JPH0219714B2 - - Google Patents

Info

Publication number
JPH0219714B2
JPH0219714B2 JP58068108A JP6810883A JPH0219714B2 JP H0219714 B2 JPH0219714 B2 JP H0219714B2 JP 58068108 A JP58068108 A JP 58068108A JP 6810883 A JP6810883 A JP 6810883A JP H0219714 B2 JPH0219714 B2 JP H0219714B2
Authority
JP
Japan
Prior art keywords
current
signal
firing angle
converter
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58068108A
Other languages
Japanese (ja)
Other versions
JPS59194688A (en
Inventor
Kazuhiro Koie
Takeo Takagi
Eisuke Azegami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58068108A priority Critical patent/JPS59194688A/en
Publication of JPS59194688A publication Critical patent/JPS59194688A/en
Publication of JPH0219714B2 publication Critical patent/JPH0219714B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/2855Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は直流電動機の電機子回路に対して互い
に逆並列接続されたサイリスタ変換器を循環電流
なしで切換え制御することにより、直流電動機の
4象限運転を行なう直流電動機の制御方式に関す
る。
[Detailed Description of the Invention] [Technical Field to which the Invention Pertains] The present invention is directed to switching and controlling thyristor converters connected in antiparallel to each other with respect to the armature circuit of a DC motor without circulating current. This paper relates to a control method for a DC motor that performs quadrant operation.

〔従来技術とその問題点〕[Prior art and its problems]

第1図はこの種の装置の一般的な構成を示すブ
ロツク図である。この第1図において3相交流電
源に交流リアクトル1を介して接続される電力変
換部2は3相ブリツジ結線された2組のサイリス
タ変換器2Aと2Bからなり、このサイリスタ変
換器2Aと2Bは直流電動機3の電機子に対して
互いに逆並列接続されている。電動機3の回転速
度は速度検出発電機4により検出され速度実際値
信号Nとして速度調節器5に導かれる。速度調節
器5は一般にPI調節器として構成され、図示さ
れていない速度指令部からの速度目標値信号N*
を受け、速度目標値に対して速度実際値を一致さ
せるように電流目標値を指令する。この速度調節
器5の出力信号I*は絶対値変換回路6により絶対
値変換されて電流目標値信号|I*|として電流調
節器7に導かれる。一方直流電動機3の電機子電
流は電力変換部2の交流側に挿入された変流器8
Aと整流回路8Bでなる電流検出部8により無極
性の電流実際値信号|I|として検出され、この
電流実際値信号|I|も電流調節器7に導かれ
る。
FIG. 1 is a block diagram showing the general configuration of this type of device. In FIG. 1, a power converter 2 connected to a 3-phase AC power source via an AC reactor 1 consists of two sets of thyristor converters 2A and 2B connected in a 3-phase bridge. They are connected in antiparallel to each other with respect to the armature of the DC motor 3. The rotational speed of the electric motor 3 is detected by a speed detection generator 4 and fed to a speed regulator 5 as a speed actual value signal N. The speed regulator 5 is generally configured as a PI regulator and receives a speed target value signal N * from a speed command unit (not shown).
Then, the current target value is commanded so that the actual speed value matches the target speed value. The output signal I * of the speed regulator 5 is subjected to absolute value conversion by an absolute value conversion circuit 6 and is guided to the current regulator 7 as a current target value signal |I * |. On the other hand, the armature current of the DC motor 3 is transferred to a current transformer 8 inserted into the AC side of the power converter 2.
A and a rectifier circuit 8B, the current detecting section 8 detects the non-polar current actual value signal |I|, and this current actual value signal |I| is also guided to the current regulator 7.

