JPS59195007A - Method and device for warming high-pressure feedwater heater - Google Patents

Method and device for warming high-pressure feedwater heater

Info

Publication number
JPS59195007A
JPS59195007A JP6566683A JP6566683A JPS59195007A JP S59195007 A JPS59195007 A JP S59195007A JP 6566683 A JP6566683 A JP 6566683A JP 6566683 A JP6566683 A JP 6566683A JP S59195007 A JPS59195007 A JP S59195007A
Authority
JP
Japan
Prior art keywords
pressure
feed water
warming
water heater
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6566683A
Other languages
Japanese (ja)
Other versions
JPH0377402B2 (en
Inventor
作花 憲治
浦 勝己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6566683A priority Critical patent/JPS59195007A/en
Publication of JPS59195007A publication Critical patent/JPS59195007A/en
Publication of JPH0377402B2 publication Critical patent/JPH0377402B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、蒸気原@機プラントの給水加熱器の温度の急
変を防止するためのウオーミング方法およびウオーミン
グ装置に1カするものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention provides a warming method and a warming device for preventing sudden changes in the temperature of a feed water heater in a steam generator plant.

〔発明の背景〕[Background of the invention]

蒸気原@機プラントの給水系統は、従来一般に第1 t
riに示すような装置を用いて次のように行われる。
Conventionally, the water supply system of a steam generator plant has generally been
This is carried out as follows using a device as shown in ri.

ボイラ点人後、脱気器2内の給水は、ボイラ最少流量に
相当する流量分、ボイラ給水ポンプ4によシ、給水管5
を経てボイラに給水される。この時脱気器2内の給水は
真空脱気状態にあり、約60Cに保たれる。従って高圧
給水加熱器も約6(lの状態にある。夕・−ビイ通気状
態になると、ボイラへの給水量はボイラ発生蒸気量に相
当する流量分に増加するが、この時の給水温度は約60
Cから徐々に上昇してくる。タービン通気後、タービン
角筒が約20%になった状態で、第3高圧給水加熱器6
、第2高圧給水加熱器7、第1高圧給水加熱器8という
ように、低圧低温側の給水加熱器から順次インサービス
してゆく。図において、1 +q復水管、3はブースタ
ポンプである。6,7゜8はそれぞれ第3.第2.第1
高圧給水加熱器であシ、9,10,11.12はそれぞ
れ第1.第2、第3.第4抽気管である。13は脱気器
循環ポンプ、14は脱気器循環配管、15は給水ポンプ
バイパス管、16はボイラクリーンアップ管、17はボ
イラ水ib配管、18は補助蒸気ヘッダ、19は所内ボ
イラ、20け脱気器補助蒸気管、27は高圧給水加熱器
バイパス管である。
After the boiler is turned on, the water in the deaerator 2 is supplied by the boiler water supply pump 4 and the water supply pipe 5 at a flow rate corresponding to the minimum flow rate of the boiler.
The water is then supplied to the boiler. At this time, the water supply in the deaerator 2 is in a vacuum deaerated state and maintained at about 60C. Therefore, the high-pressure feed water heater is also in a state of about 6 (l). When the ventilation state is reached, the amount of water supplied to the boiler increases to a flow rate corresponding to the amount of steam generated by the boiler, but the temperature of the feed water at this time is Approximately 60
It gradually rises from C. After turbine ventilation, with the turbine square tube reduced to about 20%, the third high-pressure feed water heater 6
, the second high-pressure feedwater heater 7 , and the first high-pressure feedwater heater 8 , the feedwater heaters on the low-pressure, low-temperature side are sequentially put into service. In the figure, 1 is a +q condensate pipe, and 3 is a booster pump. 6, 7°8 are the 3rd. Second. 1st
9, 10, 11.12 are the high pressure feed water heaters, respectively. 2nd, 3rd. This is the fourth bleed pipe. 13 is a deaerator circulation pump, 14 is a deaerator circulation pipe, 15 is a feed water pump bypass pipe, 16 is a boiler cleanup pipe, 17 is a boiler water IB pipe, 18 is an auxiliary steam header, 19 is an in-house boiler, 20 The deaerator auxiliary steam pipe 27 is a high pressure feed water heater bypass pipe.

第2図は上記のインサービス操作における温度変化を示
し、tlは通気時点、t2は併入時点、t3は第3高圧
給水加熱器インサービス時点、t4は第2高圧給水加熱
器インサービス時点をそれぞれ表わし、T6は第3高圧
給水加熱器入口の! 給水温度を、T7は第2高圧給水加熱器入口の給水温度
を、T8は第1高圧給水加熱器入口の給水温度を、それ
ぞれ表わしている。
Figure 2 shows the temperature change during the above in-service operation, where tl is the time of ventilation, t2 is the time of addition, t3 is the time of in-service of the third high-pressure feed water heater, and t4 is the time of in-service of the second high-pressure feed water heater. respectively, and T6 is the inlet of the third high-pressure feed water heater! T7 represents the water supply temperature at the inlet of the second high-pressure water heater, and T8 represents the water supply temperature at the inlet of the first high-pressure water heater.

前述の如く、各高圧給水加熱器の入口温度、T6+’f
’ 7 + T 8は、タービン通気時点111で60
Cに保たれ、この状態(温度)から高圧給水加熱器イン
サービス時の所要温度(第3高圧給水加熱器:約130
C,第2高圧給水加熱器:約148C。
As mentioned above, the inlet temperature of each high-pressure feed water heater, T6+'f
'7 + T8 is 60 at turbine venting point 111
From this state (temperature), the required temperature when the high pressure feed water heater is in service (third high pressure water heater: approximately 130
C. Second high-pressure water heater: Approximately 148C.

第1高圧給水加熱器:約1870)tで昇温せしめる。First high-pressure feed water heater: Raise the temperature at approximately 1870) t.

