JPS59194688A - Control system of dc motor - Google Patents

Control system of dc motor

Info

Publication number
JPS59194688A
JPS59194688A JP58068108A JP6810883A JPS59194688A JP S59194688 A JPS59194688 A JP S59194688A JP 58068108 A JP58068108 A JP 58068108A JP 6810883 A JP6810883 A JP 6810883A JP S59194688 A JPS59194688 A JP S59194688A
Authority
JP
Japan
Prior art keywords
signal
current
firing angle
converter
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58068108A
Other languages
Japanese (ja)
Other versions
JPH0219714B2 (en
Inventor
Kazuhiro Koie
鯉江 和裕
Takeo Takagi
高木 健夫
Eisuke Azegami
畔上 栄輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58068108A priority Critical patent/JPS59194688A/en
Publication of JPS59194688A publication Critical patent/JPS59194688A/en
Publication of JPH0219714B2 publication Critical patent/JPH0219714B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/2855Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Abstract

PURPOSE:To prevent the control from becoming unstable by providing a firing angle shifting command signal at the time point for generating a current zero detection signal in the step of switching-over a thyristor converter. CONSTITUTION:When a torque polarity signal Tp is positive, a selection signal Wa is ON, and a converter 2A operates. When the current actual value signal ¦H¦ decreases to the inside of insensitive unit of current zero detecting means in case that the polarity of the signal Tp inverts from positive to negative at the time point t0, a firing angle shift command signal Vs is outputted, and shifted to the maximum firing angle. After the lapse of the time T1, a selection signal Wa becomes OFF, and the operation of the thyristor converter 2A is stopped. After further the lapse of time T2, a firing angle shift command signal Vs is released, the selection signal Wb simultaneously becomes ON, and the operation of the thyristor converter 2B is started.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は直流電動機の電機子回路に対して互いに逆並列
接続されたサイリスタ変換器を循環電流なしで切換え制
御することによシ、直流電動機の4象限運転を行なう直
流電動機の制御方式に関する。
[Detailed Description of the Invention] [Technical Field to which the Invention Pertains] The present invention provides a direct current motor by switching and controlling thyristor converters connected in antiparallel to each other with respect to an armature circuit of a direct current motor without circulating current. This invention relates to a control method for a DC motor that performs four-quadrant operation.

〔従来技術とその問題点〕[Prior art and its problems]

第1図はこの種の装置の一般的な構成を示すブロック図
である。この第1図において3相交流電源に交流リアク
トル1を介して接続される電力変換部2は3相ブリツジ
結線された2組のサイリスタ変換器2人と2Bからなシ
、このサイリスタ変換器2Aと2Bは直流電動機3の電
機子に対して互いに逆並列接続されている。電動機3の
回転速度は速度検出発電機4によシ検出され速度実際値
信号Nとして速度調節器5に導かれる。速度調節器5は
一般にPI調節器として構成され、図示されていない速
度指令部からの速度目標値信号N*を受け、速度目標値
に対して速度実際値を一致させるように電流目標値を指
令する。この速度調節器5の出力信号工 は絶対値変換
回路6によシ絶対仏変換され電流目標値信号1工”1と
して電流調節器7に導かれる。一方直流電動機3の電機
子電流は電力変換部2の交流側に挿入された変流器8A
と整流回路8Bでなる電流検出部8によシ無極性の′電
流実際値信号IIIとして検出され、この電流実際値信
号IIIも電流調節器7に導かれる。
FIG. 1 is a block diagram showing the general configuration of this type of device. In FIG. 1, a power converter 2 connected to a three-phase AC power source via an AC reactor 1 consists of two sets of three-phase bridge-connected thyristor converters and two thyristor converters 2B, and this thyristor converter 2A and 2B are connected in antiparallel to the armature of the DC motor 3. The rotational speed of the electric motor 3 is detected by a speed detection generator 4 and fed to a speed regulator 5 as a speed actual value signal N. The speed regulator 5 is generally configured as a PI regulator, receives a speed target value signal N* from a speed command section (not shown), and commands a current target value so that the actual speed value matches the target speed value. do. The output signal of the speed regulator 5 is converted into an absolute value by an absolute value conversion circuit 6 and is guided to the current regulator 7 as a current target value signal 1.Meanwhile, the armature current of the DC motor 3 is converted into power. Current transformer 8A inserted on the AC side of section 2
The current detecting section 8 consisting of a rectifier circuit 8B detects the current value as a non-polar 'actual current value signal III, and this actual current value signal III is also guided to the current regulator 7.