切換え指令演算器10は速度調節器5からトル
ク極性信号Tpを受取るが、このトルク極性信号
Tpは速度調節器5の出力信号I*またはこれと同
等で極性判別が可能な速度調節器5の内部信号で
あつて、切換え指令演算器10はこのトルク極性
信号Tpからトルク極性を判別して所望のトルク
極性を判断する機能と、電流検出部8からの電流
実際値信号|I|が零であるか否かを判別して電
流零検出信号を作成する機能と、上述の機能によ
る情報に基づいて点弧角シフト指令信号Vsを作
成する機能と、サイリスタ変換器2Aと2Bのい
ずれを動作させるかを選択する変換器選択信号
WaとWbを作成する機能とを有する。
The switching command calculator 10 receives the torque polarity signal Tp from the speed regulator 5;
Tp is the output signal I * of the speed regulator 5 or an equivalent internal signal of the speed regulator 5 whose polarity can be determined, and the switching command calculator 10 determines the torque polarity from this torque polarity signal Tp. A function of determining the desired torque polarity, a function of determining whether the current actual value signal |I| from the current detection unit 8 is zero and creating a current zero detection signal, and information from the above-mentioned functions. A function to create a firing angle shift command signal Vs based on the function, and a converter selection signal to select which of the thyristor converters 2A and 2B to operate.
It has the function of creating Wa and Wb.

電流調節器7は電流目標値信号|I*|と電流実
際値信号|I|を受け電流目標値と実際値との偏
差に応じて両者を一致させるべく点弧角指令信号
Vαを点弧角調整器9に与える。またトルク極性
が反転する際に切換え指令演算器10から電流調
節器7に導かれる点弧角シフト指令信号Vsは十
分大きな値でかつ電流目標値信号|I*|とは逆極
性にて電流調節器に入力されるので、電流調節器
7は電流実際値が過大であると判断して点弧角α
を最大点弧角αnax(サイリスタ変換器2Aまたは
2Bにとつては最大逆変換出力電圧)へ追いやる
動作をする。なお最大点弧角αnaxおよび最小点弧
角αnao(変換器にとつては最大順変換出力電圧)
は電流調節器7が内蔵する出力電圧リミツタによ
つて設定される。
The current regulator 7 receives the current target value signal |I * | and the current actual value signal |I|, and outputs a firing angle command signal to match the current target value and the actual value according to the deviation between the two.
Vα is given to the firing angle adjuster 9. Furthermore, when the torque polarity is reversed, the firing angle shift command signal Vs guided from the switching command calculator 10 to the current regulator 7 has a sufficiently large value and the current is adjusted with a polarity opposite to that of the current target value signal |I * | Therefore, the current regulator 7 determines that the actual current value is excessive and changes the firing angle α.
to the maximum firing angle α nax (maximum inverse conversion output voltage for thyristor converter 2A or 2B). Note that the maximum firing angle α nax and the minimum firing angle α nao (for converters, the maximum forward conversion output voltage)
is set by the output voltage limiter built into the current regulator 7.

点弧角調整器9は切換え指令演算器10からの
変換器選択信号Wa,Wbにより指定された方の
サイリスタ変換器2Aもしくは2Bに対して、電
流調節器7から出力される点弧角指令信号Vαに
したがつて点弧角制御する。
The firing angle regulator 9 outputs a firing angle command signal output from the current regulator 7 to the thyristor converter 2A or 2B designated by the converter selection signals Wa and Wb from the switching command calculator 10. The firing angle is controlled according to Vα.

切換え指令演算器10はトルク極性信号Tpが
反転した時にサイリスタ変換器を切換える指令を
出すのであるが、この切換え動作を第2図の動作
波形図により説明する。なおこの切換え動作は、
動作中のサイリスタ変換器2Aを変換器2Bに切
換える場合についてである。
The switching command calculator 10 issues a command to switch the thyristor converter when the torque polarity signal Tp is reversed, and this switching operation will be explained with reference to the operating waveform diagram in FIG. This switching operation is
This is a case where the operating thyristor converter 2A is switched to the converter 2B.