この場合の昇温速度は、第3高圧給水加熱器では約21
00/H,第2高圧給水加熱器では約2271r/H,
第1高圧給水加熱器では約286t?/H急激に温度変
化する。このため、高圧給水加熱器氷室部には極部的な
熱4応力を発生することになる。
In this case, the temperature increase rate is approximately 21
00/H, about 2271r/H in the second high pressure feed water heater,
Approximately 286 tons for the first high pressure water heater? /H Temperature changes rapidly. Therefore, local thermal stress is generated in the ice chamber of the high-pressure feed water heater.

第3図に従来技術の高圧給水加熱器寿命消費率の1例を
示す。前記の温度変化率(第3高圧給水加熱器;約21
0C/H,第2高圧給水加熱器ツ約227tlG/H,
第1高圧給水加熱器;約2860/H)によるとプラン
ト起動停止1サイクル当たりの高圧給水加熱器の寿命消
費率は本図の如く、第3高圧給水加熱器;約0.011
%、第2高圧給水加熱器io、013係、第1高圧給水
加熱器;約o、o i s%となる。
FIG. 3 shows an example of the life consumption rate of a conventional high-pressure water heater. The temperature change rate (third high pressure water heater; approx. 21
0C/H, 2nd high pressure water heater 227tlG/H,
According to the first high-pressure feedwater heater; approximately 2860/H), the life consumption rate of the high-pressure feedwater heater per one cycle of plant start-up and stop is as shown in this figure, and the third high-pressure feedwater heater; approximately 0.011
%, second high-pressure feed water heater io, 013 section, first high-pressure feed water heater; approximately o, o i s%.

以上の様に従来の高圧給水加熱器は温度の急変による極
部的熱応力に対処すべく、球形水量のR部を大きな寸法
で設計、製作する必要が有シ、高圧給水加熱器は大形化
し、又、毎日起動停止運用等でプラントの起動停止回数
が増加することにより、高圧給水加熱器の寿命が短くな
シ、プラント全体の信頼性低下にも大きな影響を与える
。さらに現在実用化が検討・計画オれている超々臨界圧
ブラントでは、相対的に所要給水温度が高くなり、上記
の様な熱応力への対処は、ますます厳しくなる。上記の
理由によシ、超々臨界圧の蒸気原動機プラントを実用化
するためには、高圧給水加熱器の熱応力の軽減が重要な
課題となっている。
As mentioned above, in order to cope with extreme local thermal stress caused by sudden changes in temperature, conventional high-pressure feed water heaters need to be designed and manufactured with a large R section of the spherical water volume, and high-pressure feed water heaters are large. In addition, the number of times the plant starts and stops due to daily start-stop operation, etc. increases, which shortens the life of the high-pressure feed water heater and has a significant impact on the reliability of the entire plant. Furthermore, in the case of ultra-supercritical pressure blunts, which are currently under consideration and planning for practical use, the required water supply temperature will be relatively high, making it increasingly difficult to deal with the thermal stress described above. For the above reasons, reducing the thermal stress of the high-pressure feed water heater has become an important issue in order to put an ultra-supercritical pressure steam power plant into practical use.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて為され、蒸気原動機プラン
トにおけるボイラ点火から高圧給水加熱器インサービス
までの期間(以下、起動過程という)に、高圧給水加熱
器の温度急変を防止し得るウオーミング方法、及び、ウ
オーミング装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and is a warming method capable of preventing sudden changes in temperature of a high-pressure feedwater heater during the period from boiler ignition to high-pressure feedwater heater in-service in a steam power plant (hereinafter referred to as startup process). , and a warming device.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため、本発明のウオーミング方法
は、蒸気原動機の起動過程において、当該蒸気原動機の
抽気蒸気以外の高温流体を給水系統に導入して給水を予
熱し、通気開始から給水加熱器インサービスまでの間に
おける高圧給水加熱器の温度上昇率(時間あたシ)を抑
制することを特徴とする。
In order to achieve the above object, the warming method of the present invention preheats the feed water by introducing a high-temperature fluid other than the bleed steam of the steam engine into the water supply system during the startup process of the steam engine, and from the start of ventilation to the feed water heater. It is characterized by suppressing the temperature rise rate (time rate) of the high-pressure water heater until it is in service.

また、本発明のウオーミング装置は蒸気原動機プラント
の給水系統に2いて、当該蒸気原動機の抽気蒸気以外の
高温流体を給水系統中に導入する管路、および、上記の
導入蒸気と給水との間で熱交換を行わせる手段を設けた
ことを特徴とする。
Further, the warming device of the present invention is installed in a water supply system of a steam engine plant, and is connected to a pipe line that introduces high-temperature fluid other than extracted steam from the steam engine into the water supply system, and between the introduced steam and the water supply. It is characterized by providing means for performing heat exchange.

〔発明の実施例〕[Embodiments of the invention]

第4図は、本発明のウオーミング方法を実施するために
構成した本発明装置め1例を示す。
FIG. 4 shows an example of the apparatus of the present invention configured to carry out the warming method of the present invention.

本実施例は、第1図に示した従来装置に本発明を適用し
て改良したもので、第1図におけると同一の図面参照番
号を附した部材は従来装置片(第1図)におけると同様
の構成部材である。
This embodiment is an improvement by applying the present invention to the conventional device shown in FIG. 1, and the members with the same drawing reference numbers as in FIG. They are similar components.

本実施例においては、所内ボイラ19若しくは゛池水3
0の高温蒸気を、補助蒸気ヘッダ18を介して第3高圧
給水加熱器6に導入するように構成する。22は、ウオ
ーミング蒸気管21に設けた温度tA節弁である。この
温度調節弁22は、第3高圧給水加熱器6の出口部に設
けた温度検出器23によって開閉制御される。
In this embodiment, the in-house boiler 19 or the pond water 3
0 high temperature steam is introduced into the third high pressure feed water heater 6 via the auxiliary steam header 18. 22 is a temperature tA regulating valve provided in the warming steam pipe 21. This temperature control valve 22 is controlled to open and close by a temperature detector 23 provided at the outlet of the third high-pressure feed water heater 6.