切換え指令演算器10は速度調節器5からトルク極性信
号Tpを受取るが、このトルク極性信号Tpは速度調節
器5の出力信号工 またはこれと同等で極性判別が可能
な速度調節器5の内部信号であって、切換え指令演算器
10はこのトルク極性信号Tpからトルク極性を判別し
て所望のトルク極性を判断する機能と、電流検出部8か
らの電流実際値信号1’I+が零であるか否かを判別し
て電流零検出信号を作成する機能と、上述の機能による
情報に基づいて点弧角シフト指令信号Vsを作成する機
能と、サイリスタ変換器2Aと2Bのいずれを動作させ
るかを選択する変換器選択信号Waとwbを作成する機
能とを有する。
The switching command calculator 10 receives the torque polarity signal Tp from the speed regulator 5, but this torque polarity signal Tp is an output signal of the speed regulator 5, or an equivalent internal signal of the speed regulator 5 that can determine the polarity. The switching command calculator 10 has the function of determining the torque polarity from this torque polarity signal Tp and determining the desired torque polarity, and also has the function of determining whether the current actual value signal 1'I+ from the current detection section 8 is zero. A function to determine whether or not the current is zero and create a zero current detection signal, a function to create a firing angle shift command signal Vs based on the information from the above function, and a function to determine which of the thyristor converters 2A and 2B to operate. It has a function of creating converter selection signals Wa and wb to be selected.

電流調節器7は電流目標値信号1工”1と電流実際値信
号IIIを受は電流目標値と実際値との偏差に応じて両
者を一致させるべく点弧角指令信号Vαを点弧角調整器
9に与える。またトルク極性が反転する際に切換え指令
演算器10から電流調節器7に導かれる点弧角シフト指
令信号Vsは十分大きな値でかつ電流目標値信号1工0
1とは逆極性にて電流調節器に入力されるので、電流調
節器7は電流実際値が過大であると判断して点弧角αる
動作をする。なお最大点弧角αmaxおよび最小点弧角
αmin (変換器にとっては最大順変換出力電圧)に
電流調節器7が内蔵する出力電圧リミッタによって設定
される。
The current regulator 7 receives the current target value signal 1 and the current actual value signal III, and adjusts the firing angle command signal Vα to match the current target value and the actual value according to the deviation between the two. Also, when the torque polarity is reversed, the firing angle shift command signal Vs guided from the switching command calculator 10 to the current regulator 7 has a sufficiently large value and the current target value signal 1
Since the current is inputted to the current regulator with a polarity opposite to that of 1, the current regulator 7 determines that the actual current value is excessive and operates to increase the firing angle α. Note that the maximum firing angle αmax and the minimum firing angle αmin (maximum forward conversion output voltage for the converter) are set by an output voltage limiter built in the current regulator 7.

点弧角調整器9は切換え指令演算器10からの変換器選
択信号Wa、’Wbにより指定された方のサイリスタ変
換器2Aもしくは2Bに対して、電流調節器7から出力
される点弧角指令信号Vαにしたがって点弧角制御する
The firing angle regulator 9 issues a firing angle command output from the current regulator 7 to the thyristor converter 2A or 2B designated by the converter selection signals Wa and 'Wb from the switching command calculator 10. The firing angle is controlled according to the signal Vα.

切換え指令演算器10はトルク極性信号Tpが反転した
時にサイリスタ変換器を切換える指令を出すのであるが
、この切換え動作を第2図の動作波形図によシ説明する
。なおこの切換え動作は、動作中のサイリスタ変換器2
Aを変換器2Bに切換える場合についてである。
The switching command calculator 10 issues a command to switch the thyristor converter when the torque polarity signal Tp is reversed, and this switching operation will be explained with reference to the operating waveform diagram in FIG. Note that this switching operation is performed when the thyristor converter 2 is in operation.
This is a case where converter A is switched to converter 2B.