第2図において時刻t0の瞬間にトルク極性信号
Tpの極性が反転すると、切換え指令演算器10
はこの信号Tpの極性が反転したことを判別し
(第2図a)直ちに点弧角シフト指令信号Vsを発
する(第2図d)。この点弧角シフト指令信号Vs
により電流調節器7が出力している点弧角信号
Vαの点弧角αは90度以下であつたものが最大点
弧角αnaxまでシフトされるように指令を発し(第
2図g)、電流調節器7内にある積分コンデンサ
はこの最大点弧角αnax相当値への充電を始める。
電流実際値|I|は第2図bのように変化し、切
換え指令演算器10がこの電流零を検出すると
(第2図c)、この電流零を確認する一定時間T1
を経過した後に動作中のサイリスタ変換器2Aの
ための選択信号Waをオフにし(第2図d)、変
換器2Aの動作を停止させるとともに、一定時間
T2を経過した後に変換器2Bを動作させるため
の選択信号Wbを発する(第2図f)。この一定
時間T2は電流調節器7内の積分コンデンサが最
大点弧角αnax相当値へ充電される動作が完了する
までの時間をかせぐためである。この一定時間
T2が経過して選択信号Wbがオンし、変換器2B
が動作開始すると同時に点弧角シフト指令信号
Vsも解除され(第2図d)、点弧角指令信号Vα
点弧角は最大逆変換出力点に相当する最大点弧角
αnaxから所望の電機子電流を供給し得る逆変換出
力点相当の点弧角へ除々に変化して行くので(第
2図g)、変換器2Bは突入電流なしで円滑に回
生制動モードで電流が増加して行く(第2図b)。
In Fig. 2, at the instant of time t 0 , the torque polarity signal
When the polarity of Tp is reversed, the switching command calculator 10
determines that the polarity of this signal Tp has been reversed (Fig. 2a) and immediately issues the firing angle shift command signal Vs (Fig. 2d). This firing angle shift command signal Vs
The firing angle signal output by the current regulator 7
A command is issued so that the firing angle α of Vα, which was less than 90 degrees, is shifted to the maximum firing angle α nax (Fig. 2g), and the integrating capacitor in the current regulator 7 is set at this maximum point. Start charging to the value equivalent to arc angle α nax .
The actual current value |I| changes as shown in FIG. 2b, and when the switching command calculator 10 detects this current zero (FIG. 2c), a certain period of time T 1 is set to confirm this current zero.
After the period of time, the selection signal Wa for the operating thyristor converter 2A is turned off (Fig. 2 d), the operation of the converter 2A is stopped, and the operation is stopped for a certain period of time.
After T 2 has elapsed, a selection signal Wb for operating the converter 2B is generated (FIG. 2f). This fixed time T 2 is provided to allow time until the integration capacitor in the current regulator 7 is charged to a value corresponding to the maximum firing angle α nax . this certain period of time
After T 2 has elapsed, the selection signal Wb turns on, and converter 2B
The firing angle shift command signal is sent at the same time as the
Vs is also released (Fig. 2 d), and the firing angle command signal Vα
The firing angle gradually changes from the maximum firing angle α nax corresponding to the maximum reverse conversion output point to the firing angle corresponding to the reverse conversion output point that can supply the desired armature current (Fig. 2g). ), the current in the converter 2B increases smoothly in regenerative braking mode without inrush current (Fig. 2b).

上述せる従来の制御方式による動作は、ときに
は制御が不安定になることが確認され、これにつ
き種々の検討を重ねた結果、その原因はトルク外
乱に伴なつて不必要な切換え動作が実行されるた
めであることが判明した。即ち所望のトルク極性
が短時間だけ反転してまた元に戻るような負荷ト
ルク変動が生じたときに、従来の制御方式では所
望のトルク極性が反転すると直ちに点弧角シフト
指令信号が電流調節器に入力され、電流調節器内
の積分コンデンサをこの点弧角シフト指令信号に
基づいて最大点弧角αnax相当値まで充電する動作
が行なわれるので、所望のトルク極性が元に戻つ
ても、上記積分コンデンサの充電状態が元の状態
に戻るまでに時間を要するので、電機子電流を元
の状態に回復させるのにかなりの時間が必要にな
るのである。
It has been confirmed that the operation using the conventional control method described above sometimes results in unstable control, and as a result of various studies on this issue, it has been determined that the cause of this is unnecessary switching operations performed in conjunction with torque disturbances. It turned out to be because. In other words, when a load torque fluctuation occurs in which the desired torque polarity is reversed for a short period of time and then returned to the original state, in the conventional control method, as soon as the desired torque polarity is reversed, the firing angle shift command signal is sent to the current regulator. , and the integral capacitor in the current regulator is charged to a value equivalent to the maximum firing angle α nax based on this firing angle shift command signal, so even if the desired torque polarity returns to its original value, Since it takes time for the charging state of the integrating capacitor to return to its original state, it takes a considerable amount of time to restore the armature current to its original state.

