JPS59194543A - Method for measuring separation degree of am stereophonic signal - Google Patents

Method for measuring separation degree of am stereophonic signal

Info

Publication number
JPS59194543A
JPS59194543A JP6944883A JP6944883A JPS59194543A JP S59194543 A JPS59194543 A JP S59194543A JP 6944883 A JP6944883 A JP 6944883A JP 6944883 A JP6944883 A JP 6944883A JP S59194543 A JPS59194543 A JP S59194543A
Authority
JP
Japan
Prior art keywords
signal
stereo
degree
separation
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6944883A
Other languages
Japanese (ja)
Inventor
Tomoya Iida
智也 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6944883A priority Critical patent/JPS59194543A/en
Publication of JPS59194543A publication Critical patent/JPS59194543A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/86Arrangements characterised by the broadcast information itself
    • H04H20/88Stereophonic broadcast systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving

Abstract

PURPOSE:To improve sharply measuring accuracy by applying a low frequency signal and a signal at the same level but different in phase by 90 deg. to two inputs of an AM stereophonic signal generator and measuring the level ratio of upper and lower side- band waves of the output on the primary side. CONSTITUTION:A low frequency signal 54 is applied from a main output terminal 52 of a low frequency oscillator 51 to an R signal input terminal 56 of the AM stereophonic signal generator 58, and a signal 55 different in phase from that of the signal 54 by 90 deg. is applied from a QUAD output terminal 53 to an L signal input terminal 57. A voltmeter 59 with an expanded scale measures both the signal levels so as to uniform the levels to adjust the output level of the oscillator 51 correctly. An AM stereophonic signal 60 of the generator 58 is measured by a spectrum analyzer 61 and the level ratio of the upper and lower side-band waves on the primary side is measured and designated as the separation degree from the channel L to the channel R. Subsequently, the signal L is reversed, the modulation degree of the L+R system is multiplied by prescribed times and the level ratio of the upper and lower waves on the primary side is measured by the analyzer 61 to use the measured value as the separation degree from the channel R to the channel L.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、FCC(米国連邦通信妥員会〕によって認可
されたマグナボックス方式(八ivi −P M方式)
のAMステレオ信号発生器の分離度全測定するのに利用
する、AMステレオ信号分離度測定方法に関するもので
ある。
[Detailed Description of the Invention] Industrial Application Field The present invention is based on the Magnavox method (8ivi-PM method) approved by the FCC (Federal Communications Commission).
This invention relates to a method for measuring the degree of separation of AM stereo signals, which is used to measure the degree of separation of an AM stereo signal generator.

従来例の構成とその問題点 第1図はマグナボソクス方式AMステレオ信号発生器(
以下、単にAMステレオ信号発生器と呼ぶ)の原理を示
す構成図である。以下に、その構成ならびに動作につい
て説明する。
The configuration of the conventional example and its problems Figure 1 shows the Magnavosox type AM stereo signal generator (
1 is a configuration diagram showing the principle of an AM stereo signal generator (hereinafter simply referred to as an AM stereo signal generator). The configuration and operation thereof will be explained below.

第1図において1はステレオ信号の左側入力端子、2は
ステレオ信号の右側入力端子である。左側信号入力端子
1に710えられた左側信号(以下、L信号と呼ぶ)3
、および右側信号入力端子2に加えられた右側信号(以
下、R信号と呼ぶ)4はマトリクス回路5に加えられ、
(I、 + R、)信号6゜(L−R)信号7が作られ
る。(L−1()信号7は位相変調器8に7111わり
、搬送波発振器9で発振された搬送波に位相変調をかけ
る。(L+f’L)信号6は(L−R)信号7による位
相変調との時間関係を正しく合わせるための遅延回路1
1を通り振幅変調器12に加えられる。振幅変調器12
はPM変調波10に、(L+R)信号6による振幅変調
をかける。これがマグナボソクス方式のAMステレオ信
号13であって、出力端子14から外部に取出される。
In FIG. 1, 1 is a left input terminal for stereo signals, and 2 is a right input terminal for stereo signals. Left signal 710 input to left signal input terminal 1 (hereinafter referred to as L signal) 3
, and the right signal (hereinafter referred to as R signal) 4 applied to the right signal input terminal 2 is applied to the matrix circuit 5,
(I, + R,) signal 6° (L-R) signal 7 is created. (The L-1() signal 7 is sent to the phase modulator 8 and applies phase modulation to the carrier wave oscillated by the carrier wave oscillator 9. The (L+f'L) signal 6 is phase modulated by the (L-R) signal 7. Delay circuit 1 for correctly adjusting the time relationship between
1 and is applied to the amplitude modulator 12. Amplitude modulator 12
applies amplitude modulation to the PM modulated wave 10 using the (L+R) signal 6. This is the AM stereo signal 13 of the Magnavox system, and is taken out from the output terminal 14.