第2図において時刻t0  の瞬間にトルク極性信号T
pの極性が反転すると、切換え指令演算器10はこの信
号Tpの極性が反転したことを判別しく第2図(a))
直ちに点弧角シフト指令信号Vsを発する(第2図(d
))○この点弧角シフト指令信号Vsによ、bit流調
節器7が出力している点弧角信号■αの点弧角αは90
度以下であったものが最大点弧角α  までシフトされ
るように指令を発aX しく第2図(g) ) 、電流調節器7内にある積分コ
ンデンサはこの最大点弧角αmaX@’値への充電を始
める。電流実際値IIIは第2図(b)のように変化し
、切換え指令演算器10がこの電流零を検出すると(第
2図(c) ) 、この電流零を確認する一定時間T1
を経過した後に動作中のサイリスタ変換器2Aのための
選択信号Waをオフにしく第2図(d)x変換器2Aの
動作を停止させるとともに、一定時間T2を経過した後
に変換器2Bを動作させるための選択信号wbを発する
(第2図(f))。この一定時間T2は電流調節器7内
の積分コンデンサが最大点弧角αmax相当値へ充電さ
れる動作が完了するまでの時間をかせぐためである。こ
の一定時間T2が経過して選択信号wbがオンし、変換
器2Bが動作開始すると同時に点弧角シフト指令信号V
sも解除され(第2図(d))、点弧角指令信号■αの
点弧角は最大逆変換出力点に相当する最大点弧角αma
xから所望の電機子電流を供給し得る逆変換出力点相当
の点弧角へ徐々に変化して行くので(第2図(g) )
 、変換器2Bは突入電流なしで円滑に回生制動モード
で電流が増加して行く(第2図(b))。
In Fig. 2, at the instant of time t0, the torque polarity signal T
When the polarity of signal Tp is reversed, the switching command calculator 10 determines that the polarity of signal Tp has been reversed (Fig. 2(a)).
The firing angle shift command signal Vs is immediately issued (Fig. 2 (d)
)) ○ Based on this firing angle shift command signal Vs, the firing angle signal ■ α that the bit flow regulator 7 outputs is 90.
The integrator capacitor in the current regulator 7 issues a command so that the firing angle α is shifted to the maximum firing angle α (Fig. 2 (g)), and the integral capacitor in the current regulator 7 Start charging. The actual current value III changes as shown in FIG. 2(b), and when the switching command calculator 10 detects this current zero (FIG. 2(c)), a fixed time T1 is set to confirm this current zero.
After the elapse of T2, the selection signal Wa for the thyristor converter 2A in operation is turned off, and the operation of the x converter 2A is stopped, and the converter 2B is activated after the elapse of a certain period of time T2. A selection signal wb is issued to make the selection (FIG. 2(f)). This fixed time T2 is provided to allow time until the integration capacitor in the current regulator 7 is charged to a value corresponding to the maximum firing angle αmax. After this fixed time T2 has elapsed, the selection signal wb is turned on and the converter 2B starts operating, and at the same time the firing angle shift command signal V
s is also canceled (Fig. 2 (d)), and the firing angle of the firing angle command signal ■α is the maximum firing angle αma corresponding to the maximum inverse conversion output point.
Since the firing angle gradually changes from x to the firing angle corresponding to the inverse conversion output point that can supply the desired armature current (Figure 2 (g))
, the current in the converter 2B increases smoothly in the regenerative braking mode without inrush current (FIG. 2(b)).

上述せる従来の制御方式による動作は、ときには制御が
不安定になることが確認され、これに、つき種々の検討
を重ねた結果、その原因はトルク外。
It has been confirmed that the operation using the conventional control method described above sometimes becomes unstable in control, and as a result of various studies, the cause was found to be something other than torque.