〔発明の目的〕[Purpose of the invention]

本発明はトルク外乱に伴なつて不必要な切換え
動作が実行され、そのために制御が不安定になる
のを防止することを目的とする。
An object of the present invention is to prevent unnecessary switching operations from being executed due to torque disturbances, thereby preventing control from becoming unstable.

〔発明の要点〕[Key points of the invention]

本発明は点弧角シフト指令信号を所望のトルク
極性が反転したときに発するのではなく、電流零
を検出してから発するところに特徴があり、これ
によれば電流零検出信号が発生する前に反転して
いた所望トルク極性が元に戻るような負荷トルク
変動に対してすみやかな応答をしないから、安定
な制御となる。
The present invention is characterized in that the firing angle shift command signal is not issued when the desired torque polarity is reversed, but is issued after detecting zero current, and according to this, the firing angle shift command signal is issued after detecting zero current. The control is stable because the control does not respond quickly to load torque fluctuations that would cause the desired torque polarity to return to its original state.

〔発明の実施例〕[Embodiments of the invention]

本発明による制御方式を実現する装置は第1図
に示す従来装置と基本的には同じであり、切換え
指令演算器10が発する点弧角シフト指令信号
Vsのタイミングを、所望するトルク極性が反転
したことを判別した瞬間ではなく、電流零信号が
発生したときに変更すればよいのである。
The device for realizing the control method according to the present invention is basically the same as the conventional device shown in FIG.
The timing of Vs can be changed not at the moment when it is determined that the desired torque polarity has reversed, but when the current zero signal is generated.

第3図は本発明の制御方式の場合に所望トルク
極性の反転に伴つてサイリスタ変換器を切換える
過程の基本動作を説明する動作波形図である。
FIG. 3 is an operation waveform diagram illustrating the basic operation of the process of switching the thyristor converter in accordance with the reversal of the desired torque polarity in the case of the control method of the present invention.

第3図においてt0なる時点以前では変換器選択
信号Waがオンで変換器2Aが動作中であり、選
択信号Wbはオフしている。トルク極性信号Tpの
極性は正であつたものがt0時点にその極性が反転
して負になつたことを判別すると(第3図a)、
従来ならば点弧角シフト指令信号Vsが直ちに発
せられるものであるが、本発明による制御方式の
場合には電流実際値信号|I|が電流零検出手段
の不感帯の内側にまで低下して電流零検出信号が
発生する時点でこの点弧角シフト指令信号Vsが
発せられる(第3図b,c,d)。この時点以降
の動作は従来例と同様である。即ち電流零を確認
する時間T1を経過した後に変換器選択信号Waが
オフになつてサイリスタ変換器2Aの動作は停止
し(第3図e)、さらに電流調節器7内の積分コ
ンデンサの最大点弧角αnax相当値への充電が完了
するに十分な時間T2が経過した後に点弧角シフ
ト指令信号Vsが解除され同時に変換器選択信号
Wbがオンして変換器2Bの動作が開始される
(第3図d,f)。点弧角シフト指令信号Vsが解
除されたときには、積分コンデンサは最大点弧角
αnax相当値まで充電されているので電流調節器7
の出力信号Vαは急変することはなく、最大逆変
換出力点に相当する最大点弧角αnaxから徐々に電
機子電圧に見合つて所望の電機子電流を供給し得
る逆変換出力点に相当する点弧角に達するので、
サイリスタ変換器2Bは突入電流なしで円滑に動
作し、直流電動機3は駆動運転モードから制御運
転モードヘスムーズに切換わることができる。
In FIG. 3, before time t0 , the converter selection signal Wa is on and the converter 2A is in operation, and the selection signal Wb is off. It is determined that the polarity of the torque polarity signal Tp was positive, but at time t0 , the polarity was reversed and became negative (Fig. 3a).
Conventionally, the firing angle shift command signal Vs is immediately issued, but in the case of the control method according to the present invention, the current actual value signal |I| drops to the inside of the dead zone of the current zero detection means, and the current This firing angle shift command signal Vs is issued at the time when the zero detection signal is generated (Fig. 3b, c, d). The operation after this point is the same as in the conventional example. That is, after the time T1 for confirming zero current has elapsed, the converter selection signal Wa is turned off, the operation of the thyristor converter 2A is stopped (Fig. 3e), and the maximum of the integrating capacitor in the current regulator 7 is After a sufficient time T2 has elapsed to complete charging to the firing angle α nax equivalent value, the firing angle shift command signal Vs is released and at the same time the converter selection signal is released.
Wb is turned on and the operation of the converter 2B is started (Fig. 3 d, f). When the firing angle shift command signal Vs is released, the integral capacitor has been charged to the value equivalent to the maximum firing angle α nax , so the current regulator 7
The output signal Vα does not change suddenly, and gradually changes from the maximum firing angle α nax corresponding to the maximum inverse conversion output point to the inverse conversion output point that can supply the desired armature current in accordance with the armature voltage. Since the firing angle is reached,
The thyristor converter 2B operates smoothly without inrush current, and the DC motor 3 can smoothly switch from the drive operation mode to the control operation mode.