ボイラが点火されると、ボイラ最少流量に相当ずデ→〒
宗寺六−鈷 プ4によシ、給水管5.高圧給水加熱器バイパス菅27
を経てボイラ・へ給水される。この時、高圧給水加熱器
側は出口弁31及び入口弁32によシ遮断し、給水が通
過しないようにする。一方、高圧給水加熱器ウオーミン
グ蒸気(本実施例の場合は補助蒸気ヘッダ18からの蒸
気を使用)は、ボイラ点火時点で、ウオーミング蒸気管
21を経て、蒸気圧力により第3高圧給水加熱器6に導
入され第3高圧給水加熱器6をウオーミングする。ウオ
ーミングにより熱吸収されたウオーミング蒸気はドレン
とな、!7第3高圧給水加熱器6のドレン管(図示せず
)を経て復水器へ回収される。又、ウオーミング蒸気量
は第3高圧給水加熱器6出日水室側に設置された温度検
出器23、及び、ウオーミング蒸気管21に設置された
温度調節弁22によシ目標温度となる様に調節する。タ
ービンが通気状態になるとボイラ給水量は増加するが高
圧給水加熱器をバイパス管27によってバイパスしたま
ま給水し、負荷が10〜20チ程庇捉上昇し、高圧給水
加熱器目標ウオーミング温度とインサービス時所要温度
に差がほとんどなくなった時点で高圧給水加熱器をバイ
パスから通水に切シ替えウオーミングを中止する。ター
ビン負荷が20φ程度になった時点で第3高圧給水加熱
器6、第2高圧給水加熱器7、第1高圧給水加熱器8の
順にインサービスして行く。
When the boiler is ignited, it does not correspond to the boiler minimum flow rate.
Souji 6-Kopu 4, water supply pipe 5. High pressure water heater bypass pipe 27
The water is then supplied to the boiler. At this time, the high-pressure feed water heater side is shut off by the outlet valve 31 and the inlet valve 32 to prevent the feed water from passing through. On the other hand, the high-pressure feedwater heater warming steam (in this embodiment, steam from the auxiliary steam header 18 is used) passes through the warming steam pipe 21 at the time of boiler ignition, and is sent to the third high-pressure feedwater heater 6 by steam pressure. The third high-pressure water heater 6 is warmed. Warming steam that absorbs heat during warming is drained! 7 The water is recovered to the condenser through the drain pipe (not shown) of the third high-pressure feed water heater 6. In addition, the amount of warming steam is adjusted to the target temperature by a temperature detector 23 installed on the water chamber side of the third high-pressure feed water heater 6 and a temperature control valve 22 installed in the warming steam pipe 21. Adjust. When the turbine enters the ventilation state, the amount of water supplied to the boiler increases, but water is supplied with the high-pressure feedwater heater bypassed by the bypass pipe 27, and the load increases by about 10 to 20 inches, causing the target warming temperature of the high-pressure feedwater heater to rise and the in-service When there is almost no difference in the required temperature, the high-pressure feed water heater is switched from bypass to water flow and warming is stopped. When the turbine load reaches approximately 20φ, the third high-pressure feedwater heater 6, the second high-pressure feedwater heater 7, and the first high-pressure feedwater heater 8 are brought into service in this order.

上記のようにしてウオーミングを行うと、高圧給水加熱
器をバイパス状態から通水状態に切シ替える際、高圧給
水加熱器が予めウオーミングされているので温度の急変
を生じない。従って局部的に大きい熱応力を生じる虞れ
が無い。本発明のウオーミング方法は、上に述べたよう
に蒸気原動機プラントの起動過程において、当該蒸気原
動機の抽気蒸気以外の高温流体を給水系統中に導入して
給水を予熱し、通気開始から給水力則砕器インサービス
までの間における高圧給水加熱器の温度上昇率(時間あ
たシ)を抑制することができるので、温度の急変に伴う
過大な局部的熱応力の発生を未然しご防止し得る。
When warming is performed as described above, when the high-pressure feed water heater is switched from the bypass state to the water flow state, a sudden change in temperature does not occur because the high-pressure feed water heater has been warmed in advance. Therefore, there is no risk of locally generating large thermal stress. As described above, the warming method of the present invention preheats the feed water by introducing a high-temperature fluid other than the extracted steam from the steam engine into the water supply system during the start-up process of the steam engine plant, and the water supply power is adjusted from the start of ventilation. Since it is possible to suppress the temperature rise rate (time rate) of the high-pressure feed water heater until the crusher is placed in service, it is possible to prevent the occurrence of excessive local thermal stress due to sudden changes in temperature. .

まだ、本発明の装置は、上に述べたように、蒸気原動機
プラントの給水系統において、当該蒸気原動機の抽気蒸
気以外の高温流体を給水系統中に導入する管路、および
、上記の導入蒸気と給水との間で熱交換を行わせる手段
を設けることによシ、前記の本発明方法を容易に実施し
てその効果を充分に発揮せしめることができる。
Still, the apparatus of the present invention, as described above, in a water supply system of a steam engine plant, has a pipe line for introducing high temperature fluid other than the extracted steam of the steam engine into the water supply system, and By providing a means for exchanging heat with the water supply, the method of the present invention described above can be easily carried out and its effects can be fully exhibited.

第41図は上記と異なる実施例を説明するための組木系
統図である。
FIG. 41 is a construction diagram for explaining an embodiment different from the above.

本実1癩例は、第4図に示しだ実施例に比して、装置の
基本的構成は同一であり、また運転方法も基本的に同様
である。第4図の実施例に比して異なるところは、各高
圧給水加熱器にそれぞれウオーミング蒸気g21および
温度調節弁22を設けた点である。
This first example has the same basic structure of the apparatus as the embodiment shown in FIG. 4, and the operating method is also basically the same. The difference from the embodiment shown in FIG. 4 is that each high-pressure feed water heater is provided with a warming steam g21 and a temperature control valve 22, respectively.