乱に伴なって不必要な切換え動作が実行されるためであ
ることが判明した。即ち所望のトルク極性が短時間だけ
反転してまた元に戻るような負荷トルク変動が生じたと
きに、従来の制御方式では所望のトルク極性が反転する
と直ちに点弧角シフト指令信号が電流調節器に入力され
、電流調節器内の積分コンデンサをこの点弧角シフト指
令信号に基づいて最大点弧角αmax相当値まで充電す
る動作が行なわれるので、所望のトルク極性が元に戻っ
ても、上記積分コンデンサの充電状態が元の状態に戻る
までに時間を要するので、電機子電流を元の状態に回復
させるのにかなシの時間が必要になるのである。
It turns out that this is because unnecessary switching operations are executed due to disturbances. In other words, when a load torque fluctuation occurs in which the desired torque polarity is reversed for a short period of time and then returned to the original state, in the conventional control method, as soon as the desired torque polarity is reversed, the firing angle shift command signal is sent to the current regulator. , and the integral capacitor in the current regulator is charged to a value equivalent to the maximum firing angle αmax based on this firing angle shift command signal, so even if the desired torque polarity returns to its original state, the above Since it takes time for the charging state of the integrating capacitor to return to its original state, a considerable amount of time is required to restore the armature current to its original state.

〔発明の目的〕[Purpose of the invention]

本発明はトルク外乱に伴なって不必要な切換え動作が実
行され、そのために制御が不安定になるのを防止するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to prevent unnecessary switching operations from being performed due to torque disturbances, thereby preventing control from becoming unstable.

〔発明の要点〕[Key points of the invention]

本発明は点弧角シフト指令信号を所望のトルク極性が反
転したときに発するのではなく、電流零を検出してから
発するところに特徴がめり、これによれば電流零検出信
号が発生する前に反転していた所望トルク極性が元に戻
るような負荷トルク変動に対してすみやかな応答をしな
いから、安定な制御となる。
The unique feature of the present invention is that the firing angle shift command signal is not generated when the desired torque polarity is reversed, but is generated after detecting zero current. The control is stable because the control does not respond quickly to load torque fluctuations that would cause the desired torque polarity to return to its original state.

〔発明の実施例〕[Embodiments of the invention]

本発明による制御方式を実現する装置は第1図に示す従
来装置と基本的には同じであシ、切換え指令演算器10
が発する点弧角シフト指令信号Vsのタイミングを、所
望するトルク極性が反転したことを判別した瞬間ではな
く、電流零信号が発生したときに変更すればよいのであ
る。
The device for realizing the control method according to the present invention is basically the same as the conventional device shown in FIG.
The timing of the firing angle shift command signal Vs issued by the motor can be changed not at the moment when it is determined that the desired torque polarity has been reversed, but when the current zero signal is generated.

第3図は本発明の制御方式の場合に所望トルク極性の反
転に伴ってサイリスタ変換器を切換える過程の基本動作
を説明する動作波形図である。
FIG. 3 is an operation waveform diagram illustrating the basic operation of the process of switching the thyristor converter in accordance with the reversal of the desired torque polarity in the case of the control method of the present invention.