通常、へMステレオ信号の分離度測定は第2図に示すよ
うに、標準AMステレオ信号発生器21を作り、そゐ信
号で復調器22を校正し、校正された復調器で供試AM
ステレオ信号発生器23の分離度を測定するという方法
をとる。
Normally, as shown in Figure 2, to measure the degree of separation of AM stereo signals, a standard AM stereo signal generator 21 is created, a demodulator 22 is calibrated using that signal, and the calibrated demodulator is used to generate the AM stereo signal under test.
A method is adopted in which the degree of separation of the stereo signal generator 23 is measured.

このときの標準へMステレオ信号発生器21の確立のた
めの従来の校正例を第1図ケ使って説明する。
A conventional calibration example for establishing the M stereo signal generator 21 to the standard at this time will be explained with reference to FIG.

標準AMステレオ信号発生器21の分離度を解析的に求
めるためには、最低、次の各項目の411定か必要であ
る。
In order to analytically determine the degree of separation of the standard AM stereo signal generator 21, at least 411 of the following items are required.

(1)マドl)クス回路の分離度の測定(2)振幅変調
度の測定 (3)位相変調度の′64I]定 (4)振1tlt?I変調と位相変調の時間差の測定(
6)振幅変調時の奇生位相変調の測定(6)位相変調時
の寄生振幅変調の測定しかしながら、このような従来の
方法では、標準器の校正が非常に複雑であり、壕だその
結果得られる値も40dB程度以上は困難であって、標
準器として望まれる60〜7 odB  といった値か
ら考えると、とうてい満足できるものでなかった。
(1) Measuring the degree of separation of the matrix circuit (2) Measuring the degree of amplitude modulation (3) Measurement of the degree of phase modulation ['64I] Constant (4) Swing 1tlt? Measuring the time difference between I modulation and phase modulation (
6) Measurement of parasitic phase modulation during amplitude modulation (6) Measurement of parasitic amplitude modulation during phase modulation However, in such conventional methods, the calibration of the standard is very complicated and the resulting It is difficult to obtain a value of about 40 dB or more, and considering the value of 60 to 7 odB, which is desired as a standard device, it is hardly satisfactory.

発明の目的 本発明は上記従来例の欠点を除去するものであり、大幅
な測定精度の向上を図ることを目的とするものである。
OBJECTS OF THE INVENTION The present invention is intended to eliminate the drawbacks of the above-mentioned conventional examples, and aims to significantly improve measurement accuracy.

発明の構成 本発明は上記目的を達成するため、L信号とR信号とし
て90’位相の違った同一周波数、同一レベルの信号を
カロえると、(L+R)信号、(L−R)(信号の関係
は900位相の違った同一レベルの信号となり、含酸方
式SSBの原理により片側側波が消去されることを利用
したものであジ、このとき上下側波のレベル比から分離
度が測定できることを解明上、スペクトラムアナライザ
で上下側波のレベル沈金測定することによって分離度を
測定するものである。
Structure of the Invention In order to achieve the above-mentioned object, the present invention calculates signals of the same frequency and the same level with a 90' phase difference as an L signal and an R signal. The relationship is based on the fact that the signals are at the same level with a 900 phase difference, and one side wave is eliminated by the principle of acid-containing SSB.In this case, the degree of separation can be measured from the level ratio of the upper and lower side waves. To clarify this, the degree of separation is measured by measuring the level of the upper and lower side waves using a spectrum analyzer.

本発明によれば、従来の40 dB程度の限界が70 
dB あるいはそれ以上となり、また容易に測定ケ行な
うことができ、非常に大きな効果がある。
According to the present invention, the conventional limit of about 40 dB can be reduced to 70 dB.
dB or more, it can be easily measured, and it has a very large effect.

実施例の説明 最初に不灸明の基本となる、L信号とR信号として90
0位相の違った同一レベルの信号e 7JIIえた」局
舎、マグナボソクス方式AMステレオ信号波の片側の+
1−!:+波か打消されることケ示す。
Explanation of Examples First, 90 as the L signal and R signal, which are the basis of moxibustion.
0 Same level signal with different phase e 7JII station building, + on one side of Magnavox AM stereo signal wave
1-! : + Indicates that the wave will be canceled.

ル合成した場合、(L+R)信号6は■spt 。When the signals are combined, the (L+R) signal 6 is ■spt.

5intrノ。t   、(L−)1)  信号71亡
し0s(pt  → −)=Sln (p t +π)
5intrno. t, (L-)1) Signal 71 lost 0s (pt → -) = Sln (pt + π)
.