上にノボベた第4j図、第5図の実施列の−ように、給
水加熱用流体として補助蒸気を用いるとともに、上記の
補助蒸気による給水の予熱を高圧給を、給水加熱器を用
いて行ない、かつ、高圧給水加熱器出口部の給水温度に
基づいて高温蒸気流量を制御すると、給水系統の主要構
成部材を大きく増加せしめないで本発明方法を実施し得
る上に、温度制御が容易である。
As shown in the implementation rows of Figures 4j and 5 shown above, auxiliary steam is used as the feed water heating fluid, and the feed water is preheated by the auxiliary steam using high-pressure supply and a feed water heater. , and if the high-temperature steam flow rate is controlled based on the feed water temperature at the outlet of the high-pressure feed water heater, the method of the present invention can be carried out without significantly increasing the number of main components of the water supply system, and temperature control is easy. .

第6図に上記と異なる実施例の系統構成を示す。FIG. 6 shows a system configuration of an embodiment different from the above.

第4図の実施例と同様に、ボイラ点火で給水は、ボイラ
最少流量分が、脱気器2から、ブースタポンプ3、ボイ
ラ給水ポンプ4によシ、給水管5、高圧給水加熱器バイ
パス管27を経てボイラへ給水される。この時、高圧給
水加熱器側は出入口弁によシ遮断し、給水が通過しない
ようにする。一方、高圧給水加熱器ウオーミング水は、
すでに給水脱気の為、運転中である脱気器循環ポンプ1
3の吐出側である脱気器循環配管14から分岐するウオ
ーミング管25を経て高圧給水加熱器給水側入口に通水
される。このウオーミング水は、ウオーミング管25に
設置したウオーミングヒータ24に過熱蒸気(本実施例
の場合は補助蒸気使用)を導入する芋により加熱してや
シ、ウオーミングに必要な熱量を得て高圧給水加熱器給
水側入口に通水される。高圧給水加熱器6,7.8を通
過したウオーミング水は、第1高圧給水加熱器8出口の
ブレボイラクリーンアップ管16を経て復水器に回収さ
れる。又、ウオーミング水量は、ウオーミング管25に
設置される温度調節弁22、及び、第1高圧給水加熱器
8出口給水管に設置される温度検出器23によ多目標温
度となる様に流量調節される。
Similar to the embodiment shown in Fig. 4, water is supplied when the boiler is ignited, and the boiler minimum flow rate is from the deaerator 2, to the booster pump 3, to the boiler feed water pump 4, to the water supply pipe 5, to the high pressure feed water heater bypass pipe. Water is supplied to the boiler through 27. At this time, the high-pressure feed water heater side is shut off by the inlet/outlet valve to prevent feed water from passing through. On the other hand, the high pressure water heater warming water is
Deaerator circulation pump 1 already in operation for deaeration of feed water
Water is passed through a warming pipe 25 branching from the deaerator circulation pipe 14, which is the discharge side of No. 3, to the water supply side inlet of the high-pressure feed water heater. This warming water is heated by a potato that introduces superheated steam (auxiliary steam is used in this embodiment) into the warming heater 24 installed in the warming pipe 25, and the amount of heat necessary for warming is obtained and the high-pressure water heater feed water is heated. Water is passed through the side entrance. The warming water that has passed through the high-pressure feedwater heaters 6, 7.8 is recovered to the condenser via the bre boiler cleanup pipe 16 at the outlet of the first high-pressure feedwater heater 8. Further, the amount of warming water is adjusted by a temperature control valve 22 installed in the warming pipe 25 and a temperature detector 23 installed in the water supply pipe at the outlet of the first high-pressure feed water heater 8 so as to reach a target temperature. Ru.

タービン通気状態になるとボイラ給水量は増加するが高
圧給水加熱器はバイパスしたままボイラへ給水する。負
荷上昇して(10〜20係)高圧給水加熱器目標ウオー
ミング温度と高圧給水加熱器入口の・インサービス時所
要温度とにほとんど差がなくなった時点でウオーミング
を中止し、高圧給水加熱器をバイパスから通水運転に切
シ替え、タービン負荷が20チ程度になった時点で第3
高圧給水加熱器6、第2高圧給水加熱器7、第1高圧給
水加熱器8の順にインサービスして行く。
When the turbine is ventilated, the amount of water supplied to the boiler increases, but water is supplied to the boiler while the high-pressure feedwater heater is bypassed. When the load increases (sections 10 to 20) and there is almost no difference between the high-pressure feedwater heater target warming temperature and the required in-service temperature at the high-pressure feedwater heater inlet, warming is stopped and the high-pressure feedwater heater is bypassed. Switched to water flow operation, and when the turbine load reached about 20 inches, the third
The high-pressure feed water heater 6, the second high-pressure feed water heater 7, and the first high-pressure feed water heater 8 are brought into service in this order.

あらかじめ高圧給水加熱器をウオーミングしているため
大きな熱応力を発生することはない。
Because the high-pressure water heater is warmed in advance, large thermal stress does not occur.

第7図は、更に異なる実施例の系統構成を示す。FIG. 7 shows a system configuration of a further different embodiment.

本実施例の基本的な構成、および運転方法は第6図実施
例と同一である。第6図実施例との差違は、第6図実施
例では、ウオーミングヒータ24で熱交換した蒸気を、
脱気器2の脱気室に回収したのに対し、第7図実施例で
は、ウオーミングヒータ24で熱交換した蒸気をドレン
として脱気器2の貯水槽に回収する様にした事である。
The basic configuration and operating method of this embodiment are the same as the embodiment shown in FIG. The difference from the embodiment shown in FIG. 6 is that in the embodiment shown in FIG.
In the embodiment shown in FIG. 7, the steam heat-exchanged by the warming heater 24 is collected in the water storage tank of the deaerator 2 as drain.

上に述べた第6図、第7図の実施例のように、脱気器循
環水の一部を抽出して給水どして用い、高温蒸気によっ
て給水を加熱し、かつ、上記の刀目熱を高圧給水加熱器
と別個に設けた熱交換器によって行うことによっても、
高圧給水加熱器の温度の急変を防止することができる。
As in the embodiments shown in FIGS. 6 and 7 described above, a part of the deaerator circulating water is extracted and used as water supply, the supply water is heated by high-temperature steam, and the above-mentioned method is used. By providing heat through a high-pressure feedwater heater and a separate heat exchanger,
Sudden changes in the temperature of the high-pressure water heater can be prevented.