第4図は負荷トルク変動によつて短時間でトル
ク極性が反転した後に元の極性に戻る場合の動作
の波形図であるが、この第4図では本発明の制御
方式による動作は実線で示し、従来の制御方式に
よる動作で本発明の方式による動作と異なるとこ
ろは破線にて表示している。
Fig. 4 is a waveform diagram of the operation when the torque polarity is reversed in a short time due to load torque fluctuation and then returns to the original polarity. , portions of the operation according to the conventional control method that differ from the operation according to the method of the present invention are indicated by broken lines.

第4図において、トルク極性信号TPの極性が
正から負に反転し、短時間後に再反転して正極性
に戻り、その間電流実際値|I|が零にならない
ような場合(第4図a,b)でも、従来の制御方
式であれば点弧角シフト指令信号Vsはトルク極
性信号Tpの極性が最初に反転したことを判別し
た瞬間に発せられ(第4図d)、同時に点弧角指
令信号Vαも点弧角αが最大点弧角αnaxになるよ
う指令を発する(第4図g)。これに伴つて電流
調節器7内の積分コンデンサが最大点弧角αnax
(最大逆変換出力電圧)相当値へ向けて充電され
る。それ故要求されるトルク極性が短時間後に再
反転したときに電流調節器7の出力である点弧角
指令信号Vαを元の状態に戻すのに時間がかかり
(第4図g)、電機子電流はかなりの時間低いレベ
ルにとどまることとなる(第4図b)。
In Fig. 4, the polarity of the torque polarity signal TP is reversed from positive to negative, and then reversed again after a short time to return to positive polarity, during which the actual current value |I| does not become zero (Fig. 4a , b) However, in the conventional control system, the firing angle shift command signal Vs is issued at the moment when it is determined that the polarity of the torque polarity signal Tp is first reversed (Fig. 4d), and at the same time the firing angle shift command signal The command signal Vα also issues a command so that the firing angle α becomes the maximum firing angle α nax (Fig. 4g). Along with this, the integrating capacitor in the current regulator 7 adjusts the maximum firing angle α nax
(maximum reverse conversion output voltage) is charged towards the equivalent value. Therefore, when the required torque polarity is reversed again after a short time, it takes time to return the firing angle command signal Vα, which is the output of the current regulator 7, to its original state (Fig. 4g), and the armature The current will remain at a low level for a considerable time (Figure 4b).

ところで本発明の制御方式によれば、電流零を
検出していないとき点弧角シフト指令信号Vsは
発令されないので点弧角指令信号Vαも電流実際
値に見合つた値を維持しているから、トルク極性
信号Tpが電流零を検出する以前に再反転すれば
支障なく運転を継続し、制御上の問題もない。
By the way, according to the control method of the present invention, since the firing angle shift command signal Vs is not issued when zero current is not detected, the firing angle command signal Vα also maintains a value commensurate with the actual current value. If the torque polarity signal Tp is reversed again before detecting zero current, operation will continue without any problem and there will be no control problem.