第3図においてtoなる時点以前では変換器選択信号W
aがオンで変換器2人が動作中であり、選択信号wbは
オフしている。トルク極性信号Tpの極性は正であった
ものがt。時点にその極性が反転して負になったことを
判別すると(第3図(a) ) 、従来ならば点弧角シ
フト指令信号V ’sが直ちに発せられるのであるが、
本発明による制御方式の場合には電流実際値信号III
が電流零検出手段の不感帯の内側にまで低下して電流零
検出信号が発生する時点でこの点弧角シフト指令信号V
sが発せられる(第3図(b) 、 (e) 、 (d
> )。この時点以降の動作は従来例と同様である。即
ち電流零を確認する時間T、を経過した後に変換器選択
信号Waがオフになってサイリスタ変換器2Aの動作は
停止しく第3図(e) ) 、さらに電流調節器7内の
積分コンデンサの最大点弧角α  相当値への充電がa
X 完了するに十分な時間T2が経過した後に点弧角シフト
指令信号Vsが解除され同時に変換器選択信号wbがオ
ンして変換器2Bの動作が開始される(第3図(d) 
、 (f) )。点弧角シフト指令信号Vsが解除され
たときには、積分コンデンサは最大点弧角αmax相当
値まで充電されているので電流調節器7の出力信号Vヶ
は急変することはなく、最大逆変換出力点に相当する最
大点弧角α  からaX 徐々に電機子電圧に見合って所望の電機子電流を供給し
得る逆変換出力点に相当する点弧角に達するので、サイ
リスタ変換器2Bは突入電流なしで円滑に動作し、直流
電動機3は駆動運転モードから制動運転モードへスムー
ズに切換わることができる・〉 第4図は負荷トルク変動によって短時間でトルク極性が
反転した後に元の極性に戻る場合の動作の波形図である
が、この第4図では本発明の制御方式による動作は実線
で示し、従来の制御方式による動作で本発明の方式によ
る動作と異なるところは破線にて表示している。
In FIG. 3, before the time point to, the converter selection signal W
a is on, the two converters are in operation, and the selection signal wb is off. The polarity of the torque polarity signal Tp is positive at t. If it is determined that the polarity has reversed and become negative at that point (FIG. 3(a)), conventionally the firing angle shift command signal V's would have been immediately issued, but
In the case of the control method according to the invention, the current actual value signal III
When the current zero detection signal is generated by decreasing to the inside of the dead zone of the current zero detection means, this firing angle shift command signal V
s is emitted (Fig. 3 (b), (e), (d)
> ). The operation after this point is the same as in the conventional example. That is, after the time T for confirming zero current has elapsed, the converter selection signal Wa is turned off and the operation of the thyristor converter 2A is stopped. Maximum firing angle α Charging to the equivalent value is a
After a time T2 sufficient to complete the firing, the firing angle shift command signal Vs is released, and at the same time, the converter selection signal wb is turned on, and the operation of the converter 2B is started (Fig. 3(d)).
, (f)). When the firing angle shift command signal Vs is released, the integral capacitor has been charged to a value equivalent to the maximum firing angle αmax, so the output signal V of the current regulator 7 does not change suddenly, and the maximum inverse conversion output point is reached. Since the maximum firing angle α corresponding to aX gradually reaches the firing angle corresponding to the inverse conversion output point that can supply the desired armature current commensurate with the armature voltage, the thyristor converter 2B operates without inrush current. The DC motor 3 operates smoothly, and the DC motor 3 can smoothly switch from the drive mode to the brake mode. In FIG. 4, which is a waveform diagram of the operation, the operation according to the control method of the present invention is shown by a solid line, and the operation according to the conventional control method that is different from the operation according to the method of the present invention is shown by a broken line.

第4図において、トルク極性信号TI)の極性が正から
負に反転し、短時間後に再反転して正極性に戻り、その
間電流実際値II+が零にならないような場合(第4図
(a) 、 (b) )でも、従来の制御方式であれば
点弧角シフト指令信号Vsはトルク極性信号TI)の極
性が最初に反転したことを判別した瞬間に発せられ(第
4図(d))、同時に点弧角指令信号vaも点弧角αが
最大点弧角αmaxになるよう指令を発する(第4図(
g))。これに伴って電流調節器7同の積分コンデンサ
が最大点弧角αmax(最大逆変換出力電圧)相当値へ
向けて充電される。それ故要求されるトル、り極性が短
時間後に再反転【−だときに電流調節器7の出力である
点弧角指令信号vaを元の状態に戻すのに時間がかがシ
(第4図(g) ) 、電機子電流はかなシの時間低い
レベルにとどまることとなる(第4図(b) ) 。
In Fig. 4, the polarity of the torque polarity signal TI) is reversed from positive to negative, and then reversed again after a short time to return to positive polarity, during which the actual current value II+ does not become zero (Fig. 4(a) ), (b)) However, in the conventional control system, the firing angle shift command signal Vs is issued at the moment when it is determined that the polarity of the torque polarity signal TI) is first reversed (Fig. 4(d)). ), and at the same time, the firing angle command signal va issues a command so that the firing angle α becomes the maximum firing angle αmax (Fig. 4 (
g)). Accordingly, the integral capacitor of the current regulator 7 is charged toward a value corresponding to the maximum firing angle αmax (maximum inverse conversion output voltage). Therefore, when the required torque and polarity are reversed again after a short period of time, it takes time to return the firing angle command signal va, which is the output of the current regulator 7, to its original state (the fourth (Fig. 4(g)), the armature current will remain at a low level for a short period of time (Fig. 4(b)).