第8図は、更に異なる実施例の系統構成を示す一0本実
施例は、基本的系統、及び、運転方法ともに、第6図実
施例と同一である。第6図実施例との差違は、ウオーミ
ングヒータ24の設置位置にある。
FIG. 8 shows the system configuration of a further different embodiment. This embodiment is the same as the embodiment in FIG. 6 in terms of both the basic system and the operating method. The difference from the embodiment shown in FIG. 6 lies in the installation position of the warming heater 24.

第6図実施例ではウオーミングヒータ24をウオーミン
グ管25に設置したのに対し、本実施例では脱気器歯環
ポンプ13吐出側の脱気器循環配管14に設置する事を
特徴としている。
In the embodiment shown in FIG. 6, the warming heater 24 is installed in the warming pipe 25, whereas in this embodiment, the warming heater 24 is installed in the deaerator circulation pipe 14 on the discharge side of the deaerator tooth ring pump 13.

本実施例に於ては、脱気器循環水の全体を加温する事に
よシ、高圧給水加熱器のウオーミングだけでなく、ボイ
ラ給水ポンプのウオーミングとして利用できる事も期待
できる。
In this embodiment, by heating the entire deaerator circulating water, it can be expected that it can be used not only for warming the high-pressure feed water heater but also for warming the boiler feed water pump.

第9図は、更に異なる実施例の系統構成を示す。FIG. 9 shows a system configuration of a further different embodiment.

前記実施例と同様に、ボイラ点火で給水は、ボイラ最少
σlL”4分が、脱気器2から、ブースタポンプ3、ボ
イラ汀、含水ポンプ4によシ、給水管5、高圧給水7I
O熱器バイパス管27を経てボイラへ給水される。この
時、置圧給水加熱器側は出入口弁によりB析し、給水を
通水しないようにする。一方、高圧給水加熱器のウオー
ミング水は、ブースタポンプ3と、ボイラ給水ポンプ4
との連絡配管から分岐するボイラ給水ポンプバイパス管
15を経て給水の一部をウオーミング水として、制圧給
水加熱器給水側入口に通水される。このウオーミング水
はくボイラ給水ポンプバイパス管15に設置したウオー
ミングヒータ24に過熱蒸気(本実施的の場合は補助蒸
気使用)を導入する事によシ加熱してやり、ウオーミン
グに必要な熱量を得て高圧紹水加熱器給水側入口に通水
される。高圧給水加熱器6,7.8を通過したウオーミ
ング水は、第1高圧給水加熱器8出口の、プレボイラク
+j−ンアツプ管16を経て復水器に回収される。又、
ウオーミング蒸気量は、ウオーミング蒸気管21に設置
される温度調節弁22、及び、第1高圧幻水加熱器8出
口給水管に設置される温度検出器23により目標温度と
なる様に流量−節される。
Similarly to the above embodiment, water is supplied by boiler ignition for a minimum of σlL"4 minutes, from the deaerator 2, to the booster pump 3, to the boiler bottom, to the water-containing pump 4, to the water supply pipe 5, to the high-pressure water supply 7I.
Water is supplied to the boiler via the O-heater bypass pipe 27. At this time, the pressure feed water heater side is blocked by an inlet/outlet valve so that the feed water does not pass through. On the other hand, warming water for the high-pressure feed water heater is supplied to the booster pump 3 and the boiler feed water pump 4.
A portion of the feed water is passed as warming water to the water supply side inlet of the pressure feed water heater through the boiler feed water pump bypass pipe 15 branching from the communication pipe with the boiler feed water pump. This warming water is heated by introducing superheated steam (in this case, auxiliary steam is used) into the warming heater 24 installed in the boiler feed water pump bypass pipe 15 to obtain the amount of heat necessary for warming and to create a high pressure. Water is passed to the water supply side inlet of the water heater. The warming water that has passed through the high-pressure feedwater heaters 6, 7.8 is recovered to the condenser via the preboiler +J-up pipe 16 at the outlet of the first high-pressure feedwater heater 8. or,
The amount of warming steam is controlled by a temperature control valve 22 installed in the warming steam pipe 21 and a temperature detector 23 installed in the water supply pipe at the outlet of the first high-pressure water heater 8 so as to reach the target temperature. Ru.

タービン通−気状態になるとボイラ給水型は増加するが
高圧給水加熱器はバイパスしたままボイラへ給水する。
When the turbine is ventilated, the number of boiler water supply types increases, but water is supplied to the boiler with the high-pressure feedwater heater bypassed.

負荷上昇して(10〜20%)高圧給水加熱器目様ウオ
ーミング温度と高圧給水加熱語入口のインサービス時所
要温度にほとんど差がなくなった時点でウオーミングを
中止し、高圧給水加熱器をバイパスから通水運転に切シ
替え、タービン負荷が20%程度なった時点で第3高圧
給水加熱器6、第2高圧給水加熱器7、第1高圧給水加
熱器8の順にインサービスして行く。
When the load increases (10-20%) and there is almost no difference between the warming temperature of the high-pressure feedwater heater and the required in-service temperature of the high-pressure feedwater heater inlet, stop warming and switch the high-pressure feedwater heater from bypass. Switching to water flow operation, when the turbine load reaches about 20%, the third high pressure feed water heater 6, the second high pressure feed water heater 7, and the first high pressure feed water heater 8 are brought into service in this order.

本実施的によっても前例と同様の効果が得られる。This implementation also provides the same effects as the previous example.

第10図は更に異なる実施例の系統構成を示す。FIG. 10 shows a system configuration of a further different embodiment.

基本的な考え方、運転方法は、前記第9図の実施例と同
・j釆である。本実施例の特徴は、ウオーミングヒータ
24を、ボイラ水波シ配管17に設置し、ウオーミング
水を水徴りポンプによシ供給するところにある。本実施
例によっても前例と同様の効果がもIられる。
The basic concept and operating method are the same as those of the embodiment shown in FIG. 9 above. The feature of this embodiment is that the warming heater 24 is installed in the boiler water pipe 17, and warming water is supplied to the water pump. This embodiment also provides the same effects as the previous example.