変調指数′lf:m2 とすると、PM変調波10:v
2(t)は V2(t)=sin iω、、t +m2sin(pt
+π月=:T () (1’n2 ) S j Ifω
、1±J1 (m2ン5inl(cc+。±p)t±π
 )±72 (m2)51口((ω。±2p)t±2π
 )・・・・・・(1) すると、マグナボックス方式のAMステレオ信号13:
Vl(t)は Vl(t)== +0(m2)+1 +m1sin(p
t 4) 1sinω。t±π) +J2(m2)11+m1sin(pt+−)lsin
l(ω。±2p) t +2yr 1・・・・・・(2
) ・・・・・・(3) これから、 一次上下波一−10(11112)5 CO3l (t
o 、+p ) t +z 1+11(m2)sinl
 (ω。+p)t+π1+41(m2)cosl(ω。
If the modulation index 'lf: m2, then the PM modulated wave 10:v
2(t) is V2(t)=sin iω,,t +m2sin(pt
+π month=:T () (1'n2) S j Ifω
, 1±J1 (m2-5inl(cc+.±p)t±π
)±72 (m2) 51 mouths ((ω.±2p)t±2π
)...(1) Then, the Magnavox AM stereo signal 13:
Vl(t) is Vl(t)== +0(m2)+1 +m1sin(p
t4) 1 sinω. t±π) +J2(m2)11+m1sin(pt+-)lsin
l(ω.±2p) t +2yr 1・・・・・・(2
) ・・・・・・(3) From now on, the primary upper and lower waves 1-10(11112)5 CO3l (t
o , +p ) t +z 1+11(m2) sinl
(ω.+p)t+π1+41(m2)cosl(ω.

+p)t+−1・・・・・・(4)ま ただし、ベセル関数の性質から J2(m2)+T。(m2)=丁J1(m2ンマグナボ
ックス方式ではml−m2に定められているので、 ・・・・・・(5γ とミリ、−次下側波か打消される。この時−次下側波一
’O(”2)−ジcosl(ω。−p)t−−122 −J 1 (rn2)s+01  (ω。−p)t−π
 )+l2(rr12)・ジcosl(ω。−p ) 
t −−122 1 一1J。(m2)−−+11(m2)−J2(rfL2
)・シ12                2cos
 l (ω。−p)t−−1 ・・・・・・(6) となる。ただし、Jo)■2゜ 次にL信号3とR信号4を逆にした場合を考える。以上
の計算と同様の計算ヲ行なうと、−次下側波=Jo(m
2)・−cosl(ω。−p)t−H3P −J1(m2) cos((ω。−p)t−Fl+ 7
2 (Z112 )・m、C,S、(ω、−p)t+−
122 =(Jo(m2)佇−■、(m2)−12(m2)チc
osl(θ)。−p)t−−1 = −2J2(m2)5cosl (ω、−p)t−1
22 ・・・・・・(7) 一次上下波= 2J1(m2)cosl(c+>。+p
)t+71  ・−−−−−(B)となV冗全には消去
されないが、L信号あるいはR信号による50%変調C
(L+R):25チ、(L−R):26チ〕のときの一
次上下側波の比は42 dB であジ、はとんど消去さ
れると言える。厳密には倍することによって、−次下側
波は完全に消去される。
+p)t+-1...(4) However, due to the properties of the Bessel function, J2(m2)+T. (m2) = J1 (m2) Since it is defined as ml-m2 in the Magnabox method, ...... (5γ and mm, the -th lower side wave is canceled. At this time, the -th lower side wave 1'O(''2)-dicosl(ω.-p)t--122-J 1 (rn2)s+01 (ω.-p)t-π
)+l2(rr12)・dicosl(ω.-p)
t --122 1-1J. (m2)−−+11(m2)−J2(rfL2
)・shi12 2cos
l (ω.-p)t--1 (6). However, Jo)■2°Next, consider the case where the L signal 3 and the R signal 4 are reversed. If we perform a calculation similar to the above calculation, -th lower side wave = Jo(m
2)・-cosl(ω.-p)t-H3P-J1(m2) cos((ω.-p)t-Fl+ 7
2 (Z112)・m, C, S, (ω, -p)t+-
122 = (Jo (m2) - ■, (m2) - 12 (m2) Chi c
osl(θ). -p)t--1 = -2J2(m2)5cosl (ω,-p)t-1
22 ・・・・・・(7) Primary upper and lower waves = 2J1(m2)cosl(c+>.+p
) t+71 ・----(B) Although V is not eliminated redundantly, 50% modulation C by L signal or R signal
(L+R): 25 channels, (L-R): 26 channels], the ratio of the primary upper and lower side waves is 42 dB, and it can be said that the side waves are almost eliminated. Strictly speaking, by doubling, the −th order lower side wave is completely eliminated.

