside the vehicle Figure 1 Bee 2 (branch) 3M Figure 4 4 Figure 5 6 Figure 7 8M Port 10 Figure 11 Figure 120

Claims (1)

【特許請求の範囲】[Claims] 冷房運転時には圧縮機から吐出された冷媒を熱源側熱交
換器、第1の絞り、第1の室内熱交換器、第2の室内熱
交換器をこの順に経て圧縮機に循環させる空気調和機に
おいて、除湿運転時には、圧縮機から吐出された冷媒を
第2の室内熱交換器、第2の絞り、第1の室内熱交換器
、熱源側熱交換器をこの順に経て圧縮機に循環させると
ともに室内空気を第1の室内熱交換器、第2の室内熱交
換器をこの順に流過させることを慣徴とする空気調和機
の除湿運転方法。
In an air conditioner, during cooling operation, refrigerant discharged from the compressor is circulated to the compressor through a heat source side heat exchanger, a first throttle, a first indoor heat exchanger, and a second indoor heat exchanger in this order. During dehumidification operation, the refrigerant discharged from the compressor is circulated to the compressor through the second indoor heat exchanger, the second throttle, the first indoor heat exchanger, and the heat source side heat exchanger in this order. A dehumidifying operation method for an air conditioner in which air is passed through a first indoor heat exchanger and a second indoor heat exchanger in this order.
JP6841383A 1983-04-20 1983-04-20 Method of dehumidification-operating air conditioner Pending JPS59195068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6841383A JPS59195068A (en) 1983-04-20 1983-04-20 Method of dehumidification-operating air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6841383A JPS59195068A (en) 1983-04-20 1983-04-20 Method of dehumidification-operating air conditioner

Publications (1)

Publication Number Publication Date
JPS59195068A true JPS59195068A (en) 1984-11-06

Family

ID=13372958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6841383A Pending JPS59195068A (en) 1983-04-20 1983-04-20 Method of dehumidification-operating air conditioner

Country Status (1)

Country Link
JP (1) JPS59195068A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340642A (en) * 1992-06-11 1993-12-21 Daikin Ind Ltd Air conditioner
JP2007240146A (en) * 1993-06-01 2007-09-20 Hitachi Appliances Inc Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101147A (en) * 1977-02-15 1978-09-04 Toshiba Corp Air conditioner
JPS5447353A (en) * 1977-09-20 1979-04-13 Matsushita Electric Ind Co Ltd Air conditioner
JPS5755112A (en) * 1980-09-22 1982-04-01 Tokyo Shibaura Electric Co Pressure cooker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101147A (en) * 1977-02-15 1978-09-04 Toshiba Corp Air conditioner
JPS5447353A (en) * 1977-09-20 1979-04-13 Matsushita Electric Ind Co Ltd Air conditioner
JPS5755112A (en) * 1980-09-22 1982-04-01 Tokyo Shibaura Electric Co Pressure cooker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340642A (en) * 1992-06-11 1993-12-21 Daikin Ind Ltd Air conditioner
JP2007240146A (en) * 1993-06-01 2007-09-20 Hitachi Appliances Inc Air conditioner

Similar Documents

Publication Publication Date Title
JPH02185821A (en) Air conditioner for automobile
JPH08105652A (en) Air conditioner
KR100225636B1 (en) Airconditioner for both cooling and warming
JPH03117866A (en) Heat pump type refrigerating cycle
JPS59195068A (en) Method of dehumidification-operating air conditioner
JPH0221487B2 (en)
KR200178070Y1 (en) Heat exchanger for both cooling and heating
JPS5888548A (en) Heat pump type floor heating device
JPH0548039Y2 (en)
JPS63204042A (en) Space cooling/heating apparatus
JPH07229659A (en) Air conditioner
JPS63180053A (en) Heat pump type air conditioner
JP2557940Y2 (en) Air heat source heat pump air conditioner
JPH08320172A (en) Air conditioner
JPS6026948B2 (en) air conditioner
JPH10141815A (en) Air conditioner
JPH049559A (en) Heat pump system and defrosting method of heat pump system
JPS5813820B2 (en) air conditioner
JPS60233471A (en) Heat pump type air conditioner
SU1645776A1 (en) Conditioner
JP3231983B2 (en) Ice storage refrigerator unit
JPH0198860A (en) Heat pump type air conditioner
JPS58211907A (en) Air conditioning device for vehicle
JPH08226725A (en) Engine driven type air conditioning equipment
JPH0480313B2 (en)