第11図は本発°力の実施的における温度変化を示す図
表でろって、従来技術における第2図に対応する1凶で
ある。
FIG. 11 is a chart showing temperature changes in actual use of the present invention, and corresponds to FIG. 2 in the prior art.

記2図と同じ図面参照記号を用いたt8〜t5およびT
6〜T8は第2図におけると同様の意味を表わしている
。上述の実施例でウオーミング温度を約1600で制御
したとすると、タービン通気時には高圧給水加熱器温度
は約160Cに達してお9、高圧給水加熱器をインサー
ビスすることによシ、第3高圧給水加熱器T6では約9
00/H1第2高圧給水加熱器T7では一約31 C,
/、)−I 。
t8 to t5 and T using the same drawing reference symbols as in Figure 2.
6 to T8 represent the same meanings as in FIG. If the warming temperature is controlled at approximately 160C in the above embodiment, the high pressure feed water heater temperature will reach approximately 160C during turbine ventilation9. Approximately 9 for heater T6
00/H1 2nd high pressure feed water heater T7 - about 31 C,
/,)-I.

第1高圧給水加熱器T8では約61c7nで温度変化す
ることになり、従来技術の温度変化幅(第2図参照)に
比べ、かなシ温度変化幅を小さくすることができ、大幅
に熱応力を押える事が可能である。
In the first high-pressure feed water heater T8, the temperature changes by approximately 61c7n, and compared to the temperature change width of the conventional technology (see Figure 2), the temperature change width can be made smaller, and thermal stress can be significantly reduced. It is possible to hold it down.

第12図に本発明実施例の高圧給水加熱器寿命消費率を
示す。本図に示す如く、従来技術の寿命消費率(第3図
参照)に比べ、餉1.第2.第3高圧給水加熱器のいず
れにおいても寿命消費率を50%以上低減することがで
き、大幅に高圧給水加熱器の寿命は増加する。
FIG. 12 shows the life consumption rate of the high-pressure feed water heater according to the embodiment of the present invention. As shown in this figure, compared to the lifetime consumption rate of the conventional technology (see Figure 3), the life consumption rate is 1. Second. In any of the third high-pressure feedwater heaters, the life consumption rate can be reduced by more than 50%, and the lifespan of the high-pressure feedwater heaters is significantly increased.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明のウオーミング方法によれ
ば、蒸気原動機プラントにおけるボイラ点火から高圧給
水加熱器インサービスまでの起動過程における高圧給水
加熱器の温度急変を防止することができ、これに伴って
局部的熱応力を減少せしめ得る。これによって当然に高
圧給水加熱器のコストダウンが可能になシ、シかも寿命
消費率を低減せしめることができ、超々臨界圧プラント
の実用化に貢献するところ多大である。
As detailed above, according to the warming method of the present invention, it is possible to prevent sudden temperature changes in the high-pressure feedwater heater during the startup process from boiler ignition to high-pressure feedwater heater in-service in a steam power plant. Accordingly, local thermal stress can be reduced. This naturally makes it possible to reduce the cost of the high-pressure feed water heater, and also to reduce the life consumption rate, which greatly contributes to the practical application of ultra-supercritical pressure plants.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術の概略系統榊成図、第2図は従来技術
の高圧給水加熱器温度状態図、第3図は従来技術の高圧
給水加熱器寿命消費率を示す図表、第4図乃至第10図
はそれぞれ本発明の1実施例の給水系4%図、第11図
は本発明の実施例における高圧給水加熱器の温度状態図
、第12図は同じく寿命消費率を示す図表である。 l・・・復水骨、2・・・脱気器、3・・・ブースタポ
ンプ、4・・・ボイラ袷水ポンプ、訃・・給水管、6・
・・第3高圧給水加熱器、7・・・第2高圧給水加熱器
、8・・・第1高圧給水加熱器、9・・・第1抽気管、
10・・・第2抽気管、11・・・第3抽気管、12・
・・第4抽気管、13・・・脱気器循環ポンプ、14・
・・脱気器循環配管、15・・・給水ポンプバイパス管
、16・・・プレボイラクリーンアップ管、17・・・
ボイラ水tvb配管、18・・・補助蒸気ヘッダ、19
・・・所内ボイラ、20・・・脱気米補助蒸気管、21
・・・ウオーミング蒸気管、22・・・扁度調節弁、2
3・・・温度検出器、24・・・ウオーミングヒータ、
25・・・ウオーミング管、26・・・ウオーミングド
レン管、27・・・高圧給水加熱器バイパス管、tl・
・・通気時点、”2・・・併入時点、t3・・・第3高
圧給水加熱器インサービス時点、t4・・・第2高圧給
水加熱器インサービス時点、t5・・・第1高圧給水加
熱器インサービス時点、T6・・・第3高圧給水加熱器
入口給水温度、T7・・・第2高圧給水加熱器入口給水
温度、T8・・・第1高圧給水加熱器入口給水温度。 代理人 弁理士 秋本正実 毛3図 命り)′水2FMlK変イL幅(・C)弔12図
Fig. 1 is a schematic system diagram of the conventional technology, Fig. 2 is a temperature state diagram of the high pressure feed water heater of the conventional technology, Fig. 3 is a chart showing the life consumption rate of the high pressure feed water heater of the conventional technology, and Figs. Fig. 10 is a 4% diagram of the water supply system in one embodiment of the present invention, Fig. 11 is a temperature state diagram of the high-pressure feed water heater in the embodiment of the present invention, and Fig. 12 is a chart showing the life consumption rate. . l... Condensate bone, 2... Deaerator, 3... Booster pump, 4... Boiler water pump, End... Water supply pipe, 6...
...Third high-pressure feed water heater, 7... Second high-pressure feed water heater, 8... First high-pressure feed water heater, 9... First bleed pipe,
10...Second air bleed pipe, 11...Third air bleed pipe, 12.
... Fourth bleed pipe, 13... Deaerator circulation pump, 14.
... Deaerator circulation piping, 15... Water pump bypass pipe, 16... Preboiler cleanup pipe, 17...
Boiler water tvb piping, 18...auxiliary steam header, 19
... In-house boiler, 20 ... Deaeration rice auxiliary steam pipe, 21
... Warming steam pipe, 22 ... Angularity control valve, 2
3... Temperature detector, 24... Warming heater,
25... Warming pipe, 26... Warming drain pipe, 27... High pressure feed water heater bypass pipe, tl.
... At the time of ventilation, "2... At the time of joining, t3... At the time of third high pressure feed water heater in service, t4... At the time of second high pressure feed water heater in service, t5... At the time of first high pressure water supply At the time of heater in-service, T6...Third high-pressure feedwater heater inlet water supply temperature, T7...Second high-pressure feedwater heater inlet water supply temperature, T8...First high-pressure feedwater heater inlet water supply temperature. Patent attorney Masami Akimoto 3 drawings) 'Wed 2FMlK odd L width (・C) Funeral 12 drawings