次に、−次上下側波のレベル比が分離度に相当すること
を明らかにする。
Next, we will clarify that the level ratio of the -th order upper and lower side waves corresponds to the degree of separation.

(5)(L+R)系と(L−R)系のレベル差による分
離度と一次上下側波のレベル比との関係(L+R)系の
ゲインをGM(GM−m12m1は(L+R)系の変調
度)、(L−R)のゲイン全G8(Gs=m22m2は
(L−R)系の変調指数)とすると、(6)′式は ・・・・・・(9) となり、また(6)式は ・・・・・(IQ となる。従って(9) I (10)式からとなる。
(5) Relationship between the degree of separation due to the level difference between the (L+R) system and the (L-R) system and the level ratio of the primary upper and lower side waves (L+R) system gain is GM (GM-m12m1 is the modulation of the (L+R) system If the total gain G8 (Gs=m22m2 is the modulation index of the (L-R) system) and (L-R), equation (6)' becomes... (9), and (6 ) formula becomes...(IQ).Therefore, it follows from formula (9) I (10).

以上、L信号3.R信号4に900違った同一レベルの
信号を力日えた場合について考えた。
Above, L signal 3. Let's consider a case where a signal with the same level but 900 points different is applied to R signal 4.

次に、(L+R)系のゲインがG、、(L−R)系のゲ
インがGgのAMステレオ信号発生器を、L信号3のみ
で変調し、それを理想受48磯で受信したときの分離式
を求める。
Next, when an AM stereo signal generator with a gain of G for the (L+R) system and a gain of Gg for the (L-R) system is modulated with only the L signal 3, and it is received by the ideal receiver 48 Iso, Find the separation formula.

第3図において、L信号入力端子31に加えられたし入
力信号33 : VLSと、R信号入力端子32に加え
られたR入力信号34 ’、 VH2は理想マドIJク
ス回路36で(L+R)入力信号36 : VMS  
と(L−11()入力信号37 ”、 VB2となり、
へMステレオ変調器38でへMステレオ信号4oとなり
、理想受信・検波回路41で(L+R)出力信号42:
vM。
In FIG. 3, the input signal 33: VLS applied to the L signal input terminal 31, the R input signal 34' applied to the R signal input terminal 32, and VH2 are (L+R) inputs in the ideal magnetic IJ circuit 36. Signal 36: VMS
and (L-11() input signal 37'', VB2,
The M stereo modulator 38 generates the M stereo signal 4o, and the ideal reception/detection circuit 41 generates the (L+R) output signal 42:
vM.

と(L−)L)出力信号43 : VSOとな9、理想
マトリクス回路44でL出力信号4 E5 : VL。
(L-)L) Output signal 43: VSO and L output signal 4 at ideal matrix circuit 44. E5: VL.

とR出力信号46 ’ : VROになり、L出力端子
47およびR出力端子48から取出される。徒だ、39
はAMステレオ信号発生器を、49は理想受信機を示す
and R output signal 46': becomes VRO and is taken out from L output terminal 47 and R output terminal 48. It's a waste, 39
indicates an AM stereo signal generator, and 49 indicates an ideal receiver.

ここで、へMステレオ変調器の(L+R)系のゲインI
GM、(L−R)系のゲインkG3+そして入力信号が
VLSのみの状態(”R8−〇)?考える。すると、 v33 :■LS−vR8”vLS vSQ:GS@■5S0GS″vLS これからステレオ分離度:Sは (11)式、 (12)式から となり、L信号にR信号より90’位相の進んだ同一レ
ベルの信号をカロえた場合の一次上下側波のレベル比が
ステレオ分離度を表わす。L信号とR側波のレベル比が
同様にステレオ分離度を表わす。
Here, the gain I of the (L+R) system of the M stereo modulator
GM, (L-R) system gain kG3+, and the state where the input signal is only VLS ("R8-〇)? Think about it. Then, v33:■LS-vR8"vLS vSQ:GS@■5S0GS"vLS From now on, the stereo separation degree :S is expressed by equations (11) and (12), and the level ratio of the primary upper and lower side waves when a signal of the same level that is 90' ahead of the R signal is added to the L signal represents the degree of stereo separation. The level ratio of the L signal and the R sidewave similarly represents the degree of stereo separation.