ところで本発明の制御方式によれば、電流零を検出して
いないとき点弧角シフト指令信号Vsは発令されないの
で点弧角猪苓信号vaも電流実際値に見合った値を維持
しているから、トルク極性信号Tpが電流零を検出する
以前に再反転すれば支障なく運転を継続し、制御上の問
題もない。
By the way, according to the control method of the present invention, the firing angle shift command signal Vs is not issued when zero current is not detected, so the firing angle signal va also maintains a value commensurate with the actual current value. If the torque polarity signal Tp is reversed again before the current zero is detected, the operation will continue without any problem and there will be no control problem.

負荷トルク変動などのトルク外乱による不必要な切換え
動作を避けるだけならば、点弧角シフト指令信号Vsの
発生時点を遅らせて、例えば電流零確認時間経過後にす
るなども考えられるが、これは切換え無駄時間がそれだ
け増大することになって好ましいことで・はない。しか
し本発明のように電流零検出信号発生時点で点弧角シフ
ト指令信号Vsを電流調節器7に与える方が従来の制御
方式にくらべて切換え無駄時間の増加を僅かなものにす
ることができる。
If you just want to avoid unnecessary switching operations due to torque disturbances such as load torque fluctuations, it is possible to delay the generation of the firing angle shift command signal Vs, for example after the current zero confirmation time has elapsed. This is not a good thing as the amount of wasted time increases accordingly. However, if the firing angle shift command signal Vs is given to the current regulator 7 at the time when the current zero detection signal is generated, as in the present invention, the increase in switching dead time can be made smaller than in the conventional control system. .

さらに切換え無駄時間を短縮するために、点弧角シフト
指令信号Vsの発令と同時に電流調節器7の積分時間を
所定の時間、通常値よυも/J\さな値に切換える手段
(特開昭55−33259号公報)を組合わせることも
可能である。
Furthermore, in order to reduce the switching wasted time, a means for switching the integration time of the current regulator 7 to a value smaller than the normal value for a predetermined time at the same time as the firing angle shift command signal Vs is issued (Unexamined Japanese Patent Publication No. It is also possible to combine the following methods.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明によ五は電動機の運転−モード
の変化に伴なってサイリスク変換器を切換える過程で行
うべき点弧角シフト指令信号を、所望のトルク極性が反
転した時点ではなく電流零検出信号が発生した時点で生
じさせることによシ、トルク外乱に対して不必要に応答
して制御が不安定になることを回避し、ごく僅かな切換
え無駄時間の増加のみで制御の安定を維持することがで
きるし、しかもこのように安定な制御方式にするたi4
用は零である0
As described above, a fifth aspect of the present invention is that the firing angle shift command signal, which is to be performed in the process of switching the sirisk converter in response to a change in the operating mode of the motor, is changed to the current timing rather than the point at which the desired torque polarity is reversed. By generating the zero detection signal when it occurs, it is possible to avoid unstable control due to unnecessary response to torque disturbance, and stabilize control with only a slight increase in switching dead time. In order to maintain this stable control system, the i4
The use is zero