負荷トルク変動などのトルク外乱による不必要
な切換え動作を避けるだけならば、点弧角シフト
指令信号Vsの発生時点を遅らせて、例えば電流
零確認時間経過後にするなども考えられるが、こ
れは切換え無駄時間がそれだけ増大することにな
つて好ましいことではない。しかし本発明のよう
に電流零検出信号発生時点で点弧角シフト指令信
号Vsを電流調節器7に与える方が従来の制御方
式にくらべて切換え無駄時間の増加を僅かなもの
にすることができる。
If you just want to avoid unnecessary switching operations due to torque disturbances such as load torque fluctuations, it is possible to delay the generation of the firing angle shift command signal Vs, for example after the current zero confirmation time has elapsed. This is not desirable since the wasted time increases accordingly. However, if the firing angle shift command signal Vs is given to the current regulator 7 at the time when the current zero detection signal is generated, as in the present invention, the increase in switching dead time can be made smaller compared to the conventional control method. .

さらに切換え無駄時間を短縮するために、点弧
角シフト指令信号Vsの発生と同時に電流調節器
7の積分時間を所定の時間、通常値よりも小さな
値に切換える手段(特開昭55−33259号公報)を
組合わせることも可能である。
Furthermore, in order to reduce the switching waste time, there is a means for switching the integration time of the current regulator 7 to a value smaller than the normal value for a predetermined time at the same time as the firing angle shift command signal Vs is generated (Japanese Patent Laid-Open No. 55-33259). It is also possible to combine the following:

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明によれば電動機の運転
モードの変化に伴なつてサイリスタ変換器を切換
える過程で行うべき点弧角シフト指令信号を、所
望のトルク極性が反転した時点ではなく電流零検
出信号が発生した時点で生じさせることにより、
トルク外乱に対して不必要に応答して制御が不安
定になることを回避し、ごく僅かな切換え無駄時
間の増加のみで制御の安定を維持することができ
るし、しかもこのように安定な制御方式にするた
めの費用は零である。
As described above, according to the present invention, the firing angle shift command signal, which should be performed in the process of switching the thyristor converter in response to a change in the operating mode of the electric motor, is determined not when the desired torque polarity is reversed, but when current zero is detected. By causing the signal to occur at the moment it occurs,
It is possible to avoid unstable control due to unnecessary response to torque disturbance, and maintain control stability with only a slight increase in switching dead time. The cost to implement this method is zero.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は直流電動機の4象限運転を行なうため
の制御系の一般的な構成を示すブロツク図であ
り、第2図は従来の制御方式の場合の切換え動作
を説明する動作波形図である。第3図と第4図は
本発明の制御方式による切換え動作を説明する動
作波形図であるが、第4図は本発明の制御方式に
従来の制御方式を対比説明している。 2A,2B……サイリスタ変換器、3……直流
電動機、4……速度検出発電機、5……速度調節
器、6……絶対値変換回路、7……電流調節器、
8……電流検出部、9……点弧角調整器、10…
…切換え指令演算器。|I|……電流実際値信号、
|I*|……電流目標値信号、N……速度実際値信
号、N*……速度目標値信号、Tp……トルク極性
信号、Vα……点弧角指令信号、Vs……点弧角シ
フト指令信号、Wa,Wb……変換器選択信号。
FIG. 1 is a block diagram showing the general configuration of a control system for four-quadrant operation of a DC motor, and FIG. 2 is an operation waveform diagram illustrating switching operation in the case of a conventional control system. 3 and 4 are operation waveform diagrams for explaining the switching operation according to the control method of the present invention, and FIG. 4 compares and explains the control method of the present invention with the conventional control method. 2A, 2B...Thyristor converter, 3...DC motor, 4...Speed detection generator, 5...Speed regulator, 6...Absolute value conversion circuit, 7...Current regulator,
8... Current detection unit, 9... Firing angle adjuster, 10...
...Switching command calculator. |I|...actual current value signal,
|I * |... Current target value signal, N... Actual speed value signal, N * ... Speed target value signal, Tp... Torque polarity signal, Vα... Firing angle command signal, Vs... Firing angle Shift command signal, Wa, Wb...Converter selection signal.