(B)(L十R)系と(L−R)系の位相差による分離
度と一次上下側波のレベル比との関係 第一図VCおいて、(L+R)信号6がt:ospt 
−める。(2)式は、 Vl(t)= lo(tn2) h +m1sin(p
t+−月sinω、t±J1(”2ン11+rn1si
n(pt+−)1s+n1(c+)。±p)t ±π±
ψ )±T2(m2) 11+In1sin(pt+ 
−) 1S団1 (OJ C±2pJt±2π±2ψI
・・・・・・(14) となり、これを(8)のときと同様に整理すると、−水
上側波= −J。(m2)e−j、cos l (ω。
(B) Relationship between the degree of separation due to the phase difference between the (L + R) system and the (LR) system and the level ratio of the primary upper and lower side waves In Figure 1 VC, the (L + R) signal 6 is at t:ospt
- Melt. Equation (2) is: Vl(t)=lo(tn2)h+m1sin(p
t+-month sinω, t±J1("2n11+rn1si
n(pt+-)1s+n1(c+). ±p)t ±π±
ψ )±T2(m2) 11+In1sin(pt+
-) 1S Group 1 (OJ C±2pJt±2π±2ψI
...(14) If we rearrange this in the same way as in (8), -water side wave = -J. (m2) e-j, cos l (ω.

+p)t+; 1・・・・・・(16) ・・・・・・(16) となる。ここで10)J2の条件で、J2(m2)の頂
金削除する近似を行ない、(L +、R−川系の用イン
ケGM、(L−R)系のゲインf G sとして5、(
1句式。
+p)t+; 1...(16)...(16) Here, 10) Under the condition of J2, perform an approximation to delete the top of J2 (m2), and set (L +, R- river system's use inke GM, (L-R) system's gain f G s as 5, (
One phrase style.

(16)式を書き直すと、 ・・・・・・(17) +11(m2)cosl(cu。−p)t−−−ψ)・
・・・・・(18) となり、これから、 となる。この結果は、L信号とへ信号の位相関係全通に
した場合にもなりたつ。(Jo>12の条件で) 次に第3図において、AMステレオ変調器ノ(L+R)
のゲインを1 、(L−R)系のゲインを1/ψ、そし
て入力信号がvLsのみの状態(V us =O)を考
える。すると、 VMS=■LS+vR8:vLs ( vSS”vLS −VB2”VLS V S O= 1 lψIIvss=vLs/ψこれか
ら、分離度:Sは (19)式と(2o)式から となり、L信号とR信号に900位相の違った同一レベ
ルの信号を力口えた場合の一次上下側波のレベル比がス
テレオ分離度を表わす。
Rewriting equation (16), we get... (17) +11(m2)cosl(cu.-p)t----ψ)・
...(18) From now on, it becomes . This result also holds when the phase relationship between the L signal and the F signal is made the same. (Under the condition that Jo>12) Next, in Fig. 3, the AM stereo modulator (L+R)
Let us consider a state in which the gain of is 1, the gain of the (LR) system is 1/ψ, and the input signal is only vLs (V us =O). Then, VMS=■LS+vR8:vLs (vSS"vLS -VB2"VLS VSO= 1 lψIIvss=vLs/ψFrom now on, the degree of separation: S becomes from equation (19) and equation (2o), and the L signal and R signal The level ratio of the primary upper and lower side waves when signals of the same level but with a 900 degree phase difference are expressed as the stereo separation degree.

また、V L B = OでVB8 のみによる場合に
も同じ結果となる。
Furthermore, the same result is obtained when V L B = O and only VB8 is used.

次に、L信号が一遅れたときと、−進んだとき2   
           2 の分離度の表わす意味全開らかにする。マグナボソクス
方式の(L−J信号の100%変調は1 radであり
、(3)式において、■1)■2.J3.・・・・・・
であるので、■2以後全無視すると(3)式は=JO(
m2)S1nω。t −J。(m2)−シcosi (cuc+p)t+−1
22 +71(m2)sjn l (ω。+p)t+π)−J
l(m2)5cosl (ωo+2p)t+−122 1 +Jo (m2) ” 、 CO3((ω。7p)t−
、−1−11(rl12) 5I11 + (ω。−p
)を−π)−Jl(m2)5cosf’(ω。−2p 
)t−−122 (以下余白〕 ・・・・・・(21) ただし、ベッセル関数の性質でJ、(m2)+Jo(m
2)−(21)式の一次上下側波にのみ注目すると、こ
れらは搬送波と(L+R)信号、(L−R)信号によっ
てできているので、(L+R)イ信号金※(L+R) 
+ (L−R)信号k V(L−R) (!: L、(
L+R)4M 号+ (L−R)信号と側波との関係ケ
次のように表わす。
Next, when the L signal is delayed by one, and when it is -advanced, 2
Let us fully clarify the meaning of the degree of separation in 2. (100% modulation of the L-J signal in the Magnavox system is 1 rad, and in equation (3), ■1) ■2. J3.・・・・・・
Therefore, if we ignore everything after ■2, equation (3) becomes =JO(
m2) S1nω. t-J. (m2) - cosi (cuc+p)t+-1
22 +71(m2)sjn l (ω.+p)t+π)-J
l(m2)5cosl (ωo+2p)t+-122 1 +Jo (m2)'', CO3((ω.7p)t-
, -1-11(rl12) 5I11 + (ω.-p
) as -π)-Jl(m2)5cosf'(ω.-2p
)t--122 (blank space below) ・・・・・・(21) However, due to the property of Bessel function, J, (m2) + Jo(m
2) If we focus only on the primary upper and lower side waves of equation (21), these are made up of the carrier wave, (L+R) signal, and (L-R) signal, so (L+R)i signal gold*(L+R)
+ (L-R) signal k V (L-R) (!: L, (
L+R)4M+(LR) The relationship between the signal and the side waves is expressed as follows.