Claims (1)

【特許請求の範囲】 1、蒸気原動機プラントの起動過程において、当該蒸気
原動機の抽気蒸気以外の高温流体を給水系統中に導入し
て給水を予熱し、通気開始から給水加熱器インサービス
までの間における高圧給水加熱器の温度上昇率(時間あ
たり)を抑制することを特徴とする高圧給水加熱器のウ
オーミング方法。 2、蒸気原動機プラントの給水系統において、当該蒸気
原動機の抽気蒸気以外の高温流体を給水系統中に導入す
る管路、および、上記の導入蒸気と給水との間で熱交換
を行わせる手段を設けたことを特徴とする、高圧給水加
熱器のウオーミング装置。 3、前記の高温流体は、これを高温蒸気とすると共に、
上記の高温蒸気による給水の予熱は、高圧給水加熱器を
用いて行ない、かつ、高圧給水加熱器出口部の給水温度
に基づいて高温蒸気流量を制御することを特徴とする特
許請求の範囲第1項に記載の高圧給水加熱器のウオーミ
ング方法。 4、前記の高温流体はこれを高温蒸気とすると共に、前
記の熱交換手段は、これを面圧給水加熱器とし、かつ、
該高圧給水加熱器の出口部における給水温度検出器、チ
・よび、上記検出器の検出信号に基づいて高温蒸気の流
量を制御する手段を設けたことを特徴とする特許請求の
範囲第2項に記載の高圧給水加熱器のウオーミング装置
。 5、前記の給水は脱気器循環水の一部を抽出して用い、
高温流体は高温蒸気とし、面圧給水加熱器と別個に設け
た熱交換器によって給水を加熱することを特徴とする特
許請求の範囲第1項に記載の高圧給水加熱器のウオーミ
ング方法。 6、前記熱交換を行わせる手段は、脱気器循環水の一部
を抽出して高温蒸気によシ加熱するものとし、かつ、高
圧給水加熱器と別体に構成したものであることを特徴と
する特許請求の範囲第2項に記載の高圧給水加熱器のウ
オーミング装置。 7、前記の給水は脱気器循環水の一部を抽出して用い、
高温流体は高温蒸気とし、かつ脱気器循環ポンプの吐出
口に直近の個所において行うことを特徴とする特許請求
の範囲第1項に記載の高圧給水加熱器のウオーミング方
法。 8、前記の給水は脱気器循環水の一部を抽出して高温蒸
気によって加熱するものとし、かつ、脱気器循環ポンプ
の吐出口の直近の個所に接続したものであることを特徴
とする特許請求の範囲第2項に記載の高圧給水加熱器の
ウオーミング装置。 9、前記の給水の予熱は、ブースタポンプ吐出口とボイ
ラ給水ポンプ吸入口との接続個所から抽出した給水を、
高温蒸気によって行うものとし、予熱を終えた加熱側の
流体は復水器に回収することを特徴とする特許請求の範
囲第1項に記載の高圧給水加熱器のウオーミング方法。 10、前記の熱交換を行わせる手段は、被加熱側流体の
流入口をブースタポンプの吐出口に接続するとともに、
被加熱側流体の流出口を高圧給水加熱器の給水流入口に
接続し、かつ、該熱交換手段の加熱側流体の流出口を復
水器に接続したものであることを特徴とする特許請求の
(n西東2項に記載の高圧給水力ロ熱器のウオーミング
装置。 11、前記の給水は、水製シポンプの吐出水を用い、こ
れを予熱した後、高圧給水加熱器の流入口に供給するこ
とを特徴とする特許請求の範囲第1項に記載の高圧給水
加熱器のウオーミング方法。 12、前記のト行水の熱交換を行う手段は、その被加熱
側の流入口を水MMt)ポンプ吐出口に接続するととも
に、該被加熱側の流出口を高圧給水加熱器の流入口に接
続したことを特徴とする特許請求の範囲第2項に記載の
高圧給水加熱器のウオーミング装置。
[Claims] 1. In the startup process of a steam engine plant, a high-temperature fluid other than the extracted steam of the steam engine is introduced into the water supply system to preheat the feed water, and from the start of ventilation until the feed water heater is in service. A warming method for a high-pressure water heater, characterized by suppressing the temperature rise rate (per hour) of the high-pressure water heater. 2. In the water supply system of a steam engine plant, a pipe line for introducing high temperature fluid other than extracted steam from the steam engine into the water supply system, and a means for heat exchange between the introduced steam and the water supply are provided. A warming device for a high-pressure water heater, which is characterized by: 3. The high-temperature fluid is converted into high-temperature steam, and
Claim 1, characterized in that the above-mentioned preheating of the feed water by high-temperature steam is performed using a high-pressure feed water heater, and the high-temperature steam flow rate is controlled based on the feed water temperature at the outlet of the high-pressure feed water heater. Warming method for the high-pressure water heater described in Section 1. 4. The high-temperature fluid is converted into high-temperature steam, and the heat exchange means is a surface pressure feed water heater, and
Claim 2, further comprising a feed water temperature detector at the outlet of the high pressure feed water heater, and means for controlling the flow rate of high temperature steam based on the detection signal of the detector. A warming device for a high-pressure water heater described in . 5. The above water supply is used by extracting a part of the deaerator circulating water,
2. The method for warming a high-pressure feedwater heater according to claim 1, wherein the high-temperature fluid is high-temperature steam, and the feedwater is heated by a heat exchanger provided separately from the surface-pressure feedwater heater. 6. The means for performing the heat exchange extracts a part of the deaerator circulating water and heats it with high-temperature steam, and is constructed separately from the high-pressure feed water heater. A warming device for a high-pressure feed water heater according to claim 2. 7. The above water supply is used by extracting a part of the deaerator circulating water,
2. The method of warming a high-pressure feedwater heater according to claim 1, wherein the high-temperature fluid is high-temperature steam, and the warming is performed at a location closest to the discharge port of the deaerator circulation pump. 8. The water supply is characterized in that a part of the deaerator circulating water is extracted and heated with high-temperature steam, and is connected to a point immediately adjacent to the discharge port of the deaerator circulation pump. A warming device for a high-pressure feed water heater according to claim 2. 9. The above-mentioned preheating of the feed water is performed by extracting the feed water from the connection point between the booster pump discharge port and the boiler feed water pump suction port,
2. The method for warming a high-pressure feedwater heater according to claim 1, wherein the warming is performed using high-temperature steam, and the heating-side fluid that has been preheated is recovered in a condenser. 10. The means for performing the heat exchange includes connecting the inlet of the fluid to be heated to the discharge port of the booster pump, and
A patent claim characterized in that the outlet of the fluid to be heated is connected to the feed water inlet of a high-pressure feed water heater, and the outlet of the heated fluid of the heat exchange means is connected to a condenser. Warming device for a high-pressure water heater as described in Item 2 of (N SEITO) A warming method for a high-pressure feed water heater according to claim 1, characterized in that: 12. The means for exchanging heat of the flowing water connects the inlet on the side to be heated to water MMt). 3. The warming device for a high-pressure feed water heater according to claim 2, wherein the warming device is connected to a pump discharge port, and the outflow port on the side to be heated is connected to the inlet of the high-pressure feed water heater.
JP6566683A 1983-04-15 1983-04-15 Method and device for warming high-pressure feedwater heater Granted JPS59195007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6566683A JPS59195007A (en) 1983-04-15 1983-04-15 Method and device for warming high-pressure feedwater heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6566683A JPS59195007A (en) 1983-04-15 1983-04-15 Method and device for warming high-pressure feedwater heater