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は直流電動機の4象限運転を行なうための制御系
の一般的な構成を示すブロック図であり、第2図は従来
の制御方式の場合の切換え動作を説明する動作波形図で
ある。第3図と第4図は本発明の制御方式による切換え
動作を説明する動作波形図であるが、第4図は本発明の
制御方式に従来の制御方式を対比説明している。 2A、2B・・・サイリスタ変換器、3 ・直流電動機
、4・・・速度検出発電機、5・・・速度調節器、6・
絶対値変換回路、7・・・電流調節器、8・・・電流検
出部、9・・・点弧角調整器、1゛0 ・切換え指令演
算器0III・・・電流実際値信号、II”1・・・電
流目標値信号、N・・・速度実際値信号、N“・・・速
度目標値信号、Tp・・・トルク極性信号、■o・・・
点弧角指令信号、Vs・・・点弧角シフト指令信号、W
a * Wb・・・変換器選択信号。 第8図 第4図
FIG. 1 is a block diagram showing a general configuration of a control system for four-quadrant operation of a DC motor, and FIG. 2 is an operation waveform diagram illustrating switching operation in a conventional control system. 3 and 4 are operation waveform diagrams for explaining the switching operation according to the control method of the present invention, and FIG. 4 compares and explains the control method of the present invention with the conventional control method. 2A, 2B...Thyristor converter, 3. DC motor, 4. Speed detection generator, 5. Speed regulator, 6.
Absolute value conversion circuit, 7...Current regulator, 8...Current detection unit, 9...Ignition angle regulator, 1゛0・Switching command calculator 0III...Current actual value signal, II" 1...Current target value signal, N...Speed actual value signal, N"...Speed target value signal, Tp...Torque polarity signal, ■o...
Firing angle command signal, Vs... Firing angle shift command signal, W
a*Wb...Converter selection signal. Figure 8 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 直流電動機の電機子回路に対して互いに逆並列接続され
る一対のサイリスク変換器のうち、その都度電動機が所
望するトルク極性に対応する一方のサイリスタ変換器の
みを動作させるとともに、所望するトルク極性の反転に
伴って動作中のサイリスタ変換器の電流零確認波当該動
作中サイリスタ変換器の動作を停止させてから他方のサ
イリスタ変換器の動作を開始させるようなされた直流電
動機の制御方式において、他方のサイリスタ変換器の動
作開始直後の突入電流防止のために、変換器切換え過程
であらかじめ電流調節器の出方信号を最大点弧相当値へ
追いやる動作を、所望のトルク極性が反転した時点では
行なわせずに電流零検出信号の発生を待って行なわせる
ことを特徴とする直流電動機の制御方式。
Of a pair of thyristor converters connected in antiparallel to each other with respect to the armature circuit of a DC motor, only one thyristor converter corresponding to the torque polarity desired by the motor is operated each time, and the Current zero confirmation wave of an operating thyristor converter due to reversal In a control method for a DC motor in which the operation of the operating thyristor converter is stopped and then the other thyristor converter starts operating, In order to prevent inrush current immediately after the thyristor converter starts operating, the output signal of the current regulator is driven to the maximum ignition equivalent value in advance during the converter switching process, and this is performed when the desired torque polarity is reversed. A control method for a direct current motor, characterized in that control is performed by waiting for the generation of a zero current detection signal.
JP58068108A 1983-04-18 1983-04-18 Control system of dc motor Granted JPS59194688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58068108A JPS59194688A (en) 1983-04-18 1983-04-18 Control system of dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58068108A JPS59194688A (en) 1983-04-18 1983-04-18 Control system of dc motor

Publications (2)

Publication Number Publication Date
JPS59194688A true JPS59194688A (en) 1984-11-05
JPH0219714B2 JPH0219714B2 (en) 1990-05-02

Family

ID=13364208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58068108A Granted JPS59194688A (en) 1983-04-18 1983-04-18 Control system of dc motor

Country Status (1)

Country Link
JP (1) JPS59194688A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749382A (en) * 1980-09-08 1982-03-23 Fanuc Ltd Dc motor driving system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749382A (en) * 1980-09-08 1982-03-23 Fanuc Ltd Dc motor driving system

Also Published As

Publication number Publication date
JPH0219714B2 (en) 1990-05-02

Similar Documents

Publication Publication Date Title
US5055764A (en) Low voltage aircraft engine starting system
JPS59194688A (en) Control system of dc motor
JPS59159602A (en) Thyristor firing angle controller for ac electric rolling stock
JPS6118362A (en) Control circuit for inverter device
JPS6322156B2 (en)
JPS631369A (en) Switching control circuit for dc common converter
JPS6227034Y2 (en)
JP2516196B2 (en) Driving method of current source inverter device
JP2685547B2 (en) Control device for arc welding power supply
JPS59117471A (en) Operation control system for current type inverter
JPH0132759B2 (en)
JPH1042590A (en) Voltage-type inverter
JPS59209029A (en) Power supply device using primary battery
JPS63313669A (en) Method and device for controlling power source for arc welding
JP2519078Y2 (en) Frequency control device for main shaft drive generator
JPS5914392A (en) Control system for inverter
JPS5899286A (en) Inverter device
JP2001289089A (en) Revolution speed control device for engine-driven type welding generator
JPS59127597A (en) Operating method of flywheel generator
JPH0446598A (en) Control method for main machine shaft drive generating system
JPH06296375A (en) Power conversion apparatus
JPH01190283A (en) Switch controlling method for forward/reverse power converter
JPS6112478B2 (en)
JPH1014281A (en) Motor controller
JPH0270294A (en) Controller for ac machine