※CL+R)=K CCO3t (ω。+p)t−i+
cosl(ω。−p)t−H)〕( ※(L −fL ) −K Ccos l (ω。+p
)t −= l+cosl (ω。−p)t−二;−)
〕・・・・・・(22) L信号@ 九、R信号を※Rとすると、−吹上側波:(
21)式の一次上下側波の項は、(21)式と(22)
式から ・・・・・・(24) (23ン式と(24)式から、この時の分離度の式はV
RI となり、LチャネルからRチャネルへの分離度を表わす
。また、L信号とR信号の位相関係を逆にした場合、同
様にして、RチャネルからLチャネルへの分離度になる
ことが求められる。
*CL+R)=K CCO3t (ω.+p)t-i+
cosl(ω.-p)t-H)](*(L-fL)-K Ccosl(ω.+p
)t −= l+cosl (ω.−p)t−2;−)
]・・・・・・(22) L signal @9, R signal is *R, -up side wave: (
The terms of the primary upper and lower side waves in equation 21) are expressed in equation (21) and (22).
From formula... (24) (From formula 23 and formula (24), the formula for the degree of separation in this case is V
RI, which represents the degree of separation from the L channel to the R channel. Furthermore, when the phase relationship between the L signal and the R signal is reversed, the degree of separation from the R channel to the L channel is similarly required.

以上のように、マグナボノクス方式AMステレオイ1f
号元生器のLチャネルからRチャネルへのステレオ分離
度は、90°位相の違った同一レベルの信号を、位相の
違れた方iR信号1位相の進んだ方ケL信号として同時
に加え、この時のへMステレオ信号の一次上下側波のレ
ベル比を測定することによって求められる。逆にRチャ
ネルからLチャネルへの分離度は位相の進んだ方をR信
号。
As mentioned above, the Magna Bonox AM stereo system 1f
The degree of stereo separation from the L channel to the R channel of the signal generator is achieved by simultaneously adding signals of the same level with a 90° phase difference as the iR signal with the different phase and the L signal with the leading phase. It is obtained by measuring the level ratio of the primary upper and lower side waves of the M stereo signal at this time. Conversely, the degree of separation from the R channel to the L channel is that the one with the leading phase is the R signal.

遅れた方iL信号とすることによって、−吹上下側波の
レベル比から求められる。ただし、L信号およびR信号
から(L+R)信号、(L−R)信号を作るAMステレ
オ信号発生器内のマトリクス回路の分離度は測定結束よ
りも充分大きいことが必要である。また、Rチャネルか
らLチャネルへの分水に、以上の考察結果に基づき本発
明の方法を使ったマグナボックス方式AMステレオ信号
発生器の分離度測定の一実施例を、第4図?使って説明
する。第4図において、低周波発振器61のMAIN出
力端子52からの低周波信号54:cospt’(i−
AMステレオ信号発生器58のR信号入力端子66に加
え、QUAD出力端子53からの低周波信号ts 5:
 cos (pt+−)全り信号入力端子57に加える
。両方の信号レベルが同じになるように拡大目盛付電圧
計59で測って低周波発振器51の出力レベルを正しく
合わせる。AMステレオ信号発生器58のAMステレオ
信号60をスペクトラムアナライザ61で観測、−吹上
下側波のレベル比を測定し、それ(HLチャネルからR
チャネルへの分離度とする。次にL信号を逆にし、(L
+R)系の系の変調度)。スペクトラムアナライザで一
次上下側波のレベル比ヲ副定し、RチャネルからLチャ
ネルへの分離厩とする。その後(L +R)系の変調度
奮もとにもどす。
By using the delayed iL signal, it can be determined from the level ratio of the -blown upper and lower side waves. However, the degree of separation of the matrix circuit within the AM stereo signal generator that generates the (L+R) signal and (LR) signal from the L signal and the R signal must be sufficiently greater than the measurement unity. Also, Fig. 4 shows an example of measuring the degree of separation of a Magnavox type AM stereo signal generator using the method of the present invention for dividing water from the R channel to the L channel based on the above considerations. Use and explain. In FIG. 4, a low frequency signal 54:cospt'(i-
In addition to the R signal input terminal 66 of the AM stereo signal generator 58, the low frequency signal ts 5 from the QUAD output terminal 53:
cos (pt+-) is added to the signal input terminal 57. The output level of the low frequency oscillator 51 is adjusted correctly by measuring with a voltmeter 59 with an enlarged scale so that both signal levels are the same. Observe the AM stereo signal 60 of the AM stereo signal generator 58 with the spectrum analyzer 61, measure the level ratio of the upper and lower side waves (from the HL channel to the R
Let it be the degree of separation into channels. Next, reverse the L signal and (L
+R) modulation degree of the system). The level ratio of the primary upper and lower side waves is determined using a spectrum analyzer, and the R channel is separated into the L channel. After that, the modulation degree of the (L + R) system is returned to its original state.