Claims (1)

【特許請求の範囲】[Claims] 1 直流電動機の電機子回路に対して互いに逆並
列接続される一対のサイリスタ変換器のうち、そ
の都度電動機が所望するトルク極性に対応する一
方のサイリスタ変換器のみを動作させるととも
に、所望するトルク極性の反転に伴つて動作中の
サイリスタ変換器の電流零確認後当該動作中サイ
リスタ変換器の動作を停止させてから他方のサイ
リスタ変換器の動作を開始させるようなされた直
流電動機の制御方式において、他方のサイリスタ
変換器の動作開始直後の突入電流防止のために、
変換器切換え過程であらかじめ電流調節器の出力
信号を最大点弧相当値へ追いやる動作を、所望の
トルク極性が反転した時点では行なわせずに電流
零検出信号の発生を待つて行なわせることを特徴
とする直流電動機の制御方式。
1. Of a pair of thyristor converters connected in antiparallel to each other with respect to the armature circuit of a DC motor, only one thyristor converter corresponding to the torque polarity desired by the motor is operated each time, and the desired torque polarity is set. In a control method for a DC motor, in which the operation of the thyristor converter in operation is stopped after checking that the current in the thyristor converter in operation is zero due to the reversal of the thyristor converter, and then the operation of the other thyristor converter is started. To prevent inrush current immediately after the thyristor converter starts operating,
The feature is that in the process of switching the converter, the operation of driving the output signal of the current regulator to the maximum value equivalent to ignition is not performed at the time when the desired torque polarity is reversed, but is performed after waiting for the generation of the current zero detection signal. A control method for a DC motor.
JP58068108A 1983-04-18 1983-04-18 Control system of dc motor Granted JPS59194688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58068108A JPS59194688A (en) 1983-04-18 1983-04-18 Control system of dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58068108A JPS59194688A (en) 1983-04-18 1983-04-18 Control system of dc motor

Publications (2)

Publication Number Publication Date
JPS59194688A JPS59194688A (en) 1984-11-05
JPH0219714B2 true JPH0219714B2 (en) 1990-05-02

Family

ID=13364208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58068108A Granted JPS59194688A (en) 1983-04-18 1983-04-18 Control system of dc motor

Country Status (1)

Country Link
JP (1) JPS59194688A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749382A (en) * 1980-09-08 1982-03-23 Fanuc Ltd Dc motor driving system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749382A (en) * 1980-09-08 1982-03-23 Fanuc Ltd Dc motor driving system

Also Published As

Publication number Publication date
JPS59194688A (en) 1984-11-05

Similar Documents

Publication Publication Date Title
US3983463A (en) Method and apparatus for controlling the speed of induction motors
US3866098A (en) Electrical motor drive system with field control operable in motoring and braking modes
US4256983A (en) Voltage-to-frequency converter having a constant frequency mode of operation
JPH0219714B2 (en)
JPS6322156B2 (en)
JPS59117471A (en) Operation control system for current type inverter
JP2692909B2 (en) Inverter device for electric car
JPS6227034Y2 (en)
JPH08149855A (en) Control method and controller for power conveter
JP2528725B2 (en) Control device for main shaft drive generator
JPH0750962B2 (en) AC electric vehicle control device
GB2032712A (en) Power converter with controlled commutation
JPH0132759B2 (en)
JPS61142981A (en) Power controlling method
JP2519078Y2 (en) Frequency control device for main shaft drive generator
SU1714780A1 (en) Process of controlling the dc thyristor-based traction electric drive unit
JPS63198592A (en) Control of commutatorless motor
JPS61280775A (en) Current type inverter device
JPS6264281A (en) Power source regeneration system for voltage-type inverter
JPS6367421B2 (en)
JPH0347071B2 (en)
JPH06276795A (en) Controller for main engine shaft-driven generator
JPS61273180A (en) Voltage type avaf inverter
JPS6122558B2 (en)
JPS626438B2 (en)