Publications (2)

Publication Number Publication Date
JPS59195007A true JPS59195007A (en) 1984-11-06
JPH0377402B2 JPH0377402B2 (en) 1991-12-10

Family

ID=13293541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6566683A Granted JPS59195007A (en) 1983-04-15 1983-04-15 Method and device for warming high-pressure feedwater heater

Country Status (1)

Country Link
JP (1) JPS59195007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508471A (en) * 2012-01-18 2015-03-19 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Device for controlling working fluid in a closed loop operating on a Rankine cycle and method using the same
CN112282866A (en) * 2020-11-18 2021-01-29 贵州电网有限责任公司 Steam turbine generator unit shaft seal steam supply pipeline heating system and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399101A (en) * 1977-02-09 1978-08-30 Hitachi Ltd Back up boiler
JPS5726304A (en) * 1980-07-25 1982-02-12 Hitachi Ltd Warming apparatus for boiler feed water pump
JPS5835304A (en) * 1981-08-28 1983-03-02 株式会社日立製作所 Method and device for warming high-pressure feedwater heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399101A (en) * 1977-02-09 1978-08-30 Hitachi Ltd Back up boiler
JPS5726304A (en) * 1980-07-25 1982-02-12 Hitachi Ltd Warming apparatus for boiler feed water pump
JPS5835304A (en) * 1981-08-28 1983-03-02 株式会社日立製作所 Method and device for warming high-pressure feedwater heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508471A (en) * 2012-01-18 2015-03-19 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Device for controlling working fluid in a closed loop operating on a Rankine cycle and method using the same
CN112282866A (en) * 2020-11-18 2021-01-29 贵州电网有限责任公司 Steam turbine generator unit shaft seal steam supply pipeline heating system and control method thereof

Also Published As

Publication number Publication date
JPH0377402B2 (en) 1991-12-10

Similar Documents

Publication Publication Date Title
JP3883627B2 (en) Waste heat recovery steam generator and method for operating a gas turbocharger combined with a steam consumer
US20120137683A1 (en) Run-up method for a solar steam power plant
KR101584418B1 (en) Boiler plant
JPH03124902A (en) Combined cycle power plant and operating method therefor
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
RU2160368C2 (en) Method and device for cooling low-pressure fractional turbine
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
JP5442474B2 (en) Power generation facility and operation method of power generation facility
JP4889552B2 (en) Operation method of power generation facilities
JPS59195007A (en) Method and device for warming high-pressure feedwater heater
JP2012102980A (en) Blow tank and method of using the same
JP2014112018A (en) Power generation unit, and method of recovering flash tank drain in starting power generation unit
JP3604886B2 (en) Pressurized fluidized bed combined cycle power plant and power plant
SU1125393A1 (en) Method of starting cold and non-cooled electric power station power unit
JPH05322105A (en) Device for heating feedwater for boiler
JP2796201B2 (en) Drain pump warming device in power plant
JP3276247B2 (en) Boiler / turbine condensate and water supply equipment
JP3619551B2 (en) Water supply equipment in a steam turbine plant
JPS6136125B2 (en)
JPS59180011A (en) Heat recovering apparatus of steam turbine plant
JPH1054501A (en) Exhaust gas heat recovery device and method for operating the same
FI81889C (en) Steam power installation
JPH0227282Y2 (en)
JP2625487B2 (en) Hot start method of boiler
JP2650477B2 (en) Water hammer prevention method for deaerator water supply piping and piping equipment therefor