発明の効果 本発明は上記のようなマグナボソクス方式のAhステレ
オ信号の分離度11111足方法であり、以下に示す効
果が得られる。
Effects of the Invention The present invention is a method for separating Ah stereo signals of 11,111 feet using the Magnavox system as described above, and provides the following effects.

(a)  従来、40 dB程度が限度であった測定精
度ケ+tS単な方法で20〜30 dB と、大幅に改
善できる。
(a) Measurement accuracy, which was conventionally limited to about 40 dB, can be significantly improved to 20 to 30 dB with a simple method.

(b)  従来、非常に複雑な校正をしなければならな
かったのが、非常に簡単になる。
(b) What used to be a very complicated calibration process is now very simple.

(C)  標準AMステレオ信号発生器を校正して、さ
らにそれで復調器全校正して測定するという2度の校正
をすることなしに直接測定できる。
(C) Direct measurements can be made without having to perform two calibrations: calibrating a standard AM stereo signal generator and then calibrating the entire demodulator using it.

(d)  これによって得られる効果は単に信号発生器
の精度の向上に結びつくだけでな(、AMステレオ放送
の質の向上に役立つという波及効果がある。
(d) The effect obtained by this is not only connected to an improvement in the accuracy of the signal generator (it also has a ripple effect of helping to improve the quality of AM stereo broadcasting).

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマグナボックス方式のAMステレオ信号発生器
の原理的な構成図、第2図は従来の分離度測定方法を説
明する結線図、第3図はAlviステレオ信号発生器の
出力信号を理想受信機で受信したときの結線図、第4図
は本発明の方法を使ってAMステレオ信号発生器のステ
レオ分離度を測定するときの構成図である。 1・・・・・・、左側信号入力端子、2・・・・・・右
側信号入力端子、5・・・・・・マトリクス回路、8・
・・・・・位相変調器、9・・・・・・搬送波発振器、
11・・・・・・遅延回路、12・・・・・振幅変調器
、21・・・・・・標準AMステレオ信号発生器、22
・・・・・・復調器、23・・・・・・供試AMステレ
オ信号発生器、36・・・・・・理想マトリクス回路、
38・・・・・・AMステレオ変調器、39・・・・・
・AMステレオ信号発生器、41・・・・・・理想受信
・検波回路、44・・・・・・理想マトリクス回路、4
9・・・・・・理想受信機、51・・・・・・低周波発
振器、68・・・・・・AMステレオ信号発生器2,5
9・・・・・・拡大目盛付電圧計、61・・・・・スペ
クトラムアナライザ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名−2
Figure 1 is a basic configuration diagram of the Magnavox type AM stereo signal generator, Figure 2 is a wiring diagram explaining the conventional separation measurement method, and Figure 3 is the ideal output signal of the Alvi stereo signal generator. FIG. 4 is a wiring diagram when receiving signals at a receiver. FIG. 4 is a block diagram when measuring the stereo separation degree of an AM stereo signal generator using the method of the present invention. 1... Left side signal input terminal, 2... Right side signal input terminal, 5... Matrix circuit, 8...
... Phase modulator, 9 ... Carrier wave oscillator,
11... Delay circuit, 12... Amplitude modulator, 21... Standard AM stereo signal generator, 22
... Demodulator, 23 ... AM stereo signal generator under test, 36 ... Ideal matrix circuit,
38...AM stereo modulator, 39...
・AM stereo signal generator, 41...Ideal reception/detection circuit, 44...Ideal matrix circuit, 4
9...Ideal receiver, 51...Low frequency oscillator, 68...AM stereo signal generator 2, 5
9... Voltmeter with enlarged scale, 61... Spectrum analyzer. Name of agent: Patent attorney Toshio Nakao and 1 other person-2
(

Claims (1)

【特許請求の範囲】[Claims] り信号とH信号の差信号で搬送波を位相変調し、前記り
信号とR信号の和信号で前記位相変調された変調波を位
相変調の変調指数と等しい匝の変調度で振lJ変調する
AMステレオ信号発生器における分離度を画定するに除
し、前記AiVIステレオ信号発生器の2つの信号入力
端子の夫々に低周波信号と前記低周波信号と900位相
の異なった低周波信号ケ同一レベルに調整して印〃[j
し、前記AMステレオ信号発生器から得られるへMステ
レオ信号の上下の一次側波のレベル比により分離度を求
めることケ特徴とするAMステレオ信号分離度測定方法
AM that phase-modulates a carrier wave with the difference signal between the radial signal and the H signal, and modulates the phase-modulated modulated wave with a modulation degree equal to the modulation index of the phase modulation using the sum signal of the radial signal and the R signal. In order to define the degree of separation in the stereo signal generator, a low frequency signal and a low frequency signal having a phase difference of 900 degrees from the low frequency signal are input to each of the two signal input terminals of the AiVI stereo signal generator at the same level. Adjust and mark〃[j
A method for measuring the degree of separation of AM stereo signals, characterized in that the degree of separation is determined by the level ratio of the upper and lower primary side waves of the M stereo signal obtained from the AM stereo signal generator.
JP6944883A 1983-04-19 1983-04-19 Method for measuring separation degree of am stereophonic signal Pending JPS59194543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6944883A JPS59194543A (en) 1983-04-19 1983-04-19 Method for measuring separation degree of am stereophonic signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6944883A JPS59194543A (en) 1983-04-19 1983-04-19 Method for measuring separation degree of am stereophonic signal

Publications (1)

Publication Number Publication Date
JPS59194543A true JPS59194543A (en) 1984-11-05

Family

ID=13402924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6944883A Pending JPS59194543A (en) 1983-04-19 1983-04-19 Method for measuring separation degree of am stereophonic signal

Country Status (1)

Country Link
JP (1) JPS59194543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7003262B2 (en) * 2001-08-20 2006-02-21 Japan Science And Technology Agency Method and device for determining sideband ratio of superconduction mixer using comb generator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732152A (en) * 1980-08-06 1982-02-20 Meguro Denpa Sokki Kk Measuring method for separation degree of am stereophonic signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732152A (en) * 1980-08-06 1982-02-20 Meguro Denpa Sokki Kk Measuring method for separation degree of am stereophonic signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7003262B2 (en) * 2001-08-20 2006-02-21 Japan Science And Technology Agency Method and device for determining sideband ratio of superconduction mixer using comb generator

Similar Documents

Publication Publication Date Title
US20210333357A1 (en) Digital compensation for mismatches in a radar system
US7010278B2 (en) Sideband suppression method and apparatus for quadrature modulator using magnitude measurements
DE3465400D1 (en) Receiver for rf signals comprising a pair of parallel signal paths
JPH0569471B2 (en)
CN112051555B (en) Digital IQ calibration method based on complex signal spectrum operation
JPS59194543A (en) Method for measuring separation degree of am stereophonic signal
US2093871A (en) Electrical receiving and measuring system
GB2334390A (en) Measurement of timing delay between associated signals or bitstreams
JPH0350918A (en) Noise eliminator
US4811395A (en) Two-tone test signal method for BTSC calibration
JP2728071B2 (en) Transmitter using range tone modulation and receiver thereof
JPH01154660A (en) Testing method for communication system
US4017717A (en) Resolution of ambiguities in counts contained in overlapping bit positions of fine and coarse data measurement digital signals
JPH098767A (en) Instrument and method for measuring multipath delay spread
JPS6225519A (en) Detecting system for same frequency interference quantity
SU1087916A1 (en) Device for measuring non-linear distortions in frequency-modulated signal demodulation circuits
JP3863097B2 (en) Carrier leak measurement method for double balanced mixer
JP2996941B2 (en) C / N measurement method and measurement circuit
JPS59171345A (en) Method for measuring separation degree of am stereo signal
FR2556525A1 (en) APPARATUS FOR DETECTING RADIO SIGNALS MODULES IN FREQUENCY
JPS5946451B2 (en) Display method for the amount of interference distortion caused by multipath interference of FM radio waves
JPS6216621A (en) Fm receiving circuit
JPS61114625A (en) Transmitter-receiver
JPH10126302A (en) Band end frequency detecting device for specific bandwidth of filter, and ssb transmitter and ssb receiver using the same device
JP2000134039A (en) Frequency discriminator